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Abstract

Our research in this paper lies at the intersection of Generative

AI (GenAI) and search-as-learning (SAL). GenAI technologies (e.g.,

ChatGPT) have revolutionized how people search for and interact

with information. However, we do not yet fully understand how

people use GenAI systems to learn about complex topics. SAL re-

search has studied how different tools can support learning with

traditional document retrieval systems. Our research closely relates

to SAL work that has investigated the effects of goal-setting on

learning during search. We explore the influence of goal-setting on

learning during information-seeking sessions with a GenAI system.

We report on a between-subjects crowdsourced study (𝑁 = 120) in

which participants were asked to learn about a complex topic using

a GenAI system. The study had four conditions that varied along

two factors (a 2 × 2 design). The first factor involved displaying

related web results in addition to the GenAI output. The second

factor involved giving participants access to the Subgoal Manager

(SM), a tool designed to help people develop subgoals and take notes.

We investigated the effects of both factors on: (RQ1) perceptions;

(RQ2) behaviors; (RQ3) learning and retention; (RQ4) the types of

requests issued to the system; and (RQ5) participants’ motivations

for engaging (or not engaging) with the related web results. Results

found that participants with access to the SM had higher post-task

learning outcomes, did less copy/pasting into their notes, perceived

the task as more difficult, and requested more examples and support

for differentiating concepts from the GenAI system.
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1 Introduction

Generative AI (GenAI) is reshaping the way people search for in-

formation and acquire knowledge. These conversational systems

represent a fundamental shift in information seeking. Rather than

navigating ranked lists of documents, users engage in multi-turn

natural language exchanges to find information, answer questions,

and construct understanding. Students increasingly turn to GenAI

for help in their learning process [7]. Although GenAI systems

feel helpful to students, emerging evidence suggests these systems

have the potential to be detrimental to learning outcomes [4, 18].

Understanding how to design GenAI tools that genuinely enhance

learning, rather than merely feeling helpful, has become a critical

research priority.

The search-as-learning (SAL) community has long studied how

people learn during information-seeking sessions with traditional

search engines [35]. Researchers have developed interventions to

support learning, including note-taking tools [11, 27, 28], visual-

izations [8, 17, 29], self-assessment tools [32] and goal-setting in-

terfaces [33, 34]. However, nearly all SAL research has focused on

document retrieval systems where learners formulate queries, eval-

uate results, and synthesize information across multiple documents.

GenAI chat systems present a qualitatively different information

seeking paradigm where synthesis happens within the system, doc-

uments may be hidden or absent, and the interaction is conver-

sational rather than query-based. This raises a critical question:

how do we support learning during information-seeking sessions

with GenAI systems? Additionally, are successful interventions for

traditional search also successful for this new form of interaction?

This paper investigates the effects of goal-setting, which offers

particular promise for learning with GenAI. First, research from

the learning sciences demonstrates that goal-setting plays a critical

role in learning processes [30]. The Winne & Hadwin model of

self-regulated learning identifies goal-setting as a key phase that

enables learners to monitor progress, evaluate strategies, and adapt

their approach [37]. Students who engage effectively in setting and

monitoring their goals achieve better learning outcomes [9, 13].

Second, psychology research shows that goals enhance learning by

honing task understanding, activating prior knowledge, directing at-

tention to important information, and sustaining effort toward goal

https://creativecommons.org/licenses/by/4.0
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achievement [21–23]. Third, prior SAL research with traditional

search systems has demonstrated that goal-setting interventions

improve learning outcomes, particularly knowledge retention, by

encouraging greater engagement with self-regulated learning pro-

cesses [34]. Despite this converging evidence, few studies have

examined whether goal-setting interventions transfer effectively

to information seeking with GenAI.

In this paper, we address this gap with a crowdsourced study in

which participants (𝑁 = 120) were asked to complete a learning-

oriented search task using a GenAI chat system. Participants were

asked to learn about the biological concepts of diffusion and osmosis.

The study used a 2×2 between-subjects design in which participants
were assigned to one of four conditions: (1) Base, (2) +Web, (3)

+SM, and (4) +Web+SM. Thirty participants were assigned to each

condition. In the Base condition, participants used a GenAI chat

system like ChatGPT and a text editor to take notes. In the +Web

condition, participants had access to the same system plus an extra

tab that displayed “Related Web Results”. In the +SM condition,

participants had access to the GenAI system and an experimental

system called the Subgoal Manager (SM) that encouraged them

to engage in effective goal-setting behaviors (detailed in § 3.2). In

the +Web+SM condition, participants had access the GenAI chat

system, the “Related Web Results” tab, and the Subgoal Manager.

Our research questions are as follows:

• RQ1:What were the effects of the system condition on partici-

pants’ post-task perceptions?

• RQ2:What were the effects of the system condition on partici-

pants’ behaviors?

• RQ3:What were the effects of the system condition on partici-

pants’ learning outcomes?

• RQ4:What were the effects of the system condition on the types

of requests issued to the system?

• RQ5: In conditions that included related web results, what were

participants’ motivations for engaging with the web results?

2 Related Work

2.1 Tools to Support Learning during Search

SAL studies have explored different tools to support learning during

search: (1) note-taking tools, (2) visualizations, (3) self-assessment

tools, and (4) goal-setting tools.

Note-taking Tools: Freund et al. [11] conducted a study in

which participants read articles in plain text versus HTML with dis-

tracting elements. Participants had higher reading comprehension

scores in the plain text condition. However, this effect was attenu-

ated when participants could highlight text and make “sticky notes”.

Roy et al. [28] investigated the effects of two tools on learning—one

tool to highlight text and one to take notes. Access to either tool

improved learning outcomes. However, access to both tools did not,

possibly because of cognitive overload. Qiu et al. [27] investigated

the effects of a note-taking tool within two search environments—

a traditional search system and a conversational search system.

Knowledge gains were greatest with the traditional search system

and the note-taking tool.

Visualizations:Kammerer et al. [17] experimentedwith a search

system that enabled participants to filter results using social tags.

Learning gains were higher with the experimental system versus a

system without social tags. Câmara et al. [8] investigated a visual-

ization that displayed participants’ coverage of subtopics during the

search session. The visualization did not improve learning outcomes

because participants explored more subtopics superficially.
Self-Assessment Tools: Syed et al. [32] experimented with

a system that prompted participants to answer questions about

passages read during the search session. Prompting participants to

answer questions improved knowledge retention for participants

with low prior knowledge.

Goal-setting Tools: Our work is related to prior research on

the role of goal-setting on learning during search. Urgo and Ar-

guello [33] developed the Subgoal Manager (SM) to help searchers

break apart a complex learning objective into subgoals. In one study,

they found that participants had the best learning outcomes when

they had access to the SM and set their own subgoals [33]. In a

separate study [34], they found that participants in the SM condi-

tion had greater knowledge retention scores and engaged in more

self-regulation (e.g., prior knowledge activation and progress moni-

toring). Our work builds on this research by examining the role of

goal-setting on learning with a generative AI system.

2.2 Generative AI & Learning

People are increasingly turning to GenAI tools to learn about com-

plex topics [7, 14, 26]. Despite widespread adoption, researchers

are only starting to understand how GenAI tools affect learning

outcomes. Recent studies have shown mixed results. Some research

suggests GenAI tools can enhance learning outcomes [1, 24, 42],

while other work has found detrimental effects [4, 15, 18]. A sig-

nificant limitation across this emerging work is the reliance on

subjective measures. Rather than using objective assessments of

knowledge or skill acquisition, most studies have measured self-

reported experiences and perceptions of learning. Recent systematic

reviews show psychological constructs (e.g., self-efficacy, motiva-

tion) are the predominant outcome measures [2, 38]. Objective

measures of learning by closed- or open-ended assessments are

notably absent [2, 38].

To underscore the distinction between subjective and objective

learning outcomes, consider two contrasting studies. Yilmaz and

Karaoglan Yilmaz [42] found that students using ChatGPT for pro-

gramming exercises reported higher motivation, self-efficacy, and

computational thinking skills. However, the study did not objec-

tively measure learning. By contrast, Kosmyna et al. [18] used a

rigorous multi-method set of measurements including EEG brain

connectivity analysis, NLP-based essay scoring, and memory re-

call testing. Use of LLMs facilitated task completion but decreased

memory consolidation and neural connectivity.

2.3 Generative AI & Search Behaviors

People engage with LLMs in ways that differ from traditional web

search. During a product comparison task, Kaiser et al. [16] found

that participants using ChatGPT wrote longer, more conversational

prompts and visited fewer pages than participants using Google.

Wazzan et al. [36] compared interactions with a traditional versus

LLM-based search system during image geolocation tasks. Using the

LLM-based search system, participants issued longer, more natural

language queries and had shorter sessions. Additonally, during

query reformulation, they tended to rephrase their queries instead

of simply adding more terms. In a study of students solving physics
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problems, Krupp et al. [19] found that ChatGPT users tended to

copy/paste the full text of the question and ask for explanations,

translations, summaries, and corrections. In contrast, Google users

tended to divide the question into multiple queries.

Studies have also investigated why users turn to AI versus tradi-

tional search. Users often turn to AI when domain knowledge is

low and tasks are vague [41], and when search results are irrelevant

or overwhelming [44]. In contrast, users often turn to web results

to verify an AI response [41].

In terms of outcomes, results are mixed. In their study on product

comparison, Kaiser et al. [16] found that ChatGPT users finished

faster and were more accurate. In their study on image geolocation,

Wazzan et al. [36] found that participants were more accurate using

traditional web search. In their study on physics problem-solving,

Krupp et al. [19] found that ChatGPT users scored lower and over

trusted its responses. In a study involving socio-scientific reasoning,

Stadler et al. [31] found that ChatGPT users felt the task was easier,

but web search users yielded stronger, better-supported conclusions.

Finally, Yang et al. [40] found slightly better learning outcomes

during a conceptual learning task for participants who used an

LLM-enhanced search system.

3 Methods

To investigate RQ1-RQ5, we conducted a between-subjects crowd-

sourced study (𝑁 = 120) on the Prolific platform. Thirty participants

were assigned to one of four conditions (§ 3.2): (1) Base, (2) +Web,

(3) +SM, and (4) +Web+SM.We limited the study to Prolific workers

in the U.S. who had completed at least 100 tasks with an acceptance

rate of 95% or greater. Participants were aged 18-71 and the median

age was 36. Sixty-one identified as female, 59 as male, and 0 as non-

binary. Participants were asked about their familiarity with GenAI

tools. Twenty-seven reported using GenAI tools multiple times a

day, 56 multiple times a week, 27 multiple times a month, and 10

only a few times ever. The study was approved by the Institutional

Review Board (IRB) of each author’s institution.

3.1 Study Protocol

During the study, participants interacted with a “study workflow”

page. The “study workflow” page did not allow participants to skip

steps and included several instructional videos. The study protocol

proceeded as follows. First, participants watched a video describing

the study protocol. Second, participants completed a demographics

questionnaire. Third, participants completed the multiple-choice

Osmosis and Diffusion Conceptual Assessment (ODCA) (§ 3.5) to

measure their prior knowledge of diffusion and osmosis. Fourth,

participants were asked to read the learning task description (§ 3.3)

and completed a pre-task questionnaire about their perceptions

of the learning task (§ 3.4). Fifth, participants watched a video

describing the system associated with their assigned experimental

condition (§ 3.2). In the conditions with the Subgoal Manager, the

video included a description of ideal subgoal characteristics (with

examples) that make subgoals more achievable. Sixth, participants

completed the main learning task. We did not enforce a time limit

but told participants that the task should take about 40 minutes.

Seventh, participants completed a post-task questionnaire (§ 3.4)

about their experiences during the learning task. Then, to measure

learning, participants completed the ODCA a second time. Finally,

in the +Web and +Web+SM conditions, participants completed an

exit questionnaire that asked about use of the “RelatedWeb Results”

tab (§ 3.4). Participants were paid US$30 for participating in the

study. To measure their knowledge retention, participants were

emailed an invitation to complete the ODCA a third time. A total

of 107 participants completed the retention assessment: 28 in the

Base condition, 26 in the +Web condition, 27 in the +SM condition,

and 26 in the +Web+SM condition. Participants were given a US$10

bonus for completing the retention assessment.

3.2 Experimental Conditions

The study had four experimental conditions that varied along two

factors. One factor manipulated whether participants were given

access to related web results in addition to the AI agent. The second

factor manipulated whether participants had access to the Sub-

goal Manager (SM) or a simple text editor to take notes. Thirty

participants were assigned to each condition.

In the Base condition, participants only had access to the AI

agent (no related web results) and a text editor to take notes. In the

+Web condition, participants had access to the AI agent, related

web results, and a text editor to take notes. In the +SM condition,

participants only had access to the AI agent (no related web results)

and the SM. Finally, in the +Web+SM condition, participants had

access to the AI agent, related web results, and the SM.

Figure 1 illustrates the system in the +Web+SM condition. In

all conditions, the interface included buttons for participants to

revisit the task description (A) and finish the task (B). All conditions

provided access to the AI Agent (C). The AI Agent was implemented

using the OpenAI API with the gpt-4o-mini model. Participants

could send requests to the AI Agent using the “Ask away” textbox

at the bottom. The AI Agent worked similar to ChatGPT’s web

interface. Not shown in Figure 1, the AI Agent could also respond

with images and explanations if explicitly requested (e.g., “give

me a figure explaining osmosis”). In response to an explicit image

request, the system used the OpenAI API to transform the request

into a search query, which was then submitted to the Google Image

Search API. The retrieved image URL was subsequently sent to the

OpenAI API to present both the image and an explanation. The

system saved the conversation history and participants could scroll

up to see previous responses. Additionally, participants could create

“new chats” and return to previous chats (E).

In the +Web and +Web+SM conditions, participants also had

access to a “Related Web Results” tab (D). This tab displayed 10 web

results related with the most recent AI agent request. The “Related

Web Results” tab was implemented as follows. First, we used the

OpenAI API to generate a search query associated with the most

recent AI agent request. We prompted the OpenAI API with the

conversation history in order to handle requests that relied on the

conversational context (e.g., “give me a simpler explanation”). Then,

we queried the Brave Search API to return 10 related web results.

Participants could not issue queries directly to the Brave Search

API. However, the related web results were updated after every AI

agent request.

In the +SM and +Web+SM conditions, participants were given

access to the Subgoal Manager (SM) on the right (F). The SM was

designed to help learners break apart a complex learning task into
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Figure 1: System Interface in the +Web+SM Condition

smaller, more concrete subgoals. The tool allowed participants to

create subgoals, take notes with respect to each subgoal, and mark

subgoals as completed. Checking the “subgoal complete” box col-

lapsed the subgoal and turned it into a darker shade of gray. Par-

ticipants could create new subgoals by clicking the “Add Subgoal”

button (G) and could delete subgoals by clicking the trash button

for the subgoal. Participants could also expand and collapse the

notes associated with each subgoal. Finally, tooltips on the interface

reminded participants to set subgoals with four ideal characteristics:

(1) action, (2) information, (3) success criteria, and (4) approximate

timeframe. Participants were instructed to set at least three subgoals

before the task on their own. Subgoals could be added, modified,

and deleted during the session. In conditions that excluded the SM

(i.e., Base and +Web), participants were provided with a simple

text editor that was positioned where the SM appears in Figure 1.

As mentioned in § 3.1, before the learning task, participants

watched videos describing the system associated with their as-

signed condition. In conditions that included the SM (i.e., +SM

and +Web+SM), the video also instructed participants to set sub-

goals with four ideal characteristics. Good goals are associated with

a specific action, information, success criteria, and approximate

timeframe. The video described these characteristics and provided

examples. Finally, the video instructed participants to set at least

three subgoals before beginning the task and reminded them that

subgoals could be modified, added, and deleted during the task. In

conditions that excluded the SM (i.e., Base and +Web), the system

video did not mention anything about subgoals. Participants were

simply instructed to use the text editor to take notes.

3.3 Search Task

During the study, participants completed a single learning-oriented

task, which included the following contextualizing scenario and

learning objective:

Scenario: One of your family members is a high school senior

who is about to take an important biology exam. Your family mem-

ber has told you that she is struggling to understand the concepts

of diffusion and osmosis and has asked for your help.

Learning Objective: Your goal is to use this search system

to learn everything you can about the concepts of diffusion and

osmosis. After searching and gathering information, you will be

asked to answer some questions about both diffusion and osmosis.

3.4 Questionnaires

Participants completed questionnaires before and after the learning

task. In both, participants responded to agreement statements on

a 7-point scale ranging from “1-strongly disagree” to “7-strongly

agree”. Both questionnaires are available online.

Pre-task Questionnaire: After reading the task description,

participants completed a pre-task questionnaire about: (1) interest

in the task (1 item), (2) prior knowledge (3 items), (3) expected diffi-

culty (4 items), and (4) a priori determinability (6 items)—whether

aspects of the task (e.g., requirements, goals, and strategies for com-

pletion) are known in advance [6]. Responses to the items about

prior knowledge, expected difficulty, and a priori determinability

had high internal consistency (Cronbach’s 𝛼 ≥ .89) and were there-

fore averaged to form three composite measures.

Post-task Questionnaire: The post-task questionnaire was

organized in three sections. The first section asked about: (1) interest

increase (1 item), (2) knowledge increase (3 items), and difficulty (4

items). Responses to the items about knowledge increase had high

internal consistency (𝛼 = .94) and were therefore averaged to form

https://www.kelseyurgo.com/chiir-2026-supplementary-materials/
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a composite measure. Responses to the items about difficulty had

lower internal consistency (𝛼 = .77). However, dropping one item

(i.e., difficulty in deciding when to end the task) resulted in higher

internal consistency for the other three items (𝛼 = .82). Therefore,

responses to the other three items were averaged and the dropped

item was analyzed separately.

The second section asked about participants’ engagement in dif-

ferent cognitive andmetacognitive activities: (1) setting goals, (2) de-

ciding how to begin the task, (3) connecting information to existing

knowledge, (4) relating topics, (5) comparing different explanations

of similar ideas, (6) deciding whether new information matched

previously encountered information, (7) tracking progress, (8) eval-

uating their understanding of information, (9) deciding whether

information was useful, and (10) revising their approach to the task.

These items were analyzed individually.

The third section asked whether the information returned by

the system was: (1) credible, (2) trustworthy, (3) unbiased, (4) accu-

rate, (5) factual, (6) reliable, and (7) up-to-date. Responses to these

items had higher internal consistency (𝛼 = .93) and were therefore

averaged to form a composite measure.

Exit Questionnaire: In conditions that included the related

web results in addition to the AI agent (i.e., +Web and +Web+SM),

participants completed an exit questionnaire that asked two open-

ended questions about their use of the “Related Web Results” tab:

(1) what were they trying to accomplish by using the tab and (2)

what types of information did they gain from the tab.

3.5 Learning Assessment

To measure learning and retention, participants completed the Os-

mosis and Diffusion Conceptual Assessment (ODCA) [10] before

the learning task, immediately after, and one week later. The ODCA

has 18 multiple-choice questions that are organized in pairs. The

knowledge question asks “what?” and the reasoning question asks

“why?”. The ODCA was used for two reasons. First, it targets com-

mon misconceptions that biology students have about diffusion and

osmosis [10]. Second, ODCA items have been found to have high

internal consistency across student cohorts [10]. The ODCA is also

included in our online appendix.

To measuring learning, we combined pre- and post-task ODCA

scores to compute:

Normalized Gain =
(PostScore − PreScore)

(1 − PreScore) ,

where PreScore and PostScore are the percentage of correct an-

swers in the pre- and post-task ODCA. To measure retention, we

used the same normalization but replaced PostScore with RetScore—

the percentage of correct answers in the retention ODCA. Normal-

ized gain has been commonly used in SAL studies [12, 39, 40, 43].

3.6 Behavioral Measures

To address RQ2, we collected a broad set of behavioral measures.

Our measures are grouped in three categories. First, the following

measures apply to all four experimental conditions (i.e., Base, +Web,

+SM, +Web+SM):

• duration: total time (in seconds) from the first request issued

to the AI agent to the last event.

• n_exchanges: number of AI requests issued.

• new_chats: number of distinct chats created.

• notes_all: total character count in notes. In conditions with

the SM, we combined the notes taken across subgoals.

• paste: number of paste events into notes.

• avg_prompt_length: average character count across AI requests.
• unique_terms: total number of unique terms across AI requests.

• avg_term_specificity: average IDF of words across AI re-

quests. Higher values mean that the participant issued requests

with more uncommon vocabulary.

Second, the following measures capture interactions with the

related web results. Therefore, they only apply to conditions that

included related web results (i.e., +Web, +Web+SM):

• n_result_clicks: number of web results clicked.

• avg_click_rank: average click rank.

• n_web_tab_visits: number of visits to the web results tab

• avg_time_away_sec: average time away from the system tab

(i.e., mean of blur to focus intervals).

• avg_chat_view_sec: average dwell time on the AI agent tab

before clicking on a different element

Third, the following measures capture interactions with the

Subgoal Manager (SM). Therefore, they only apply to conditions

that included the SM (i.e., +SM, +Web+SM):

• n_subgoals: number of subgoals created.

• subgoal_note_chars: total characters in SM note editors.

• n_completed: number of subgoals completed.

• n_title_changes: number of subgoal title edit events.

• n_notes_changes: number of subgoal note edit events.

Measures in the second and third groups examine whether access

to the SM impacted interactions with the related web results and

vice-versa. Measures in these groups were analyzed using Mann-

Whitney tests to compare the respective pair of conditions.

3.7 Analysis of AI Requests

To address RQ4, we conducted a qualitative analysis of requests

issued by participants to the AI agent. Participants issued a total of

1,139 requests. Our analysis of requests involved two authors (A1 &

A2) and proceeded as follows. First, A1 analyzed requests from 10

participants and developed a codebook with codes, definitions, and

examples. Then, A2 coded requests from the same 10 participants

and A1 & A2 met to discuss disagreements. Several codes were

refined and two were merged. After this, to test the reliability of

our codes, A1 & A2 independently coded all requests from the

same 24 participants. Our codes were designed to not be mutually

exclusive. Requests could be assigned multiple codes. Therefore,

we measured agreement per code. Six had agreement levels of

almost perfect (Cohen’s 𝜅 > .80) and eight had agreement levels of

substantial (.80 ≥ 𝜅 > .60) [20]. Given the high levels of agreement,

the remaining requests were coded disjointly by A1 & A2.

Our codes are described below. Values in parentheses indicate

the percentage of requests associated with each code. Some of our

codes relate to the participant’s intent (e.g., get a definition) and

others relate to phenomena we observed (e.g., the participant asked

for the response to be formatted a certain way).

(1) Definition (9.92%): the participant asked for the definition of

one or more concepts (e.g., “can you define diffusion?”).

https://www.kelseyurgo.com/chiir-2026-supplementary-materials/
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(2) Examples (10.62%): the participant asked for examples of a

concept or process (e.g., “everyday examples of diffusion”).

(3) Explanation (23.79%): the participant asked for a more in-

depth explanation than a definition (e.g., “what are the compo-

nents of the circulatory system and what roles do they play?”).

(4) Clarification (16.15%): the participant asked a specific ques-

tion about a point of confusion (e.g., “is water at the bottom of

the ocean saltier than at the top?”).

(5) Hypothesis Verification (6.58%): the participant wanted to

verify whether their understanding was correct (e.g., “so diffu-

sion happens faster in water than in syrup?”).

(6) Differentiate Concepts (8.60%): the participant wanted to

understand the similarities, differences, or relations between

concepts (e.g., “differences between diffusion and osmosis.”).

(7) Cause and Effect (3.34%): the participant asked about a causal

relationship (e.g., “how does temperature affect diffusion?”).

(8) Ideas (6.41%): the participant wanted ideas about things to

learn (e.g., “is there anything else I need to know [...]”).

(9) Test Knowledge (7.55%): the participant wanted the AI agent

to test their knowledge (e.g., “give me a high school level mul-

tiple choice quiz [...] do each question separately and wait for

me to answer.”). This code was also applied when participants

answered questions from the AI agent (e.g., “the answer is A”).

(10) Social (4.21%): the request was a social nicety (e.g., “okay,

thanks for all the info!”).

(11) Qualification (20.90%): the participant qualified the type of in-

formation they wanted (e.g., “quick definition”, “explain in a ba-

sic way”, “this is way too complex!”, “get more into specifics?”).

(12) Specific Text Format (6.32%): the participant asked for the

response to be formatted a certain way (e.g., “too long, one

paragraph”, “sum it up in three sentences”, “write 3-4 paragraphs

explaining everything [...]”).

(13) Visuals (8.60%): The participant asked for visuals (e.g., “show

me a diagram of diffusion vs. osmosis.”).

(14) Use of Context (23.88%): the request leveraged the AI agent’s

ability to maintain conversational context (e.g., “can you sum

this up?”, “same question, but for diffusion”, “make those 3

examples into exam questions.”).

3.8 Analysis of Web Results Use Motivation

To address RQ5, we conducted an inductive thematic analysis [5] of

participants’ open-ended responses about their motivations for us-

ing the “RelatedWeb Results” tab in conditions +Web and +Web+SM.

The analysis involved two authors (A1 & A2). First, A1 familiar-

ized themselves with the data and generated codes across all 60

responses (30 for +Web and 30 for +Web+SM). Then, A1 grouped

codes into candidate themes and drafted theme descriptions. The

full research team reviewed the initial codes and candidate themes.

A2 checked each theme and its interpretations against the origi-

nal responses. Finally, A1 & A2 discussed four discrepancies and

resolved them through discussion. Motivations for engaging with

the web results were not mutually exclusive.

3.9 Statistical Analysis

Our four experimental conditions varied along two factors: (1)

access to the Subgoal Manager (SM) versus a simple text editor to

take notes and (2) access to web results related to the latest AI agent

request versus no access to web results. No dependent variable for
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Figure 2: Post-task Perceptions

RQ1-RQ5 passed the Shapiro-Wilk test of normality. Therefore, for

each dependent variable, we used Scheirer-Ray-Hare (SRH) tests

to investigate the main effects of each of the factors above and

their interaction. The SRH test is a non-parametric alternative to a

multi-factorial ANOVA. For dependent variables with an interaction

effect, we conducted Bonferroni-corrected Mann-Whitney tests to

check for differences between all pairs of conditions.

4 Results

Before presenting our RQ1-RQ5 results, we report on differences in

prior knowledge and pre-task perceptions between groups. Given

that the study used a between-subjects design, we were curious

about possible differences between groups. Pre-task ODCA scores

were not significantly different between groups. Additionally, there

were no significant differences in pre-task perceptions of interest

in the task, prior knowledge, expected difficulty, and a priori deter-
minability. Therefore, any significant differences between groups

for RQ1-RQ5 cannot be attributed to participants in different groups

having significantly different levels of prior knowledge and pre-task

perceptions due to random chance.

4.1 RQ1: Post-task Perceptions

In terms of post-task perceptions, we found two significant main

effects and two significant interaction effects. First, as shown in

Figure 2a-2b, participants with access to the Subgoal Manager (SM)

(i.e. in conditions +SM and +Web+SM) reported on engaging in

more goal-setting (𝐻 (1) = 9.54, 𝑝 < .005) and reported higher levels

of difficulty (𝐻 (1) = 3.90, 𝑝 < .05). One possible interpretation is

that access to the SM made participants be more goal-oriented,

which required effort.
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Figure 3: Behaviors

Second, there was a significant interaction effect on participants

being able to decide whether information was useful (𝐻 (1) = 4.58,

𝑝 < .05). As shown in Figure 2c, pairwise Mann-Whitney tests

found that participants reported being less able to decide whether

information was useful in condition +SM vs. the other three. One

possible explanation is that SM made participants be more critical

of the information returned by the AI agent but they were unable

to verify information using the related web results.

Finally, there was a significant interaction effect on participants’

perceptions of the quality of information returned by the system

(𝐻 (1) = 5.80, 𝑝 < .05). As shown in Figure 2d, pairwise Mann-

Whitney tests found that participants rated the quality of the infor-

mation significantly higher in condition Base vs. +Web. One possi-

ble explanation is that when participants were not goal-oriented

(i.e., without the SM in conditions Base and +Web ), they were

more critical of the information returned by the AI agent when

they could scrutinize it with the related web results (i.e., they rated

the information quality lower in +Web vs. Base).

4.2 RQ2: Behaviors

We observed significant differences for four behavioral measures.

Two measures (Figures 3a– 3b) had significant main effects from

having access to the Subgoal Manager (SM). Participants in condi-

tions +SM and +Web+SM (vs. Base and +Web) had significantly

shorter notes (𝐻 (1) = 6.10, 𝑝 < .05) and fewer paste events

(𝐻 (1) = 11.59, 𝑝 < .001).

Interestingly, the number of new_chats created (Figures 3c & 3d)

had both a significant main effect from having access to the Subgoal

Manager (SM) and a significant main effect from having access to

the related web results (Web). The number of new_chats created
were significantly higher (𝐻 (1) = 6.45, 𝑝 < .05) in conditions with

the SM and significantly lower (𝐻 (1) = 8.04, 𝑝 < .01) in conditions

with related web results.

4.3 RQ3: Learning Outcomes

As shown in Figure 4, participants with access to the SM (i.e., in

conditions +SM and +Web+SM) had significantly larger normalized

learning gains immediately after the task (𝐻 (1) = 5.80, 𝑝 < .05).

However, there were no significant effects on normalized learning
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Figure 5: Types of AI agent requests

gains oneweek after the task. These results suggest that goal-setting

improved learning during the task. However, additional scaffolding

may be needed for those gains to be long term.

4.4 RQ4: Types of Requests

We observed four significant differences in the types of requests

issued by participants to the AI agent. As shown in Figures 5a-5b,

participants with access to the SM (i.e., in conditions +SM and

+Web+SM) issued more AI requests asking for examples (𝐻 (1) =
5.24, 𝑝 < .05) and to differentiate concepts (𝐻 (1) = 11.79, 𝑝 < .001).

Additionally, as shown in Figure 5c, participants with access to the

SM issued fewer AI requests asking for ideas about things to learn

(𝐻 (1) = 5.55, 𝑝 < .05). Finally, as shown in Figure 5d, participants

with access to related web results (i.e., in conditions +Web and

+Web+SM) issued fewer requests that asked for the response to be

formatted in a specific way (𝐻 (1) = 6.23, 𝑝 < .05).

4.5 RQ5: Motivations for Web Results (Non-)Use

RQ5 investigated why participants engaged or did not engage with

the related web results. The numbers in parentheses indicate how

many participants (out of 60) mentioned each theme.

Motivations for Using Web Results: Participants mentioned

five reasons for engaging with the web results.



CHIIR ’26, March 22–26, 2026, Seattle, WA, USA Kelsey Urgo, Yuan Li, Jaime Arguello, and Robert Capra

Seek additional information beyond AI response (27): Participants
described using the web results to obtain information not covered

in the AI response, such as details, examples, alternative formats

(e.g., images), or explanations. They also used the web results to

look for alternative viewpoints and sources. Participants made com-

ments such as: “[to] find additional information and perspectives to

complement what I learned from AI” and “[to] look for additional

search terms that would bring up more information.”

Validate AI’s information (26): Participants used the web results

to verify the accuracy of information returned by the AI agent.

For instance, one participant wrote, “to check reputable pages to

confirm that the information was correct and not a hallucination.”

Another wrote, “to verify where the AI was pulling its information.”

Reduce overload from AI results (1): One participant described
using the web results when they felt overwhelmed: "I felt over-

whelmed by the information from the AI agent and needed to read

the information in a smoother/more realistic way.”

Out of curiosity (1): One participant described browsing the web

results out of curiosity: “Out of curiosity I went and checked it out.”

Motivations for NOT Using Web Results: Participants men-

tioned five reasons for not engaging with the web results.

Preference for AI retrieval (5): Five participants did not use the web
results because they preferred having the AI collect and synthesize

information instead of searching manually. One participant wrote,

“I preferred letting the AI agent gather information for me.” Another

wrote, “I trusted my AI agent to do all the research.”

AI responses were sufficient (3): Three participants felt that the
AI’s responses were sufficient. One participant wrote, “AI provided

me with all the info I needed.” Another wrote, “the AI agent was

clear in its explanations and teachings.”

Avoid being overwhelmed (3): Three participants mentioned not

using the web results because they would be difficult to read and

not worth the effort. One participant wrote, “with the internet, you

need to read more and it is not in your face.” Another wrote, “I felt

the AI gave me a lot of useful information at once, whereas the

other one [web] seemed to give me repetitive information.”

Confident in prior knowledge (1): One participant did not use the

web results because they felt confident in their own knowledge: “I

can guess if the AI info is incorrect.”

Focused on completing task (1): One participant did not interact

with the web results because they were concentrated on task activ-

ities rather than branching into web browsing: “I was so focused

on writing the notes from the AI tab.”

5 Discussion

RQ1 Post-Task Perceptions: For RQ1, we found two significant

main effects. First, participants with access to the SM reported

on being able to set goals for what information they needed to

find. This is not surprising given that the SM was designed to

explicitly support goal-setting. Urgo and Arguello [33] also found

that participants perceived the SM to help them with planning.
Second, participants with access to the SM perceived the task to be

more difficult. This can be explained by the fact that setting goals

and making progress toward specific goals is an effortful activity.

Our RQ1 results also found two significant interaction effects.

First, compared to the other three conditions, participants in condi-

tion +SM reported being less able to decide whether information

would be useful to them. This might be explained by participants in

condition +SM: (1) seeking specific information based on their sub-

goals and (2) not having related web results to verify goal-specific

information returned by the AI agent. Based on the open-ended

responses for RQ5, many participants in conditions with related

web results (i.e., +Web and +Web+SM) incorrectly assumed that

the AI agent was pulling information from the related web results.

Participants often commented on visiting the “Related Web Results”

tab to see which sources the AI agent was using.

Finally, participants perceived the quality of information from

the AI agent to be highest in condition Base and lowest in +Web.

This suggests that having access to related web results may lead

people to be more critical of responses from the AI. This effect was

not significant when the Subgoal Manager was used (e.g., +SM and

+Web+SM), suggesting that goal-setting may mediate this effect.

RQ2 Behaviors: For RQ2, participants without the SM took

significantly more notes and engaged in more copying and pasting.

However, they had lower learning outcomes. This finding suggests

that the quality of engagement matters more than the quantity of ac-

tivity (e.g., more copying and pasting did not lead to better learning

outcomes). This suggests that the SM promoted deeper, more delib-

erate cognitive processing. Rather than engaging in surface-level

information gathering through extensive copying and pasting, par-

ticipants with the SM appeared to have engaged in more selective,

thoughtful note-taking.

Scaffolding tools such as the SM have the potential to increase

the time needed for learners to meet their objectives. Indeed, par-

ticipants in conditions +SM and +Web+SM had longer sessions if

we account for the time they spent developing their initial subgoals

(not discussed in § 4.2). However, they did not have longer sessions
from the first AI request (i.e., after developing initial subgoals) to

the end of the task. This finding suggests that an initial investment

of ∼5 minutes of goal-setting yielded better learning outcomes

without requiring additional time during the learning process itself.

This result resonates with Urgo and Arguello [34], who found that

participants with the SM engaged in more time monitoring.

Finally, we found two main effects on the number of new chats

created by participants. Participants created more chats with the

SM. The SM may have encouraged participants to organize their

learning into distinct, focused-inquiry sessions aligned with their

subgoals. Conversely, participants created fewer new chats when

they had related web results. One possibility is that the related

web results drew participants’ attention away from the “new chats”

feature of the interface.

RQ3 Learning Outcomes:Our results demonstrate that encour-

aging and scaffolding goal-setting in a GenAI system may enhance

learning outcomes compared to GenAI alone. Participants with

access to the SM achieved significantly higher normalized learning

gains immediately following the learning task. Such results indi-

cate that structured goal-setting may have improved learning while

interacting with the GenAI system. This significant difference, how-

ever, did not persist one week later, suggesting that while the SM

effectively supports initial learning, additional scaffolding may be

needed to promote long-term retention.

Our results for retention differ from prior work. Urgo and Ar-

guello [34] found that access to the SM improved retention. Interest-

ingly, that effect was stronger with an open-ended assessment (i.e.,
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describe everything you learned). The ODCA used in our study may

not capture everything participants learned and retained. There-

fore, an open-ended assessment may have revealed differences in

retention from having access to the SM.

RQ4 Types of Requests:Our qualitative analysis of AI requests

(§ 3.7) revealed a wide range of ways in which people may be using

GenAI to learn about complex topics. Some of our qualitative codes

might be expected for a conceptual learning task. Participants asked

the AI agent to define, exemplify, explain, clarify, and differentiate.

However, other codes were more surprising. Participants asked the

AI agent to provide ideas about things they should learn, verify

whether a hypothesis was correct, test their knowledge with multi-

ple choice questions, and respond to social exchanges. Additionally,

participants often issued requests with extra-topical constraints [3].

For example, they asked for visuals; they qualified the type of in-

formation wanted (e.g., simple, in-depth, detailed); and they asked

for responses to be formatted in a specific way (e.g., 3 paragraphs,

bullet points). Finally, they issued requests that leveraged the AI

agent’s ability to maintain conversational context (e.g., “they sound

alike to me.”). Some of our more interesting codes were fairly com-

mon. For example, 20.90% of requests included a qualification and

23.88% leveraged the conversational context.

Our RQ4 results found four main effects: three from having ac-

cess to the SM and one from having access to related web results.

First, participants with access to the SM were more likely to re-

quest examples and support to differentiate concepts. These two

results go hand in hand. Participants often asked for examples of

one concept (e.g., diffusion) in one request and examples of another

concept (e.g., osmosis) in a subsequent request (i.e., they were try-

ing to differentiate through multiple requests). Given that osmosis

is a special type of diffusion, exemplifying and differentiating are

essential activities in learning about these concepts. This may ex-

plain why participants with the SM had better post-task learning

outcomes (RQ3). Second, participants with access to the SM were

less likely to ask for ideas about things to learn. This may be be-

cause they were more goal-oriented (i.e., top-down vs. bottom-up)

and did not use the AI agent to brainstorm. Finally, participants

with access to related web results were less likely to request the

AI agent response to be formatted in a specific way. It may be that

response format matters more when the AI agent is the only source

of information (i.e., no related web results).

RQ5 Motivations for Web Results Use: The results from RQ5

revealed a nuanced picture of why participants did or did not in-

teract with related web results. Participants used the related web

results for additional details, examples, and perspectives not pro-

vided by the AI agent. This suggests that while GenAI is seen as a

useful source, it is not always sufficient for learning. Participants

also used the related web results to verify the accuracy and credibil-

ity of the AI agent’s responses. Prior work observed a similar trend,

noting that web results have more signals to assess credibility (e.g.,

up-votes in Q&A sites) [41]. This result suggests that people remain

cautious about hallucinations from GenAI systems.

Among those participants who did not use web results, the major-

ity indicated a preference for AI-led retrieval and synthesis, relying

on the AI agent to collect and summarize information. This prefer-

ence often had multiple layers: (1) participants wanted to delegate

the search process to the AI agent; (2) they found the AI agent

more user-friendly; and (3) they trusted the AI agent’s capabilities.

Some participants also expected the web results to be difficult to

read. Prior work also found that people sometimes turn from search

engines to GenAI to avoid information overload [44].

Opportunities for Future Work: Our findings suggest sev-

eral directions for future work. First, additional analyses could

examine how specific participant behaviors influenced learning

outcomes. Future work could explore the relationship between the

types of requests issued by participants to the system (e.g., test-

ing knowledge) and learning outcomes. Additionally, prior work

found that participants had better learning outcomes when they

set high-quality subgoals in the SM (e.g., with measurable success

criteria) [33]. In our study, participants with the SM improved their

ODCA scores in the post-task assessment but not the retention

assessment. Further analysis might examine whether retention was

higher for participants who set high-quality subgoals.

Second, the SM could better support learners through enhanced

goal-setting features. Effective goals specify an action, information,

success criteria, and approximate timeframe. [25]. The system could

provide feedback on goal quality, suggest additional goals, recom-

mend the order in which goals should be pursued (e.g., diffusion

before osmosis), and detect when goals are being neglected.

Third, AI responses could be enhanced to promote particular self-

regulated learning strategies. The system could prompt learners to

engage in productive request types observed in our study, such as

requesting examples, differentiation, or knowledge testing. Addi-

tional features might include identifying prerequisite knowledge

gaps, linking to corroborating sources, generating visual explana-

tions when appropriate, and prompting learners to summarize their

understanding (before or during the learning session) to surface

misconceptions for the AI to correct.

6 Conclusion

This study investigated how goal-setting tools influence learning

during information seeking with a GenAI system. We examined

two factors. First, whether participants had access to the Subgoal

Manager (SM) or only to note taking. Second, whether related web

results were displayed alongside the GenAI output or not. Partici-

pants with access to the SM demonstrated greater knowledge gains

immediately after the learning session. However, this trend was

less pronounced (not significant) one week later, suggesting that

additional scaffolding may be needed. Participants with access to

the SM also exhibited distinct interaction patterns—they did less

copy/pasting into their notes, they requested more examples and

concept differentiation support, and they requested fewer ideas

about things they should learn, suggesting more goal-oriented en-

gagement. Additionally, participants with access to related web

results were less likely to request formatted responses, suggesting

that response formatting may matter more when the AI agent is

the sole information source. When participants did engage with

web results, they used them primarily to verify the accuracy of

the GenAI output and to obtain additional perspectives. However,

many participants preferred delegating search entirely to the AI

agent for “finding” and summarizing information. These findings

provide initial evidence that goal-setting scaffolds can influence

learning behaviors and immediate outcomes in GenAI interfaces,

while highlighting areas for further investigation.
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