
Introduction to Ad-hoc Retrieval

Jaime Arguello

INLS 509: Information Retrieval

jarguell@email.unc.edu

mailto:jarguell@email.unc.edu

2

• Text-based retrieval

• Given a query and a corpus, find the relevant items

‣ query: textual description of information need

‣ corpus: a collection of textual documents

‣ relevance: satisfaction of the user’s information need

• “Ad-hoc” because the number of possible queries is (in
theory) infinite.

Ad-hoc Retrieval

3

Examples

web search

4

Examples

scientific search

5

Examples

discussion forum search

6

• We will focus on non-web ad-hoc retrieval

‣ more is known about how these systems work

‣ more stable solutions - not constantly tweaked

‣ not heavily tuned using user-interaction data
(e.g., clicks)

‣ very common: digital libraries, government and
corporate intranets, large information service providers
(e.g., Thompson Reuters), social media, your own
personal computers

Ad-hoc Retrieval

7

Basic Information Retrieval Process

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

8

Basic Information Retrieval Process

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

systemuser

9

Next Two Lectures

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

2 1

4

3

10

Document Representation

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

1

11

Most Basic View of a Search Engine

• A search engines does
not scan each document
to see if it satisfies the
query

• It uses an index to
quickly locate the
relevant documents

• Index: a list of concepts
with pointers to
documents (in this case,
pages) that discuss them

Index from Manning et al., 2008

12

Most Basic View of a Search Engine

input query:
A/B testing

output
document:
docid: 170

• So, what goes in the index is important!

• How might we combine concepts (e.g., patent search +
A/B testing)?

13

Document Representation

• Document representation: deciding what concepts
should go in the index

• Option 1 (controlled vocabulary): a set a manually
constructed concepts that describe the major topics
covered in the collection

• Option 2 (free-text indexing): the set of individual terms
that occur in the collection

14

• If we view option 1 and
option 2 as two
extremes, where does
this particular index fit
in?

Index from Manning et al., 2008

Document Representation

15

• Controlled vocabulary: a set of well-defined concepts

• Assigned to documents by humans (or automatically)

Document Representation

option 1: controlled vocabulary

• Controlled vocabulary: a set of well-defined concepts

• Assigned to documents by annotators (or automatically)

16

Document Representation

option 1: controlled vocabulary

17

• May include (parent-child) relations b/w concepts

• Facilitates non-query-based browsing and exploration

Controlled Vocabularies

Open Directory
Project (ODP)

18

Controlled Vocabularies

example

• MeSH: Medical Subject Headings

• Created by the National Library of Medicine to index
biomedical journals and books

• About 25,000 subject headings arranged in a hierarchy

• Used to search PubMed

19

Controlled Vocabularies

example

20

Controlled Vocabularies

example

21

Controlled Vocabularies

example

sub-headings

entry-termssub-tree within the hierarchy

22

Controlled Vocabularies

example

23

Controlled Vocabularies

example

24

• Concepts do not need to appear explicitly in the text

• Relationships between concepts facilitate non-query-
based navigation and exploration (e.g., ODP)

• Developed by experts who know the data and the users

• Represent the concepts/relationships that users
(presumably) care the most about

• Describe the concepts that are most central to the
document

• Concepts are unambiguous and recognizable
(necessary for annotators and good for users)

Controlled Vocabularies

advantages

25

Document Representation

option 2: free-text indexing

• Represent documents using terms within the document

• Which terms? Only the most descriptive terms? Only the
unambiguous ones? All of them?

• Usually, all of them (a.k.a. full-text indexing)

• The search engine will determine which terms are
important (we’ll talk about this during “retrieval models”)

• The user will use term-combinations to express higher
level concepts

• Query terms will hopefully disambiguate each other
(e.g., “volkswagen golf”)

26

Free-text Indexing

27

Free-text Indexing

what you see

28

Free-text Indexing

what your computer sees

<p>Gerard Salton (8 March 1927 in <a href="/
wiki/Nuremberg" title="Nuremberg">Nuremberg -
28 August 1995), also known as Gerry Salton, was a
Professor of <a href="/wiki/Computer_Science"
title="Computer Science" class="mw-
redirect">Computer Science at <a href="/wiki/
Cornell_University" title="Cornell University">Cornell
University. Salton was perhaps the leading
computer scientist working in the field of <a href="/
wiki/Information_retrieval" title="Information
retrieval">information retrieval during his time.
His group at Cornell developed the <a href="/wiki/
SMART_Information_Retrieval_System" title="SMART
Information Retrieval System">SMART Information
Retrieval System, which he initiated when he was
at Harvard.</p>

29

Free-text Indexing

mark-up vs. content

<p>Gerard Salton (8 March 1927 in <a href="/
wiki/Nuremberg" title="Nuremberg">Nuremberg -
28 August 1995), also known as Gerry Salton, was a
Professor of <a href="/wiki/Computer_Science"
title="Computer Science" class="mw-
redirect">Computer Science at <a href="/wiki/
Cornell_University" title="Cornell University">Cornell
University. Salton was perhaps the leading
computer scientist working in the field of <a href="/
wiki/Information_retrieval" title="Information
retrieval">information retrieval during his time.
His group at Cornell developed the <a href="/wiki/
SMART_Information_Retrieval_System" title="SMART
Information Retrieval System">SMART Information
Retrieval System, which he initiated when he was
at Harvard.</p>

30

• Describes how the content should be presented

‣ e.g., your browser interprets HTML mark-up and
presents the page as intended by the author

• Define relationships with other documents (e.g.,
hyperlinks)

• Can provide evidence of what text is important for search

• Can provide useful “unseen” information!

Free-text Indexing

mark-up

31

Free-text Indexing

mark-up

ACM

32

Free-text Indexing

text-processing

<p>Gerard Salton (8 March 1927 in <a href="/wiki/Nuremberg"
title="Nuremberg">Nuremberg - 28 August 1995), also known as Gerry Salton,
was a Professor of <a href="/wiki/Computer_Science" title="Computer Science"
class="mw-redirect">Computer Science at <a href="/wiki/Cornell_University"
title="Cornell University">Cornell University. Salton was perhaps the leading
computer scientist working in the field of <a href="/wiki/Information_retrieval"
title="Information retrieval">information retrieval during his time. His group at
Cornell developed the <a href="/wiki/SMART_Information_Retrieval_System"
title="SMART Information Retrieval System">SMART Information Retrieval System</
a>, which he initiated when he was at Harvard.</p>

• Step 1: mark-up removal

<p>Gerard Salton (8 March 1927 in <a href="/wiki/Nuremberg"
title="Nuremberg">Nuremberg - 28 August 1995), also known as Gerry Salton,
was a Professor of <a href="/wiki/Computer_Science" title="Computer Science"
class="mw-redirect">Computer Science at <a href="/wiki/Cornell_University"
title="Cornell University">Cornell University. Salton was perhaps the leading
computer scientist working in the field of <a href="/wiki/Information_retrieval"
title="Information retrieval">information retrieval during his time. His group at
Cornell developed the <a href="/wiki/SMART_Information_Retrieval_System"
title="SMART Information Retrieval System">SMART Information Retrieval System</
a>, which he initiated when he was at Harvard.</p>

33

Free-text Indexing

text-processing

• Step 1: mark-up removal

<p>gerard salton (8 march 1927 in <a href="/wiki/Nuremberg"
title="Nuremberg">nuremberg - 28 august 1995), also known as gerry salton,
was a Professor of <a href="/wiki/Computer_Science" title="Computer Science"
class="mw-redirect">computer science at <a href="/wiki/Cornell_University"
title="Cornell University">cornell university. salton was perhaps the leading
computer scientist working in the field of <a href="/wiki/Information_retrieval"
title="Information retrieval">information retrieval during his time. his group at
cornell developed the <a href="/wiki/SMART_Information_Retrieval_System"
title="SMART Information Retrieval System">smart information retrieval system,
which he initiated when he was at harvard.</p>

34

Free-text Indexing

text-processing

• Step 2: down-casing

• Can change a word’s meaning, but we do it anyway

‣ Information = information ???

‣ SMART = smart ???

35

Free-text Indexing

text-processing

• Step 3: tokenization

• Tokenization: splitting text into words (in this case, based
on sequences of non-alphanumeric characters)

• Problematic cases: ph.d. = ph d, isn’t = isn t

gerard salton 8 march 1978 in nuremberg 28 august 1995 also know as gerry salton
was professor of computer science at cornell university salton was perhaps the
leading computer scientist working in the field of information retrieval during his
time his group at cornell developed the smart information retrieval system which he
initiated when he was at harvard

36

Free-text Indexing

text-processing

gerard salton 8 march 1978 in nuremberg 28 august 1995 also know as gerry salton
was professor of computer science at cornell university salton was perhaps the
leading computer scientist working in the field of information retrieval during his
time his group at cornell developed the smart information retrieval system which he
initiated when he was at harvard

• Step 4: stopword removal

• Stopwords: words that we choose to ignore because we
expect them to not be useful in distinguishing between
relevant/non-relevant documents for any query

37

Free-text Indexing

text-processing

• Step 4: stopword removal

• Stopwords: words that we choose to ignore because we
expect them to not be useful in distinguishing between
relevant/non-relevant documents for any query

gerard salton 8 march 1978 in nuremberg 28 august 1995 also know as gerry salton
was professor of computer science at cornell university salton was perhaps the
leading computer scientist working in the field of information retrieval during his
time his group at cornell developed the smart information retrieval system which he
initiated when he was at harvard

38

Free-text Indexing

text-processing

• Step 5: do this to every document in the collection and
create an index using the all terms appearing in the
collection

gerard salton 8 march 1978 nuremberg 28 august 1995 gerry salton professor
computer science cornell university salton leading computer scientist working field
information retrieval during time group cornell developed smart information retrieval
system initiated harvard

39

Document Representation

controlled vocabulary vs. free-text indexing

Cost of assigning
index terms

Ambiguity of index
terms

Detail of
representation

Controlled
Vocabularies

High/Low?
Ambiguous/

Unambiguous?

Can represent
arbitrary level of

detail?

Free-text
Indexing

High/Low?
Ambiguous/

Unambiguous?

Can represent
arbitrary level of

detail?

40

Document Representation

controlled vocabulary vs. free-text indexing

Cost of assigning
index terms

Ambiguity of index
terms

Detail of
representation

Controlled
Vocabularies

High Not ambiguous
Can’t represent
arbitrary detail

Free-text
Indexing

Low Can be ambiguous Any level of detail

• Both are effective and used often

• We will focus on free-text indexing in this course

‣ cheap and easy

‣ most search engines use it (even those that adopt a

controlled vocabulary)

41

Document Representation

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

1

42

Information Need Representation

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

2

43

• Assumption: the user can represent their information need
using boolean constraints: AND, OR, and AND NOT

‣ lincoln

‣ president AND lincoln

‣ president AND (lincoln OR abraham)

‣ president AND (lincoln OR abraham) AND NOT car

‣ president AND (lincoln OR abraham) AND NOT (car
OR automobile)

• Parentheses specify the order of operations

‣ A OR (B AND C) does not equal (A OR B) AND C

Boolean Retrieval

44

• X AND Y

Boolean Retrieval

collection

docs that satisfy X docs that satisfy Y
X AND Y

45

• X OR Y

Boolean Retrieval

collection

docs that satisfy X docs that satisfy Y
X OR Y

46

• X AND NOT Y

Boolean Retrieval

collection

docs that satisfy X docs that satisfy Y
X AND NOT Y

47

• Easy for the system (no ambiguity in the query)

‣ the burden is on the user to formulate the right query

• The user gets transparency and control

‣ lots of results ➔ the query is too broad

‣ no results ➔ the query is too narrow

• Common strategy for finding the right balance:

‣ if the query is too broad, add AND or AND NOT
constraints

‣ if the query is too narrow, add OR constraints

Boolean Retrieval

advantages

48

Information Need Representation

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

2

49

Evaluation

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

3

50

• Assumption: the user wants to find all the relevant
documents and only the relevant documents

• If the query is too specific, it may retrieve relevant
documents, but not enough

Boolean Retrieval

evaluation

collection

relevant docs retrieved docs

51

Boolean Retrieval

evaluation

collection

relevant docs retrieved docs

• Assumption: the user wants to find all the relevant
documents and only the relevant documents

• If the query is too broad, it may retrieve many relevant
documents, but also many non-relevant ones

52

• Assumption: the user wants to find all the relevant
documents and only the relevant documents

• Precision: the percentage of retrieved documents that are
relevant

• Recall: the percentage of relevant documents that are
retrieved

• The goal of the user is to find the right balance between
precision and recall

• These are important evaluation measures that we will see
over and over again

Boolean Retrieval

evaluation

53

• Precision =

Boolean Retrieval

evaluation

|B|

|C|

collection

A = relevant docs C = retrieved docs

A B C

B = intersection of A and C

54

Boolean Retrieval

evaluation

• Recall =
|B|

|A|

collection

A = relevant docs C = retrieved docs

A B C

B = intersection of A and C

55

• If the query is too specific, precision may be high, but
recall will probably be low

• If the query is too broad, recall may be high, but
precision will probably be low

• Extreme cases:

‣ a query that retrieves a single relevant document will
have perfect precision, but low recall (unless only
that one document is relevant)

‣ a query that retrieves the entire collection will have
perfect recall, but low precision (unless the entire
collection is relevant)

Boolean Retrieval

evaluation

56

Performing Retrieval

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

4

57

Most Basic View of a Search Engine

Index from Manning et al., 2008

• A search engines does
not scan each document
to see if it satisfies the
query

• That may be effective,
but not efficient

• It uses an index to
quickly locate the
relevant documents

• Index: a list of concepts
and pointers to
documents that discuss
them

58

Inverted Index Full-text Representation

a aardvark abacus abba able ... zoom
df=3421 df=22 df=19 df=2 df=44 df=1

1 33 2 33 66 54
33 56 10 150 134
45 86 15 176
:: :: :: ::

1022 1011 231 432

• Variable-length inverted lists

• Each document has a unique identifier (docid)

• Why are the inverted lists sorted by docid?

• Why do we store the df ’s in the index?

59

Jack Jill Jack AND Jill

df=3 df=5 count=1
1 1 1
3 3
5 4

5
8

Merging (Variable-Length) Inverted Lists

AND

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

60

Merging (Variable-Length) Inverted Lists

AND

Jack Jill Jack AND Jill

df=3 df=5 count=2
1 1 1
3 3 3
5 4

5
8

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

61

Merging (Variable-Length) Inverted Lists

AND

Jack Jill Jack AND Jill

df=3 df=5 count=2
1 1 1
3 3 3
5 4

5
8

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

62

Merging (Variable-Length) Inverted Lists

AND

Jack Jill Jack AND Jill

df=3 df=5 count=3
1 1 1
3 3 3
5 4 5

5
8

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

63

stop!

Merging (Variable-Length) Inverted Lists

AND

Jack Jill Jack AND Jill

df=3 df=5 count=3
1 1 1
3 3 3
5 4 5

5
8

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

64

If the inverted list for “Jill” was
longer, would it make sense to

continue? Why or why not?

Merging (Variable-Length) Inverted Lists

AND

Jack Jill Jack AND Jill

df=3 df=5 count=3
1 1 1
3 3 3
5 4 5

5
8
10

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

65

If the inverted list for “Jill” was
longer, would it make sense to

continue? Why or why not?

Merging (Variable-Length) Inverted Lists

AND

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

Jack Jill Jack AND Jill

df=3 df=5 count=3
1 1 1
3 3 3
5 4 5

5
8
10

This is (partly) why
the inverted lists are
sorted in ascending

order of docid!

66

Jack Jill Jack AND Jill

df=3 df=5 count=?
1 2 ?
3 4
5 6

8
9

Merging (Variable-Length) Inverted Lists

AND

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

67

Jack Jill Jack AND Jill

df=3 df=5 count=?
1 2 ?
3 4
5 6

8
9

Merging (Variable-Length) Inverted Lists

AND

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

68

Jack Jill Jack AND Jill

df=3 df=5 count=?
1 2 ?
3 4
5 6

8
9

Merging (Variable-Length) Inverted Lists

AND

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

69

Jack Jill Jack AND Jill

df=3 df=5 count=?
1 2 ?
3 4
5 6

8
9

Merging (Variable-Length) Inverted Lists

AND

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

70

Jack Jill Jack AND Jill

df=3 df=5 count=?
1 2 ?
3 4
5 6

8
9

Merging (Variable-Length) Inverted Lists

AND

• Query: Jack AND Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal,
increment pointer with
lowest docid

3. Repeat until (1) end of one
list and (2) docid from
other list is greater

71

Jack Jill Jack AND Jill

df=3 df=5 count=0
3 7
1 2
5 6

4
9

Merging (Variable-Length) Inverted Lists

AND

• If the lists weren’t sorted, the worst case scenario is very bad

72

Merging (Variable-Length) Inverted Lists

OR

Jack Jill Jack OR Jill

df=3 df=5 count=1
1 1 1
3 3
5 4

5
8

• Query: Jack OR Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal, add
lowest docid and increment
its pointer

3. Repeat until end of both
lists

73

Merging (Variable-Length) Inverted Lists

OR

Jack Jill Jack OR Jill

df=3 df=5 count=2
1 1 1
3 3 3
5 4

5
8

• Query: Jack OR Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal, add
lowest docid and increment
its pointer

3. Repeat until end of both
lists

74

Merging (Variable-Length) Inverted Lists

OR

Jack Jill Jack OR Jill

df=3 df=5 count=3
1 1 1
3 3 3
5 4 4

5
8

• Query: Jack OR Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal, add
lowest docid and increment
its pointer

3. Repeat until end of both
lists

75

Merging (Variable-Length) Inverted Lists

OR

Jack Jill Jack OR Jill

df=3 df=5 count=4
1 1 1
3 3 3
5 4 4

5 5
8

• Query: Jack OR Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal, add
lowest docid and increment
its pointer

3. Repeat until end of both
lists

76

Merging (Variable-Length) Inverted Lists

OR

stop!

Jack Jill Jack OR Jill

df=3 df=5 count=5
1 1 1
3 3 3
5 4 4

5 5
8 8

• Query: Jack OR Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal, add
lowest docid and increment
its pointer

3. Repeat until end of both
lists

77

Merging (Variable-Length) Inverted Lists

OR

• Which is more expensive (on average) AND or OR?

Jack Jill Jack OR Jill

df=3 df=5 count=5
1 1 1
3 3 3
5 4 4

5 5
8 8

• Query: Jack OR Jill

1. If docids are equal, add
docid to results and
increment both pointers

2. If docids are not equal, add
lowest docid and increment
its pointer

3. Repeat until end of both
lists

78

Jack Jill Jack OR Jill

df=3 df=5 count=6
3 7 3
1 3 1
5 2 5

5 7
9 2

9

Merging (Variable-Length) Inverted Lists

OR

• If the lists weren’t sorted, we would need to do extra work!

79

Merging (Variable-Length) Inverted Lists

• In some cases, the search engine has a choice in the
order of operations

• Query: Abraham AND Lincoln AND President

‣ option 1: (Abraham AND Lincoln) AND President

‣ option 2: Abraham AND (Lincoln AND President)

‣ option 3: (Abraham AND President) AND Lincoln

• Which is probably the least efficient order of
operations?

80

Merging (Variable-Length) Inverted Lists

• Which is probably the least efficient order of
operations?

president abraham lincoln

df=302 df=45 df=5
XX XX XX
XX XX XX
XX XX XX
XX XX XX
XX XX XX
:: ::

XX XX

81

Retrieval Model 1: Unranked Boolean

• Retrieves the set of documents that match the boolean
query (an “exact-match” retrieval model)

• Returns results in no particular order

• This is problematic with large collections

‣ requires complex queries to reduce the result set to a
manageable size

• Can we do better?

82

Retrieval Model 2: Ranked Boolean

University North Carolina UNC
df=6 df=4 df=3 df=5
1, 4 1, 4 1, 4 1, 4
10, 1 10, 5 10, 5 10, 1
15, 2 16, 1 16, 1 16, 4
16, 1 68, 1 33, 2
33, 5 56, 10
67, 7

• docid = document identifier

• tf = term frequency (# of times the term appears in the
document)

83

• At each step, keep a list of documents that match the
query and their scores (a.k.a. a “priority queue”)

• Score computation:

‣ A AND B: adjust the document score based on the
minimum frequency/score associated with
expression A and expression B

‣ A OR B: adjust the document score based on the
sum of frequencies/scores associated with
expression A and expression B

Retrieval Model 2: Ranked Boolean

84

University North Carolina UNC
df=6 df=4 df=3 df=5
1, 4 1, 4 1, 4 1, 4
10, 1 10, 5 10, 5 10, 1
15, 2 16, 1 16, 1 16, 4
16, 1 68, 1 33, 2
33, 5 56, 10
68, 7

• Query: (University AND North AND Carolina) OR UNC

• AND ➔ min

• OR ➔ sum

Retrieval Model 2: Ranked Boolean

85

University North Carolina Result_1
df=6 df=4 df=3 count=??
1, 4 1, 4 1, 4
10, 1 10, 5 10, 5
15, 2 16, 1 16, 1
16, 1 68, 1
33, 5
68, 7

• Query: (University AND North AND Carolina) OR UNC

• AND ➔ min

• OR ➔ sum

Retrieval Model 2: Ranked Boolean

86

University North Carolina Result_1
df=6 df=4 df=3 count=3
1, 4 1, 4 1, 4 1, 4
10, 1 10, 5 10, 5 10, 1
15, 2 16, 1 16, 1 16, 1
16, 1 68, 1
33, 5
68, 7

• Query: (University AND North AND Carolina) OR UNC

• AND ➔ min

• OR ➔ sum

Retrieval Model 2: Ranked Boolean

87

• Query: (University AND North AND Carolina) OR UNC

Retrieval Model 2: Ranked Boolean

Result_1 UNC Query
count=3 df=5 count=??
1, 4 1, 4
10, 1 10, 1
16, 1 16, 4

33, 2
56, 10

• AND ➔ min

• OR ➔ sum

88

• Query: (University AND North AND Carolina) OR UNC

Retrieval Model 2: Ranked Boolean

Result_1 UNC Query
count=3 df=5 count=5
1, 4 1, 4 1, 8
10, 1 10, 1 10, 2
16, 1 16, 4 16, 5

33, 2 33, 2
56, 10 56, 10

• AND ➔ min

• OR ➔ sum

89

University North Carolina UNC Query
df=6 df=4 df=3 df=5 count=5
1, 4 1, 4 1, 4 1, 4 1, 8
10, 1 10, 5 10, 5 10, 1 10, 2
15, 2 16, 1 16, 1 16, 4 16, 5
16, 1 68, 1 33, 2 33, 2
33, 5 56, 10 56, 10
68, 7

• Query: (University AND North AND Carolina) OR UNC

• Conceptually, what do these document scores indicate?

Retrieval Model 2: Ranked Boolean

90

University North Carolina UNC Query
df=6 df=4 df=3 df=5 count=5
1, 4 1, 4 1, 4 1, 4 1, 8
10, 1 10, 5 10, 5 10, 1 10, 2
15, 2 16, 1 16, 1 16, 4 16, 5
16, 1 68, 1 33, 2 33, 2
33, 5 56, 10 56, 10
68, 7

• Query: (University AND North AND Carolina) OR UNC

• The scores correspond to the number of ways in which the
document redundantly satisfies the query

Retrieval Model 2: Ranked Boolean

91

• Advantages:

‣ same as unranked boolean: efficient, predictable,
easy to understand, works well when the user knows
what to look for

‣ the user may be able to find relevant documents
quicker and may not need to examine the entire
result set

• Disadvantages:

‣ same as unranked boolean: works well when the
user knows what to look for

‣ difficult to balance precision and recall

Retrieval Model 2: Ranked Boolean

92

Summary

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

2 1

4

3

93

Summary

information need

representation

query comparison

document

indexed objects

representation

retrieved objects

evaluation

docdocdocdocdoc

boolean
queries

controlled vocabularies,
free-text indexing,
text-processing,
VL inverted listsunranked

and ranked
boolean
retrieval
models

metrics:
precision
and recall

94

Take Home Message

• Congratulations! Now, you know how a boolean search
engine works

• How are indexes structured?

• How are boolean queries processed quickly?

• What are some time-saving hacks?

• How are boolean retrieval sets evaluated?

• How can we prioritize documents based on how much
they satisfy the boolean constraints?

