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ABSTRACT

We present a user study (𝑁 = 40) that investigated the role of goal-
setting on learning during search. To this end, we developed a tool
called the Subgoal Manager (SM). The SM was designed to help
searchers break apart a learning-oriented search task into smaller
subgoals. The tool enabled participants to add, delete, and modify
subgoals; take notes with respect to subgoals; and mark subgoals
as completed. During the study, participants completed a single
learning-oriented search task and were assigned to one of two sub-
goal conditions. In the Subgoals condition, participants had access
to the SM; were instructed to develop at least three subgoals be-
fore the search session; and could add, delete, and modify subgoals
during the search session. In the NoSubgoals condition, partici-
pants were not instructed to set subgoals and were simply provided
with a text editor to take notes. We investigate the effects of the
subgoal condition on: (RQ1) learning and retention and (RQ2)
the extent to which participants engaged in specific self-regulated
learning (SRL) processes during the search session. Our results
found two important trends. First, participants in the Subgoals
condition had better learning outcomes, especially with respect to
retention. Second, based on a qualitative analysis of participants’
search sessions, participants in the Subgoals condition engaged in
more self-regulated learning (SRL) processes. Combined, our results
suggest that goal-setting improves learning during search by en-
couraging and supporting greater engagement with SRL processes.
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1 INTRODUCTION

Existing search systems are effective in helping users complete
simple search tasks (e.g., fact-finding or navigational tasks). How-
ever, they provide less support for users completing complex tasks
that involve learning. To bridge this gap, search-as-learning studies
have investigated different tools to support learning during search.
Studies have considered tools that enable searchers to annotate doc-
uments [18, 59, 64], visualizations that communicate a searcher’s
coverage of subtopics during the search process [12], and retrieval
algorithms that help searchers learn new vocabulary [70].

Our research in this paper examines the role of goal-setting on
learning during search. To this end, we developed a simple tool
called the Subgoal Manager (SM) (Figure 1). The SM was designed
to help searchers deconstruct a learning-oriented search task into
smaller subgoals. The tool enables searchers to add, modify, and
delete subgoals; take notes with respect to specific subgoals; and
mark subgoals as complete. Features of the tool were designed to
help searchers monitor their progress toward their subgoals. Each
subgoal has its own text editor for searchers to take notes with
respect to the subgoal. Additionally, checking a “subgoal complete”
checkbox collapses the subgoal’s text editor and turns the subgoal a
darker shade of gray to visually distinguish it from incomplete sub-
goals. Prior work has found that subgoals are more achievable when
they include precise action, content, standard to measure success,
and timeframe [47]. Therefore, tooltips on the interface remind
searchers to generate subgoals with these ideal characteristics.

Two bodies of literature suggest that effective goal-setting im-
proves learning. First, education research has underscored the im-
portant role of goal-setting in self-regulated learning (SRL) [69]. SRL
is an active and reflective process in which a learner monitors and
controls their own learning. While several models of SRL have been
proposed [8, 56, 82, 86, 87], theWinne &Hadwin (W&H)model [82]
highlights goal-setting as its own distinct phase of SRL. Addition-
ally, goals are important to effective SRL as they provide standards
for learners to monitor and control their progress, as well as change
strategies when needed. Prior studies have found that learners that
effectively engage in SRL processes from the W&H model have
better learning outcomes [14, 24]. Second, goal-setting research has
found that goals help people: (1) improve their understanding of a
task; (2) activate prior knowledge and skills; (3) remain focused on
task-relevant activities; and (4) increase persistence [36, 37, 42].

In this paper, we report on a study with 40 participants. During
the study, participants completed a single learning-oriented search
task—learn everything you can about the concepts of diffusion and
osmosis. The study adopted a between-subjects design and par-
ticipants were assigned to one of two subgoal conditions. In the
Subgoals condition, participants were provided with the Subgoal
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Figure 1: The Subgoal Manager

Manager, instructed to set subgoals with ideal characteristics, and
asked to develop at least three subgoals before searching. Partic-
ipants could add, modify, and delete subgoals during the search
task. In the NoSubgoals condition, participants did not have ac-
cess to the Subgoal Manager and were not explicitly instructed to
set subgoals before nor during the task. Instead, participants were
provided with a Text Editor tool (similar to a Google Doc) to take
notes during the search task.

We investigate two main research questions:
• RQ1: What are the effects of the subgoal condition on learning
and knowledge retention?

• RQ2:What are the effects of the subgoal condition on the fre-
quency of specific SRL processes?
To investigate RQ1, participants completed two different types

of assessments: a closed-ended assessment and an open-ended as-
sessment. The closed-ended assessment consisted of the Osmosis
and Diffusion Conceptual Assessment (ODCA) [17]. The multiple-
choice ODCA was developed by experts and targets common mis-
conceptions about diffusion and osmosis. Participants completed
the ODCA before the search task (to capture prior knowledge), im-
mediately after the search task (to measure learning), and one week
later (to measure knowledge retention). While multiple-choice tests
are easy to grade, they may not capture everything that someone
learned about a topic. Therefore, participants also completed an
open-ended assessment that asked them to describe “everything you
learned during the search task”. Participants completed the open-
ended assessment immediately after the search task (to measure
learning) and one week later (to measure knowledge retention).

To investigate RQ2, the study used a think-aloud protocol. That
is, participants were asked to narrate their thoughts during the
search task. Participants’ think-aloud comments and screen activi-
ties were recorded and analyzed using qualitative techniques. Based
on observed behaviors, we developed a hierarchical taxonomy of
macro- and micro-SRL processes. Our set of SRL processes is an

extension of a framework developed by Greene et al. [22, 23], which
was rooted in the W&H model of SRL. Our taxonomy includes 3
macro-SRL processes and 36 micro-SRL processes.

Our research in this paper builds on our own prior work [75].
In a previous crowdsourced study, we found that participants who
used the Subgoal manager and set their own goals had slightly bet-
ter learning outcomes. The present study extends our prior work
in several important ways. First, we measured learning using two
types of assessments. This enabled us to get a more complete and
accurate picture of the effects of goal-setting on learning during
search. Second, we measured knowledge retention by having par-
ticipants complete both learning assessments one week after the
search task. Finally, and most importantly, we are the first to in-
vestigate the role of goal-setting on the extent to which searchers
engage in different SRL processes during a learning-oriented search
task. Our RQ2 results suggest that goal-setting improves learning
during search partly because it supports more effective SRL.

2 BACKGROUND

Our research builds on three areas of prior work: (1) search-as-
learning, (2) self-regulated learning, and (3) goal-setting.

Search-as-Learning: Learning is an important goal of search [5,
16, 62]. The search-as-learning community was established to bet-
ter support learning during search [3, 10]. Search-as-learning work
has studied factors that impact learning during search: (1) charac-
teristics of the learning objective [9, 29, 32, 83]; (2) characteristics
of the individual [53, 55, 63, 79]; and (3) characteristics of the sys-
tem [15, 18, 31, 58, 64, 71]. Research has also explored search behav-
iors that predict learning during search [1, 7, 11, 19, 39, 46, 54, 85].

Particularly relevant to our study, prior search-as-learning stud-
ies have explored novel interfaces and tools to better support learn-
ing during search. Kammerer et al. [31] investigated the effects of a
search system that enabled participants to filter the search results
using social tags. Participants had better learning outcomes with the
experimental system. Câmara et al. [12] explored the effects of an
experimental search interface that presented participants with their
coverage of subtopics across the search session. With the experi-
mental system, participants explored more subtopics superficially
and, ultimately, did not have better learning outcomes. Freund et
al. [18] investigated the effects of two interface features on learning.
One manipulation involved displaying articles in plain text versus
HTML with distracting elements. A second manipulation involved
giving participants access to an auxiliary tool to annotate articles.
Without the tool, participants had better learning outcomes in the
plain text condition. With the tool, participants had similar learning
outcomes in both display conditions. Roy et al. [64] explored the
effects of a system that enabled participants to highlight text and
make notes during the search session. Individually, note-taking and
highlighting had positive effects on learning. However, participants
who used both tools did not have better learning outcomes possibly
due to cognitive overload. Syed et al. [72] developed a system that
prompted participants to answer automatically generated questions
about passages read during the search session. The experimental
system had positive effects on learning. Qiu et al. [59] investigated
the effects of two factors on learning: (1) search vs. chatbot and
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(2) note-taking vs. no note-taking. Participants had better learning
outcomes with the search interface and when asked to take notes.

Measuring learning is critically important in search-as-learning
work. Prior studies have used a wide range of learning assessment
methods [73]. Assessment methods can be classified as closed- or
open-ended. Closed-ended assessments have included: (1) multiple-
choice tests [13, 18, 26, 27, 30, 70, 77]; (2) true-or-false tests [18,
19, 30, 52, 59, 85]; and (3) short-answer tests [1, 11–13, 28, 63, 64].
Open-ended assessments have asked participants to: (1) list key
phrases and facts [7, 31]; (2) generate visual representations of a
topic [40]; (3) list pro and con arguments toward a proposition [15];
and (4) summarize what was learned [1, 11, 13, 30, 38, 39, 53–55,
65, 79]. Studies have scored open-ended responses by: (1) counting
pertinent key phrases or facts [1, 7, 11, 31, 54, 79]; (2) counting
pertinent pro and con arguments [15]; and (3) counting statements
that demonstrate critical thinking [1, 11, 39, 53, 54, 65].

To investigate RQ1, our study used both a closed-ended and
open-ended assessment. Our closed-ended assessment consisted
of a well-established instrument called the Osmosis and Diffusion
Conceptual Assessment (ODCA) [17]. The ODCA is a multiple-
choice test that was designed to target common misconceptions
about diffusion and osmosis. The ODCA has mostly been used in
education research. For example, past research has used the ODCA
to explore common misconceptions of biology students [60] and
to measure prior knowledge during an evaluation of an immersive
educational environment [61].

Self-Regulated Learning: Learning sciences research has in-
vestigated the important role of self-regulated learning (SRL) in
improving learning outcomes [8, 68, 69, 80, 88]. SRL is an active and
reflective process in which a learner monitors and controls their
own learning [21, 80]. Although several models of SRL exist, the
Winne & Hadwin (W&H) model [82] is widely accepted and has
been used in many empirical studies [4, 6, 20, 21, 33, 66, 76]. Addi-
tionally, and particularly important to our study, the W&H model
emphasizes the critical function of goal-setting in learning. The
W&Hmodel consists of four iterative phases—(1) Task Definition; (2)
Goals & Plans; (3) Strategies & Tactics; and (4) Adaptations. Through-
out each phase, learners engage in metacognitive monitoring (e.g.,
tracking progress toward goals) and control (e.g., implementing
different strategies to achieve goals).

Capturing the extent to which learners engage in SRL processes
can be difficult. Prior work has used two methods—(1) asking about
participants’ perceptions [57, 67, 78] and (2) using a think-aloud
protocol [22–24]. Both methods have benefits and drawbacks. Self-
report questionnaires are easy to implement. However, perceptions
of SRL engagement may not align with actual SRL engagement [81].
Think-aloud protocols allow researchers to manually categorize
think-aloud comments and observable behaviors into specific SRL
processes. This method captures SRL processes as they occur. How-
ever, it involves significant effort. In prior work, we explored the
effects of goal-setting on perceptions of SRL engagement [75]. To
our knowledge, we are the first to capture actual SRL engagement
based on think-aloud comments and observable behavior during
a search session. Similarly, we are the first to study the effects of
goal-setting on actual SRL engagement during search.

Introduction & Consent Demographics
Questionnaire

Pre-Task Learning
Assessment

Task Description Pre-Task Questionnaire

Think-Aloud
Practice Task

Video Tutorial Search Task Post-Task Questionnaire

Post-Task Learning
Assessments

Retention Assessments

[One Week]

Figure 2: Study Protocol

Goal-Setting:Goals play an important function in SRL. Research
has found that goals—(1) prompt a learner to consider their under-
standing of the task [37]; (2) focus a learner’s attention toward task
planning and task-relevant strategies [42]; and (3) provide standards
for monitoring progress [47]. Prior work has shown that goals are
likely to improve learning outcomes [35, 49–51, 69]. This work
has largely focused on students setting goals in a traditional class-
room setting. Our study is distinct in that it focuses on searchers
learning independently in the context of a search environment. Prior
work has also identified ideal goal characteristics that make them
more achievable. In particular, goals should be—(1) difficult; (2)
specific; (3) proximal (short-term); (4) learning-oriented (versus
performance-oriented); and (5) self-set [41, 43–45]. With respect
to specificity, research has found that ideal goals include a spe-
cific action (i.e., cognitive process), content (i.e., material), standard
(i.e., criteria to measure progress and success) and allotted time-
frame [47]. In our study, participants in the Subgoals condition
watched a training video describing these ideal characteristics.
3 METHODS

To investigate RQ1 & RQ2, we conducted a study with 40 partici-
pants (𝐹 = 28,𝑀 = 12). Participants were undergraduate students at
our university and were 18 to 22 years old (𝑀 = 19.93, 𝑆.𝐷. = 1.07).
Participants completed a search task that involved the concepts of
diffusion and osmosis. Therefore, participants were required to not
be biology nor chemistry majors. Participants were asked about the
highest level of biology course taken. Participants reported taking
a graduate-level course (1), undergraduate-level course (24), high
school-level course (14), and none (1). The study used a between-
subjects design. Participants were assigned to one of two conditions:
NoSubgoals or Subgoals (20 participants per condition). The study
was approved by our university’s Institutional Review Board (IRB).

3.1 Study Protocol

Figure 2 illustrates the study protocol. The study took place over
two sessions conducted one week apart. Both sessions were con-
ducted remotely using the Zoom videoconferencing platform. The
first session proceeded as follows. First, participants watched a
video describing the study, signed a consent form, and completed
a demographics questionnaire. Second, participants completed a
practice think-aloud search task. Third, participants completed the
multiple-choice ODCA to measure their prior knowledge of diffu-
sion and osmosis. Fourth, participants were given the main search
task and were asked to read it aloud. Then, after completing a
pre-task questionnaire, participants watched a video introducing
the tools to be used during the search task (i.e., the search sys-
tem and the Text Editor or Subgoal Manager). Participants then
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completed the main search task, which was limited to 40 minutes.
During the search task, the moderator had their microphone and
camera turned off and only unmuted themselves to remind partici-
pants to think aloud as needed. After the search task, participants
completed a post-task questionnaire. Finally, to measure learning
during the search task, participants completed the multiple-choice
ODCA a second time and an open-ended assessment that asked
them to “describe everything you learned during the search task”.
Participants did not have access to their notes while completing
these assessments. Participants were given $US30 after the first
study session. The second study session took place one week later.
During the second study session, to measure knowledge retention,
participants completed the multiple-choice ODCA a third time and
the open-ended assessment a second time. Participants were given
$US10 after the second study session. All participants completed
both sessions. Given our focus in this paper, we do not report on
results from our pre- and post-task questionnaires. Briefly, pre-task
perceptions were not significantly different between groups and
participants reported significantly greater engagement with SRL
planning and monitoring progress in the Subgoals condition.
3.2 Experimental Conditions

The study had two experimental conditions.
Subgoals: In this condition, participants were provided with

the Subgoal Manager (SM) with blank subgoals (Figure 1). Before
the search task, participants watched a video that described the
functionality of the SM and the search system. The video instructed
participants on how to add, delete, and modify subgoals; take notes
with respect to subgoals; and mark subgoals as completed. As men-
tioned in Section 2, prior research has found that ideal subgoals
specify an action, content, standard, and timeframe. Therefore, the
video also described these four ideal subgoal characteristics. Par-
ticipants were shown an example of an ideal subgoal: “Spend 10
minutes [time] identifying [action] three paintings [standard] that
demonstrate the main characteristics of surrealism [content].” The
video pointed to the part of the subgoal associated with each ideal
characteristic. Finally, the video instructed participants to develop
at least three subgoals before starting the search task.

NoSubgoals: In this condition, participants were provided with
the Text Editor tool (similar to a Google Doc) to take notes during
the search task. Before the search task, participants watched a video
that described the functionality of the Text Editor and the search
system. Participants were not instructed to set subgoals before nor
during the search task.
3.3 Search System

To gather information, participants interacted with a custom-built
search system implemented using the Bing Web Search API. The
system returned four types of results in different tabs: webpages, im-
ages, news articles, and videos. Given a query, the system returned
50 results per type. Web, news, and video results were displayed as
a ranked list with 10 results per page. All 50 images results were
displayed in a grid layout. We configured the Bing API to return
results for the US-EN market and had safe-mode turned on. Three
buttons along the top of the search interface allowed participants
to: (1) (re-)open the Subgoal Manager or Text Editor, depending on
the subgoal condition; (2) (re-)open the task description; and (3)
indicate when they finished the search task.

3.4 Search Task

Each participant completed the following learning-oriented search
task, which included a scenario to contextualize the task and a main
objective:

Scenario: One of your familymembers is a high school senior who
is about to take an important biology exam. Your family member
has told you that she is struggling to understand the concepts of
diffusion and osmosis and has asked for your help.

Objective: Gather information and learn everything you can
about the concepts of diffusion and osmosis. After searching for and
gathering information, you will be asked to answer some questions
about both diffusion and osmosis.

We used this task for several reasons. First, it is a conceptual
learning task. We wanted to study the role of goal-setting during
a complex learning task. Prior research has found that conceptual
learning during search is more complex than factual or procedural
learning [74]. Second, prior work has found that goal-setting im-
proves motivation and persistence [42]. In this respect, we wanted
the task to allow participants to set subgoals with different stan-
dards. Our chosen task was fairly open-ended, allowing participants
to set subgoals with different standards toward the overall task to
“learn everything you can.” Finally, and most importantly, the topic
of the task allowed us to use the well-established ODCA to measure
learning and retention.

3.5 ODCA Learning Assessment

To measure learning and retention, participants completed the
multiple-choice ODCA before the search task, immediately after,
and one week later. The ODCA was developed by Fisher et al. [17]
and includes 18 questions about diffusion and osmosis. The ques-
tions are organized in pairs. Each pair contains a knowledge ques-
tion and a reasoning question. The knowledge question is designed
to assess the student’s comprehension of specific concepts and pro-
cesses related to diffusion and osmosis. The reasoning question is
designed to assess the student’s justification for their answer to the
corresponding knowledge question. In other words, the knowledge
question focuses on “what?” and the reasoning question focuses on
“why?”. For example, one knowledge question is: “All cells are: (a)
semipermeable or (b) permeable”. In this case, the reasoning ques-
tion asks: “The reason for my answer is because cell membranes: (a)
allow free movement of materials into or out of the cell; (b) allow
some substances to enter the cell, while they prevent all substances
from leaving; (c) allow only beneficial materials to enter the cell; or
(d) allow some substances to pass through, but not others.”

The ODCA was used for two main reasons. First, it targets com-
mon misconceptions that even biology students have about the
concepts of diffusion and osmosis [17]. Second, the ODCA is a valid
and reliable instrument [17]. To establish face validity, the ODCA
was developed with the help of expert biology faculty. Additionally,
a panel of students participated in semi-structured interviews in
which they read ODCA items aloud and provided explanations for
why they would select or reject each response. The students were
also asked to suggest alternative responses if they were not satisfied
with those offered. In terms of reliability, ODCA items have been
found to have high internal consistency across student cohorts [17].
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To measuring learning, we used participants’ pre- and post-task
scores on the ODCA to compute normalized gain:

Normalized Gain =
(PostScore − PreScore)

(1 − PreScore) , (1)

where PreScore and PostScore are the percentage of correct
answers in the pre- and post-task ODCA, respectively. Similarly,
to measure retention, we used the same normalization. That is,
we used Equation 1 but replaced PostScore with RetScore—the
percentage of correct answers in the ODCA retention test. This
type of normalization is common in education research [25] and
search-as-learning studies [19, 84, 85]. Normalized gain accounts
for participants’ prior knowledge based on their pre-task scores. It
essentially answers the question: “Of the percentage a participant
could have gained, what percentage did they actually gain?” On
rare occasions, the normalized gain can be a negative value (i.e.,
PostScore < PreScore). This can happen due to participants guessing
correctly on the pre-test and not the post-test.

3.6 Open-Ended Learning Assessment

Multiple-choice tests such as the ODCA are easy to grade but may
not capture everything that someone learned. For this reason, par-
ticipants also completed open-ended assessments immediately after
the search task and one week later. This assessment asked partici-
pants to “describe everything you learned during the search task.”
Participants were provided with a text box to enter their response.
Next, we describe how open-ended responses were scored.

Our goal was to analyze each open-ended response as a set of
correct and incorrect statements. A statement is defined as a logical
unit that is either entirely true or entirely false. A sentence can con-
tain multiple statements. For example, “Diffusion and osmosis are
forms of passive transport.” contains two statements: (1) “Diffusion
is a form of passive transport” and (2) “Osmosis is a form of passive
transport.” Our decision to analyze open-ended responses as sets of
(in)correct statements enabled us to give participants partial credit
for sentences containing both true and false statements.

In total, we identified 374 unique statements across all 80 open-
ended responses. These unique statements were labeled as true or
false by two biology professors. Both experts reviewed statements
jointly and resolved any disagreements through discussion. We
asked the experts to provide a brief justification for statements
labeled as false. Statements were labeled as false for several reasons.
First, some statements were labeled as false because the opposite
is true. For example, the statement “facilitated diffusion requires
energy” was labeled as false because “facilitated diffusion does not
require energy”. Second, some statements were labeled as false
because a word or concept was misremembered. For example, “hy-
potropic indicates low concentration” was marked as false because
“hypotonic [not hypotropic] indicates low concentration”. Third,
statements with an overstated claim or incorrect premise were la-
beled as false. For example, “particles naturally want to move from
areas of high-to-low concentration” was labeled as false because
“particles don’t ‘want’ anything”. Finally, some statements were la-
beled as false because the participant confused two related concepts.
For example, “active diffusion involves ATP” was marked as false
because “active transport [not diffusion] involves ATP”. Ultimately,
62 of 374 (17%) unique statements were labeled as false.

Our analysis of open-ended responses required two manual pro-
cesses: (1) splitting sentences into statements and (2) mapping
statements that are semantically equivalent. The second manual
process was required in order to identify the set of 374 unique state-
ments (labeled as true or false as described above) and mapping the
statements in each response to one of these 374 unique statements.
Next, we describe how these two manual processes were validated.

Splitting Sentences into Statements: To validate this process,
two authors on the paper (A1 and A2) analyzed all open-ended
responses from four participants (10% of the data). Each author
worked independently to identify all unique statements in each
response. To measure agreement, we used the Jaccard coefficient,
which measures the intersection divided by the union of unique
statements identified by A1 and A2. The Jaccard coefficient (aver-
aged across responses) was 0.83. Given this high level of agreement,
A1 split all sentences into statements across all responses.

Semantically Equivalent Statements: This manual process
was validated as follows. First, A1 identified the set of 374 unique
statements across all responses. Then, A1 and A2 independently
analyzed all statements associated with open-ended responses from
four participants (10% of the data). A1 and A2 independently as-
signed each statement to one of the 374 unique statements iden-
tified by A1. The Cohen’s Kappa agreement between A1 and A2
was 𝜅 = 0.982, which is considered “almost perfect” agreement [34].
Given this high level of agreement, A1 was responsible mapping
all statements to one of the 374 unique statements.

Measuring Learning&Retention:After all the steps above, we
were able to treat each open-ended response as a set of true and false
statements. To measure learning, we computed the percentage of
true statements in the post-task open-ended response. To measure
retention, we computed two measures. First, we computed the
percentage of true statements in the retention open-ended response.
Second, we computed the percentage of true statements retained
between the post-task and retention open-ended assessments.

3.7 Qualitative Coding of SRL Processes

InRQ2, we investigate the effects of the subgoal condition on the ex-
tent to which participants engaged in specific SRL processes during
the search task. To address RQ2, we conducted a qualitative anal-
ysis of participants’ search sessions by leveraging their recorded
think-aloud comments and screen activities, which included search,
reading and note-taking activities. SRL processes were coded using
the SRL Coding Guide shown in Tables 1-3. The SRL Coding Guide
was adapted fromGreene et al. [22, 23]. The coding guide consists of
three macro-SRL processes: Planning, Strategy Use, and Monitoring.
Each macro-SRL process contains multiple micro-SRL processes:
Planning contains 6 micro-SRL processes; Strategy Use contains
16 micro-SRL processes; and Monitoring contains 14 micro-SRL
processes. Tables 1-3 provide the definition and an example of each
micro-SRL process. Seven micro-SRL processes are new and were
created in order to capture SRL behaviors observed in our study.
These new micro-SRL processes are likely to be observed in other
search studies and are marked with (*) in Tables 1-3.

Our qualitative analysis of participants’ search sessions involved
two authors on the paper (A1 and A2). First, A1 segmented 100%
of all search sessions into so-called “codable units”. Codable units
were identified based on behaviors and/or think-aloud comments
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Table 1: Macro-SRL Process: Planning

Micro-SRL Process Description Example

Modifies Subgoals* Modifies (verbally or through typing) or deletes existing goal (does
not include cases of editing while initially establishing subgoal).

[Edits subgoal “Find 3 examples of osmosis in everyday life” to “Find
2 examples of osmosis in everyday life”] OR [Deletes subgoal]

Planning Sets multiple subgoals or one multi-component subgoal. “First I’ll look up the definition of diffusion, then I’ll look up a few
examples.”

Recycles Goal in Working Memory Re-states current subgoal. “Ok, what am I doing? I need to understand how diffusion is different
from osmosis”

Revisits Previous Subgoal* Engages in different, already established subgoal. [clicks on a different subgoal than they were currently pursuing in
the SM and takes action toward subgoal] OR "I think I’m going to
go back to diffusion."

Revisits task* (Re-)reads task description. [Opens Task Description page and reads description]
Subgoals Sets new subgoal toward overall goal and then takes action in re-

sponse.
[Writes “Diffusion” in TE and then queries “Diffusion definition”.]

Table 2: Macro-SRL Process: Strategy Use

Micro-SRL Process Description Example

Comparing & Contrasting Compares/contrasts two externalized representations or ideas. “It says high to low” [opens different subgoal to compare to notes]
Copying Notes Copy/pastes information. [Copy and pastes into TE/SM]
Corroborating sources Compares information from different sources (a source can be notes

taken from a prior source) to evaluate accuracy.
“That’s weird because we read that it is low to high concentration.”

Draw Makes drawing. [Types picture of osmosis flow through semipermeable membrane
out of symbols into TE]

Emphasizing notes* Underlines, bolds, capitalizes or otherwise emphasizes text after
noting its importance (i.e., reformat to increase visual salience).

[Bolds the word “semipermeable” in definition of osmosis]

Forming New Conclusion* Draws a conclusion based on information from one or more sources;
includes Knowledge Elaboration, Hypothesizing, Inferences

“So if the solvent is water, then the water would move.”

Help-seeking behavior Desires help with something and asks the moderator. “Are we allowed to write the stuff in our text boxes here?”
Manipulate representation Controls visual representation (e.g., video pause, graphic zoom) [Pauses YouTube video]
Memorization Tries to memorize verbatim (e.g., repeats information aloud more

than once, closes webpage then tries to restate what was read)
“So, osmosis is the movement of solvent particles...so osmosis is the
movement of solvent particles across a semipermeable membrane”

Prior knowledge activation Takes inventory of prior knowledge in order to: (1) develop subgoals;
(2) pursue new subgoal; or (3) take down notes of what is already
known with respect to a particular subgoal

“I remember the practice test asking about...dye and different ver-
sions of solutes.”

Reading notes Reads aloud something already written or copy/pasted [Reads notes aloud]
Re-reading Re-reads aloud something not written by him/her [Re-reads paragraph in web page]
Search Issues a new query (not reformulation) [Issues query for “diffusion definition biology”]
Select new informational source Navigates to new webpage (not subsequent visits) [Clicks on SERP result]
Self-knowledge activation Statement to pursue or avoid strategy based on personal prefer-

ence/aptitude (looking forward)
“We’re going to look at pictures because I’m a big pictures person”

Taking Notes Writes notes either word-for-word or own words. [Types in TE/SM]

Table 3: Macro-SRL Process: Monitoring

Micro-SRL Process Description Example

Content Evaluation Assesses relevance based on goal or subgoal (e.g., states that infor-
mation is or is not useful).

“I’m not going to include it because it is too vague”

Expectation of adequacy of content Estimates usefulness before reading carefully (e.g., review SERP
snippets and then query reformulation).

“It goes into too much detail”

Feeling of Knowing (FOK) Feels that they know but is unable to retrieve on demand. “What’s it called? Something chain?”
Feeling of Recognition (FOR) States that they do or do not know something (e.g., “I know this”, “I

have learned about this before”, “I have no idea what this is”).
“I’ve definitely studied this before”

Judgment of Learning (JOL) States that they have or have not learned something well enough for
future use (e.g., “Ok, I think I understand this well enough to answer
questions about it”) OR tests or checks learning with external quiz
questions.

“If I were asked a question like the other one I would be able to do
it”

Judgment of Understanding (JOU) States that they understand, think they understand, or do not
understand (e.g., “this makes sense”, “I don’t understand”) OR
checks/confirms understanding (e.g., “that’s what I thought”)

“I still don’t get what decides if it swells or not”

Monitor Progress Toward subgoals Assesses progress toward goal(s). “I feel like that meets everything.”
Monitor subgoal quality* Assesses the quality of a goal (e.g., content, relevance, usefulness) “I think it will take me a bit of time to find these examples, so I think

these are good goals.”
Monitor use of strategies Evaluates the usefulness of a strategy (only looking back) [After taking an online quiz]; “Can I do it again because that was

helpful”
Questioning Task Expectation* Questions the expectations of the task “Oh, what type of biology exam is this?”
Representation difficulty States that representation is easy/difficult “A heavier text like this I don’t enjoy looking at because I like to see

some pictures, some explanation.”
Self-Questioning States unknown without forming a plan (must involve a question

mark) (e.g., “So are solvents involved in hypertonic solutions?”)
“How is the liquid higher on that side?”

Task difficulty Expresses that the (sub)task is easy/difficult “This stuff is hard to even, like, read.”
Time monitoring Checks remaining time OR references time with respect to goals “Looking at the time I’m changing my mind.”
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that indicate engagement with a specific micro-SRL process. For
example, a behavior such as highlighting a sentence while taking
notes indicates engagement with the micro-SRL process Emphasiz-
ing Notes. Similarly, a think-aloud comment such as “now I’ll focus
on how diffusion is different from osmosis” indicates engagement
with the micro-SRL process Subgoals.

After segmenting search sessions into codable units, the data
was coded in three rounds. During each round of coding, each
codable unit was assigned to a single micro-SRL process using
the definitions and examples provided in the SRL Coding Guide.
Because each micro-SRL process is associated with a macro-SRL
process, each codable unit was also assigned to a single macro-
SRL process. For example, if a codable unit was assigned to the
micro-SRL process of Emphasizing Notes it was also assigned to the
macro-SRL process of Strategy Use. During the first round of coding,
A1 and A2 independently coded search sessions from 4 participants.
After this initial round, A1 and A2met to discuss disagreements and
modify the SRLCodingGuide. In the second round of coding, A1 and
A2 again independently coded search sessions from an additional
4 participants. The Cohen’s Kappa agreement was 𝜅 = 0.872 for
micro-SRL processes and 𝜅 = 0.944 for macro-SRL processes, which
are both considered “almost perfect” agreement [34]. Then, A1 re-
coded the 4 participants from the first round and an additional 24
participants for a total of 32 participants. After this, A1 and A2
independently coded search sessions from 2 participants. This was
done to ensure that A1 had not drifted from the code definitions
validated during the second round of coding. The Cohen’s Kappa
agreement was 𝜅 = 0.919 for micro-SRL processes and 𝜅 = 0.944
for macro-SRL processes, which are considered “almost perfect”
agreement [34]. Finally, A1 coded the remaining 6 participants. Our
analysis was based on codes assigned by A1.
4 RESULTS

In this section, we report on results for RQ1 & RQ2. Our anal-
yses involved comparisons between participants assigned to the
Subgoals and NoSubgoals conditions. Most outcome measures
were not normally distributed. Therefore, we tested for statistically
significant differences between groups (i.e., Subgoals vs. NoSub-
goals) using non-parametric Mann-Whitney 𝑈 tests. To conserve
space, we only show figures for outcome measures with statistically
significant differences between groups. All figures correspond to
box plots. In the text, we use𝑀S and𝑀N to denote the median for
the Subgoals condition and NoSubgoals condition, respectively.
4.1 Differences in Prior Knowledge

Our study used a between-subjects design. Therefore, it was im-
portant to verify that participants in both conditions had similar
levels of prior knowledge about diffusion and osmosis. Prior knowl-
edge was measured using the percentage of correct answers in
the pre-task ODCA assessment. There were no statistically signifi-
cant differences between groups. In fact, both groups had the same
median score (𝑀S = 0.528,𝑀N = 0.528).1

4.2 RQ1: Effects on Learning and Retention

RQ1 investigated the effects of the subgoal condition on learning
and knowledge retention.

1While there was a difference in standard deviation between groups (𝜎S = 0.14 ,
𝜎N = 0.16), the median pre-task ODCA score was identical between groups.

Effects on Learning: To measure learning, participants com-
pleted the ODCA before and after the search task. We used partic-
ipants’ scores on these assessments to compute normalized gain
(Equation 1). Additionally, participants completed the open-ended
assessment after the search task. Open-ended assessments were
scored based on the percentage of true statements included. We
did not find statistically significant differences between groups for
either measure. However, on average, participants in the Subgoals
condition had higher normalized gains based on their pre- and
post-task ODCA scores (𝑀S = 0.41 vs. 𝑀N = 0.22) and included
a slightly greater percentage of true statements in their post-task
open-ended responses (𝑀S = 0.90 vs.𝑀N = 0.86).

Effects on Knowledge Retention: To measure knowledge
retention, participants completed the ODCA and open-ended as-
sessment one week after the search task. Again, we used partici-
pants’ pre-task and retention ODCA scores to compute normalized
gain. Additionally, we used participants’ open-ended responses to
compute two measures: (1) the percentage of correct statements in-
cluded in the retention open-ended response and (2) the percentage
of correct statements retained between the post-task and retention
open-ended response.

Figure 3a shows differences in normalized gain on the retention
ODCA between conditions. Differences in normalized gain on the
retention ODCA were statistically significant (𝑈 = 127, 𝑝 < .05).
On average, participants in the Subgoals condition had higher
normalized gains in the retention ODCA (𝑀S = 0.40 vs.𝑀N = 0.17).

Figures 3b and 3c show differences in the percentage of true
statements on the open-ended retention assessment and the percent
of true statements retained across open-ended assessments between
conditions. There were statistically significant differences detected
between conditions in terms of the percentage of true statements
included in the open-ended retention assessment (𝑈 = 118, 𝑝 <

.05) and the percentage of true statements retained across open-
ended assessments (𝑈 = 77, 𝑝 < .001). On average, participants
in the Subgoals condition included a greater percentage of true
statements in the open-ended retention assessment (𝑀S = 0.97 vs.
𝑀N = 0.83) and retained a greater percentage of true statements
across open-ended assessments (𝑀S = 0.35 vs.𝑀N = 0.19).

4.3 RQ2: Effects on SRL Engagement

RQ2 investigated the effects of the subgoal condition on the extent
to which participants engaged in different macro- and micro-SRL
processes during the search task. First, we report on frequency
with which participants engaged in specific macro-SRL processes.
Second, we report on the diversity of micro-SRL processes that
participants engaged in within each macro-SRL process. Third, we
report on the frequency with which participants engaged in specific
micro-SRL processes.

Frequency of Macro-SRL Processes: Figures 4a-4c show the
frequencies with which participants engaged in the macro-SRL
processes of Planning, Monitoring, and Strategy Use. Differences
between groups were found to be statistically significant for Plan-
ning (𝑈 = 21.5, 𝑝 < .0001) and Monitoring (𝑈 = 114, 𝑝 < .05).
On average, participants in the Subgoals condition engaged in
more Planning (𝑀S = 21 vs.𝑀N = 8) and Monitoring (𝑀S = 28.5 vs.
𝑀N = 20.5). Differences between groups were marginally signifi-
cant for Strategy Use (𝑈 = 141.5, 𝑝 = .06). On average, participants
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Figure 3: Learning based on Retention Assessments

in the Subgoals condition engaged in more Strategy Use (𝑀S = 56
vs.𝑀N = 45).

Diversity of Micro-SRL Processes: Figures 5a-5b show the
number of distinct micro-SRL processes that participants engaged
in within the macro-SRL processes of Planning and Strategy Use.
Differences between groupswere found to be statistically significant
for Planning (𝑈 = 71, 𝑝 < .001) and marginally significant for
Strategy Use (𝑈 = 000, 𝑝 = .06). On average, participants in the
Subgoals condition engaged in a more diverse set of micro-SRL
processes related to Planning (𝑀S = 5 vs. 𝑀N = 3) and Strategy
Use (𝑀S = 9 vs. 𝑀N = 8). Differences between groups were not
statistically significant for Monitoring.

Frequency of Micro-SRL Processes: Table 4 shows the fre-
quencies with which participants engaged in specific micro-SRL
processes. For brevity, with one exception, we only include those
micro-SRL processes with statistically significant differences be-
tween groups (𝑝 < .05). Within the macro-SRL process of Planning,
participants in the Subgoals condition engaged in signficantly
more: (1) Subgoals; (2) Recycles Goal in Working Memory; (3) Revisits
Previous Subgoals; and (4) Modifies Subgoals. Within the macro-SRL
process of Strategy Use, participants in the Subgoals condition en-
gaged in significantly more Prior Knowledge Activation. Participants
also engaged in more Comparing & Contrasting. However, these
differences were marginally significant (𝑝 = .05). Finally, within the
macro-SRL process ofMonitoring, participants in the Subgoals con-
dition engaged in significantly more: (1) Monitor Progress Toward
Subgoals; (2) Monitor Subgoal Quality; (3) Expectation of Adequacy
of Content; and (4) Time Monitoring.
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Figure 5: Diversity of micro-SRL processes

5 DISCUSSION

RQ1: Effects on Learning and Retention: RQ1 investigated the
influence of the subgoal condition on learning during search. Learn-
ing was measured using two types of assessments: the multiple-
choice ODCA and an open-ended assessment. These assessments
were administered at multiple points in time. The ODCA was ad-
ministered before, immediately after, and one week after the search
task. The open-ended assessment was administered immediately
after and one week after the search task.

Our RQ1 results found that participants in the Subgoals con-
dition had better learning outcomes, particularly with respect to
knowledge retention. Participants in the Subgoals condition had
significantly higher normalized gains based on their ODCA scores
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Table 4: Frequency of Micro-SRL Processes with Signficant

Differences. Median (Min.,Max.)

Micro-SRL Process NoSugboals Sugboals
Planning

Subgoals 4.5 (0,9) 7.5 (4,17)
Recycles Goal in Working Memory 0 (0,3) 1 (0,2)
Revisits Previous Subgoal 0.5 (0,3) 6 (0,16)
Modifies Subgoals 0 (0,1) 1 (0,10)

Strategy Use

Prior Knowledge Activation 0.5 (0,3) 3 (0,6)
Comparing & Contrasting 0 (0,5) 1.5 (0,9)

Monitoring

Monitor Progress Toward Subgoals 2 (0,3) 4.5 (1,15)
Monitor Subgoal Quality 0 (0,0) 0 (0,2)
Expectation of Adequacy of Content 3.5 (0,23) 8 (0,18)
Time Monitoring 0 (0,3) 1 (0,9)

before the search task and one week later. Responses to the open-
ended assessments found similar trends. First, participants in the
Subgoals condition included a significantly greater percentage
of correct statements in their responses to the open-ended assess-
ment one week after the search task. Second, participants in the
Subgoals condition retained a significantly greater percentage
of correct statements between their responses to the open-ended
assessment immediately after the search task and one week later.

Our RQ1 results extend our own prior work. In a previous pa-
per [75], we reported on a crowdsourced study that also used the
Subgoal Manager to investigate the effects of goal-setting on learn-
ing during search. That study involved three experimental condi-
tions. Two conditions were similar to our NoSubgoals and Sub-
goals conditions. A third condition (AssignedSubgoals) involved
the Subgoal Manager with pre-populated subgoals. In that study,
participants in the Subgoals (versusNoSubgoals) condition scored
slightly higher on the ODCA taken immediately after the search
task. In the current study, we found a similar trend. However, our
RQ1 results also show that participants in the Subgoals (versus
NoSubgoals) conditionwere better able to retainwhat they learned.
This is an important contribution of the current study.

Our RQ1 results have three important implications. The first
implication relates to tools to support learning during search. The
second and third implications relate to methodological recommen-
dations for future search-as-learning studies.

First and foremost, our results suggest that goal-setting improves
learning during search. To encourage and support goal-setting, we
designed the Subgoal Manager. The Subgoal Manager included sim-
ple features for participants to set goals and monitor their progress
toward their goals (e.g., take notes with respect to subgoals and
mark subgoals as completed). Our results suggest that search sys-
tems should incorporate such tools to support learning. Importantly,
prior studies have found that note-taking can improve learning dur-
ing search [18, 59, 64]. In our study, participants took notes in both
conditions. Therefore, our results suggest that goal-setting and
goal-specific note-taking can provide additional benefits.

Second, while we did not find statistically significant differences
between groups based on assessments administered immediately
after the search task, we did find significant differences based on

assessments administered one week later. Studies outside of search-
as-learning have found similar trends. For example, McLaren et al.
[48] and Adams et al. [2] evaluated a tutoring system that asked
students to correct an erroneous solution to a problem versus simply
solve the problem. While both groups performed similarly on an
assessment administered immediately after the learning session,
participants in the “erronous solution” condition performed better
on a delayed assessment. The authors argued that the “erroneous
solution” condition resulted in deeper, longer-lasting learning.With
few exceptions [59, 72], most search-as-learning studies have only
measured knowledge gains immediately after the search task. Our
results underscore the importance of also measuring retention.

Third, our study used two different types of assessments—the
multiple-choice ODCA and an open-ended assessment. The ODCA
provided a simple mechanism for comparing between groups. How-
ever, multiple-choice tests may not capture everything that some-
one learned. Therefore, the open-ended assessment enabled us to
capture knowledge gains not captured by the ODCA. In retrospect,
including the open-ended assessment was a good decision. In total,
participants included 374 unique statements in their open-ended
responses. Therefore, it is highly likely that participants learned
things that were not targeted by the ODCA. The use of multi-
ple assessments provided stronger evidence that participants in
the Subgoals condition retained more of what they learned. By
administering multiple assessment types, researchers in search-as-
learning may also strengthen their findings in similar ways.

RQ2: Effects on SRL Engagement: RQ2 investigated the influ-
ence of the subgoal condition on the extent to which participants
engaged in different macro- and micro-SRL processes. To this end,
participants’ recorded think-aloud comments and actions were
coded into SRL processes. Our results found that participants in
the Subgoals condition had higher levels of engagement with all 3
macro-SRL processes and 10 (out of 36) micro-SRL processes.

Participants in the Subgoals condition engaged in more Plan-
ning. Within Planning, participants engaged in more: (1) Subgoals;
(2) Recycles Goal in Working Memory; (3) Revisits Previous Subgoals;
and (4) Modifies Subgoals. Participants in the Subgoals condition
were asked to set at least three subgoals before the search task.
Therefore, it is not surprising that they set more subgoals and sub-
sequently modified specific subgoals during the task. It is important
to note, however, that participants in theNoSubgoals condition did
develop subgoals, just at a lower rate (𝑀N = 4.5 vs.𝑀S = 7.5). This
is important because it shows that while subgoals are beneficial,
searchers may not naturally develop them. Therefore, tools should
explicitly prompt searchers to develop subgoals and allow them to
modify subgoals during the search session.

Participants in the Subgoals condition were also more likely to
return to a previously set subgoal and to recycle the current sub-
goal in working memory (e.g., restate it verbally as a way to stay
focused). Features of the Subgoal Manager may have influenced
these behaviors. For example, being able to see their subgoals may
have prompted participants to shift between subgoals. Many of
these shifts happened when participants encountered information
that was pertinent to a subgoal other than the current one. Simi-
larly, participants in the Subgoals condition were asked to create
subgoals with a specific action, content, standard, and timeframe.
Therefore, participants in the Subgoals condition may have had
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clearer, more well-defined aims, which they were able to articulate
verbally. Based on these results, tools should keep subgoals visible
and encourage searchers to set subgoals with ideal characteristics.

Participants in the Subgoals condition engaged in more Strategy
Use. Within Strategy Use, participants engaged in more: (1) Compar-
ing & Contrasting and (2) Prior Knowledge Activation. As previously
mentioned, participants sometimes encountered information that
was relevant to a subgoal they had previously worked on. This often
prompted participants to switch subgoals and to compare/contrast
the information with their notes on the previous subgoal. For exam-
ple, while learning about the definition of diffusion, one participant
encountered a definition of osmosis that differed from the one in
their notes. This prompted them to revisit their definition of osmo-
sis (i.e., revisit previous subgoal) and compare/contrast it with the
one encountered. This trend suggests that the Subgoal Manager
may have enabled participants to compartmentalize information
more effectively, perhaps because they had clearer objectives and
notes explicitly associated with those objectives. This may have
enabled participants to recognize relevant information about a sub-
goal other than the current one.

Participants in the Subgoals condition also engaged in a higher
frequency of Prior Knowledge Activation (PKA). This is an interest-
ing result given that PKA was not directly supported in the Sub-
goals condition. Participants were not explicitly asked to reflect
on their prior knowledge and none of the features in the Subgoal
Manager even mentioned prior knowledge. It is possible that the act
of developing subgoals prompted PKA. This resonates with prior
work in SRL and goal-setting that underscores the importance of
goal-setting as a way to activate task-relevant knowledge [47, 80].

Participants in the Subgoals condition engaged in moreMonitor-
ing. Within, Monitoring, participants engaged in more: (1) Monitor
Progress Toward Subgoals; (2) Monitor Subgoal Quality; (3) Expecta-
tion of Adequacy of Content; and (4) Time Monitoring. Features of
the Subgoal Manager directly supported participants in monitoring
their progress toward specific subgoals. The interface included a
“subgoal complete” button and displayed the amount of notes asso-
ciated with each subgoal, which may have prompted participants
to monitor their progress toward a subgoal. Participants in the
Subgoals condition were instructed to set subgoals with ideal char-
acteristics. Additionally, tooltips on the Subgoal Manager reminded
participants about these ideal subgoal characteristics. This may
have prompted participants to more closely monitor the quality of
their subgoals. Among these ideal subgoal characteristics, partici-
pants were instructed to specify a timeframe for each subgoal. It
is less clear why participants in the Subgoals condition engaged
in more Expectation of Adequacy of Content. One possible expla-
nation is that participants were asked to develop subgoals with
a clearly defined content and standard. This may have prompted
participants to be more selective when deciding whether to engage
with information resources more deeply.

Our RQ2 results also found that participants in the Subgoals
condition engaged in more diverse micro-level processes related to
Planning and Strategy Use. It is somewhat expected that participants
in the Subgoals condition engaged in more diverse micro-SRL pro-
cesses related to Planning. Participants in the Subgoals condition
developed subgoals and modified subgoals during the search pro-
cess. Additionally, having subgoals visible may have prompted them

to recycle the current subgoal in working memory and revisit a
previous subgoal. It is interesting that participants in the Subgoals
condition also engaged in more diverse micro-SRL processes related
to Strategy Use. Participants in the Subgoals condition were asked
to develop subgoals with specific standards. It is possible that stan-
dards prompted participants to enact different strategies in order to
meet the standards. For example, participants often developed sub-
goals about gathering a specific number of definitions, examples, or
similarities/differences between diffusion and osmosis. This often
prompted participants to take inventory of their prior knowledge
(i.e., Prior Knowledge Activation) and (re-)read their notes to see if
they had met the subgoal (i.e., Reading Notes). Perhaps the greater
diversity of micro-SRL processes contributed to participants having
better learning outcomes in the Subgoals condition.

6 CONCLUSION

In this paper, we have presented results from a study that investi-
gated the effects of goal-setting on: (RQ1) learning and knowledge
retention and (RQ2) levels of engagement with specific SRL pro-
cesses during the search session.

Learning & SRL Engagement: OurRQ1 results found that par-
ticipants in the Subgoals condition had better learning outcomes.
Specifically, they were better able to retain knowledge gained dur-
ing the search session. Our RQ2 results found that participants in
the Subgoals condition had higher levels of engagement with SRL
processes related to Planning, Monitoring, and Strategy Use. Com-
bined, our results shed light onto why participants had better learn-
ing outcomes in the Subgoals condition. It is likely that the higher
levels of SRL engagement contributed to deeper, longer-lasting
learning. Prior studies in education have also found a positive rela-
tion between SRL engagement and learning outcomes [14, 24]. Our
study extends this prior work in three ways. First, these studies
had students learn about a subject by interacting with documents
in a hypermedia environment. In contrast, our study focused on
interactive search using a web search engine. Second, our study in-
volved a system manipulation (i.e., access to the Subgoal Manager).
Third, our study measured learning immediately after the search
session and one week later.

Future Work: Several open questions remain. First, in the Sub-
goals condition, participants had access to the Subgoal Manager,
were instructed on how to set good subgoals, and were asked to set
at least three subgoals before starting the search task. Future work
should investigate the impact of these decisions. For example, how
important is it to coach searchers on how to set good subgoals?
Similarly, how important is it to set subgoals before starting the
search task? Second, future work should investigate whether spe-
cific SRL processes are more critical at certain stages of a search
task. Finally, future work could extend the Subgoal Manager by
adding new features. Examples include a feature that automatically
detects suboptimal subgoals (e.g., lacking standards to measure
success) or a feature that highlights information that is relevant to
a specific subgoal (i.e., not necessarily the current one).
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