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ABSTRACT
Modern search systems are largely designed and optimized for
simple navigational or fact-finding tasks, with little support for
complex tasks involving comprehension and learning. In response,
the search-as-learning research community has undertaken a wide
range of research questions focused on understanding how various
types of learning outcomes are affected by searcher characteristics,
the search task, and the search system. Typically, these views embed
learning within a search system. In this paper we take a different
view, embedding searchwithin a framework for an end-to-end learn-
ing system designed to support learning in a formal educational
context. Our central goal is to motivate research questions aligned
to advance progress on techniques for active support of comprehen-
sion and formal learning. Thus we intentionally set aside goals for
informal and surface learning. We argue that to be effective, such a
search-centric learning system must model four key components:
individual students (searcher factors), the educational domain (topic
factors), academic assignments (task factors), and progress toward
learning goals (the objective function of the end-to-end system).
In modeling these components, our hypothetical system makes
inferences about students’ learning histories, knowledge states,
comprehension, and the utilities of different types of information
resources. We present examples of possible techniques and data
sources for each model. We also introduce the novel concept of
leveraging school assignments as rich task context. Our intention is
not to propose a functional system, but to frame search-as-learning
in the context of comprehension and to inspire research questions
arising from an end-to-end view of this important research domain.
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1 INTRODUCTION
Search-as-learning (SAL) is a multi-faceted research area that ad-
dresses the complexities of human cognition, algorithm design, and
the sometimes-divergent agendas of interdisciplinary work [13, 40].
A central goal of SAL research is to improve learning for search
system users. Of course, learning has many dimensions, which
researchers approach from different perspectives across impor-
tant research questions. Some view learning broadly as knowledge
acquisition—a natural byproduct of searching for information [27].
Others focus on learning as a type of search-task goal [14]. Still
others see learning as the central goal, and the search system as
a support for learning [9]. Such differences affect the measures of
learning used in research. Learning is sometimes measured against
an expert level of knowledge [7]. Often, short or long-term recall
from memory serves to gauge knowledge gains [49]. In contrast,
constructive measures of learning assess the ability to use knowl-
edge, where measures of comprehension are a benchmark for learn-
ing [34]. The design of a search system also implies an underlying
perspective on learning. In some views, the goal of the system is
to infer learning goals and gains from behavior, where no explicit
context is available [56]. In other views the goal is facilitate an
explicit learning goal known to the system [50].

Building on prior work from across the SAL community, this
paper looks across these many views. In our view, a focus on the ex-
plicit goal of comprehension is likely to yield the most challenging
and rewarding research questions. We argue for a unified research
agenda that aligns perspectives on this measure. Our argument is
couched in a sketch for a blue-sky framework designed to facilitate
comprehension in the specific context of undergraduate education,
where this goal is highly likely for users. Here, comprehension
is defined as the construction of meaning from source materials,
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where learning is measured as demonstrated ability to use com-
prehended meaning in novel situations [16]. Comprehension is a
well-established construct in the learning sciences, with attendant
theoretical underpinnings and validated instrumentation [15]. We
include here the important construct of multiple-text comprehen-
sion [8]. The undergraduate learning environment is but one of
many possible use cases for a search-centric learning system [47].
Our focus on it here does not preclude the applicability of our ideas
to other settings such as secondary and graduate education. We
selected this setting because we believe it provides a clear view of
the interdependencies, challenges, and opportunities in designing
for comprehension, and because the ubiquity of undergraduate
digital learning environments affords unique opportunities with
respect to empirical questions.

Learning for comprehension is a primary goal across under-
graduate academic domains, but the manner of learning depends
heavily on the domain of learning. Pedagogy, here taken as prac-
tice [2], defines a means for achieving and demonstrating com-
prehension within a learning domain. Digital environments for
learning are replete with evidence of domain pedagogy and related
knowledge structure. For example, university websites express the
varied, complex associations between knowledge domains (e.g., aca-
demic areas), learning goals (e.g., theory, practice), and curriculum
(e.g, programs and courses). Learning management systems contain
pedagogical artifacts such as syllabi and course assignments. Of
course, within this structure, individual characteristics of learners
drive the manner of learning [10]. Digital learning environments
may also provide information about learners’ skills, strengths, goals,
and needs.

We argue that progress in the SAL research agenda can be ac-
celerated by considering research questions within a unified exper-
imental framework that supports undergraduate education. Our
framework includes abundant learning context, accessible in situ
learning tasks, and learning measures aligned with the goals of com-
prehension. The paper describes components of the framework,
including models of the learner, assignment, domain, corpus, and
learner behavior, and how these models might capture and leverage
information to support learning and reflection on learning [11]. Our
goal here is not to present a functional schematic but a thought-
experiment concerning how to better align research questions with
developing techniques in support of SAL.

The paper is organized as follows. In the next section, we briefly
review selected prior work taken from the perspectives above. A
simplified functional overview of the framework follows. We then
describe each of eight components inmore detail, following a simple
example throughout our discussion. We conclude with a brief re-
view of possible interface functionality that leverages the available
models to facilitate reflective learning.

2 RELATEDWORK
Studies in SAL have investigated how various factors influence
learning during search. We present a brief overview of selected pa-
pers focused on four sets of factors: characteristics of the searcher [31,
41, 41, 53], the search task [18, 23, 27, 28], search behavior [1, 7, 12,
17, 26, 29, 32, 56] and the search system [9, 16, 24, 42, 54].

Searcher characteristics. Research here focuses on how factors
such as prior knowledge [31, 41, 53], working memory capacity, and
reading comprehension [34] influence learning. For example, [31]
found that searchers with greater prior knowledge had lower knowl-
edge gains, possibly because they were less likely to encounter new
information while searching. By contrast, [53] found that searchers
with greater prior knowledge had greater knowledge gains, possi-
bly because they were able to search more effectively. [41] found
that knowledge gains were greater for domain novices earlier in the
search session and that experts gained more knowledge towards the
end. [34] found a positive relationship between working memory
capacity, reading comprehension, and learning.

Task characteristics. Studies of how task complexity affects learn-
ing [18, 23, 27] find an association between complex tasks and types
of mental activities [18], lower knowledge gains [23], and learn-
ing that was dependent on task progress, with greater knowledge
gains later in the search session [27]. Investigating learning during
multi-session search, [28] found that knowledge gains plateaued
faster when subtasks had no dependencies.

Search behavior. Searchers with better learning outcomes tend
to spend more time reading documents [12, 17, 29, 49, 56]; issue
queries with more advanced or uncommon vocabulary [7, 12, 17];
issue more diverse queries within a search session [32]; review
more results that are relevant and novel [1, 12]; and use resources
that are more suitable to the task [26].

System characteristics. Research on interfaces and interactive
tools designed to support learning, as well as the retrieval system
itself, generally suggests that users benefit from interfaces that
convey information about the items in the collection [24, 54] and
from tools allowing document annotation [16, 42]. However, tools
can have unintended effects such as cognitive overload [42] or ef-
fects on characteristics of the learner’s goals [9]. Studies have also
investigated retrieval models optimized to improve learning. In an
evaluation of an end-to-end system to support vocabulary learning
by presenting unfamiliar vocabulary words in context, the model
was optimized to maximize learning potential by promoting items
with greater term density and tominimize effort by favoring shorter
texts, and resulted in improved vocabulary learning [49, 50]. Some
of the ideas in this position paper resonate directly with this work.
For example, we advocate for a retrieval model that favors docu-
ments based on students’ current learning objectives and state of
knowledge. However, we go beyond vocabulary learning to model
different factors, including characteristics of the individual learner,
the educational domain, the learner’s history of assignments, and
the current assignment.

3 FUNCTIONAL OVERVIEW
Our framework is designed to support undergraduate students as
they complete academic assignments throughout their studies. The
goal is to facilitate comprehension within a domain of study while
reducing the effort needed to find and use information resources
(lectures, books, discussions, library sources, websites, etc.).We seek
to support individual students in completing a class assignment by
providing information that best supports each individual. We place
the framework in a learning system that integrates search, tools (e.g.,
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Figure 1: Overview of model framework across multiple assignments and domains.

word processor), and academic context (e.g. assignments). At a min-
imum, the system needs representations of information resources,
the learner, and the assignment, with a mechanism for improving
the representation of the student as understanding evolves over
multiple assignments within a domain. The framework comprises
eight models that together facilitate these goals. For purposes of
simplification, the model describing information resources (Corpus
Model - CM [see 4.3]) is not detailed in this overview. Two models
describe the learner. Two models describe the assignment within
its broader academic context. The three remaining models work
together dynamically to optimize the retrieval system for learning
and effort across multiple sessions during assignment completion.
Figure 1 depicts the components and their connections, using the
example of Alex, a hypothetical student presented throughout the
paper. Alex is studying in two domains, art and physics.

Descriptions of the learner: The learner profile (LP) describes stu-
dents’ skills and academic history - factors likely to affect the utility
of different types of information resources and to indicate prior
knowledge. Derived from existing records, these relatively stable
traits cross academic domains. For example, Alex’s history includes
success in a secondary school physics course but they have low
reading skill. A detailed description of the learner, the learner-
domain model (LDM), describes the learner separately for each
domain of study. It predicts the utility of different resource types
for the domain (information utilities), and estimates the learner’s
prior knowledge in the domain. For example, Alex is likely to benefit
from materials with an easy reading level but that require prior
knowledge in physics. The LDM updates at the completion of each
assignment, as described below.

Descriptions of academic context. Studentswork in a rich academic
context, the structure of which is expressed in many information
sources. We argue that the conceptual and pragmatic aspects of
academic domains can be discovered and described using existing
sources. Academic domains are represented by the domain model
(DM), which has two goals. First, it organizes the domain’s academic
subject matter as a knowledge graph. Second, it describes character-
istics of the subject matter such as pedagogical practices, the types
of information resources used in teaching, and the relative utility
of those resources. In our example, Alex is studying physics, where
fluid dynamics is a central subject area, with assumed prerequisite
knowledge and useful types of information resources modeled for

the domain. The DM informs models of assignments, which we
discuss next.

Supporting students in assignment completion requires a de-
scription of the assignment task and its learning objectives. This
is the role of the assignment model (AM), which predicts subject
matter required for completing the assignment, including prerequi-
site knowledge, concepts to be learned (target knowledge), possible
paths an average student might take, and work products needed for
completion (e.g., notes, essay). Finally, it predicts the utilities of
resource types likely to be useful. These predictions are explicit in
or inferred from the assignment text, or inferred from the domain
model (DM). Our example centers on an assignment about “lift.”
The assignment model predicts that completing the assignment
requires understanding of “fluid” and “force,” the production of
“notes” and an “essay,” and that visual simulations have high utility
for learning.

Dynamic models. The framework’s three dynamic models com-
bine information from the other models to support completion of
an assignment. The learner-assignment model (LAM) customizes
the assignment model (AM) to optimize for the student’s learning
needs, as predicted by the learner-domain model (LDM). Thus the
LAM predicts the knowledge students will learn from the assign-
ment and their possible paths to that knowledge. It also adjusts the
predicted utility of information resource types to optimize for stu-
dents’ individual needs. Resulting values are passed to the retrieval
model (RM) for use in retrieving the first search engine results page
(SERP) of the first work session on the assignment. For Alex, the
LAM for the “lift” assignment predicts both limited prior knowl-
edge of “fluid” and “force” and a learning path that includes these
concepts. It also predicts high utility for easy reading materials that
support understanding of visual simulations.

The retrieval model (RM) uses the feature values from the learner-
assignment model (LAM) for the first SERP of the session. Below we
propose a learning-to-rank (LTR) model that optimizes for session
relevance and learning gain. The RM is dynamic in that within a
session, it adjusts feature values between queries using feedback
received from the behavior model (BM), as explained next. (The RM
is supported directly by a CM (see 4.3), which we have excluded
here.)

The behavior model (BM) observes learner interaction with re-
sources opened from the SERP or with saved documents. Observa-
tions include eye-tracking for visual attention and keyboard/mouse
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engagement during writing. The model associates observations
with engaged resources to produce three types of estimates. First,
it estimates the utility of engaged items from the active SERP. For
example, observations of visual attention enable a model of reading
behavior that predicts potential for comprehension, as well as effort
invested, to estimate the utility of the engaged item. Second, the
model uses observations of behavior to estimate the amount and
quality of attention given to relevant content areas. For example,
when Alex reads and writes bullet points about “flow deflection”
and “Newton’s laws,” the model estimates their knowledge level
for these concepts. Finally, the model classifies writing products,
for example, differentiating “notes” from “summaries.” For example,
Alex’s bullet points are classified as “notes.” These three types of
estimation are updated continuously as Alex continues to work.
When a new query is submitted, an update is triggered to the re-
trieval model (RM) before retrieval for that query. The updates
adjust feature values on Alex’s knowledge of the concepts and in-
formation utilities, as well as the status of work products. The BM
is reinitialized with the generation of the next SERP.

Other dynamic updates. Two other dynamic updates are impor-
tant to the framework, one at the detection of a session break, and
the other at the detection of assignment completion. When a session
ends, the retrieval model (RM) pulls final values from the behav-
ior model (BM) and updates final feature values on utilities and
knowledge state. At the same time, the behavior model (BM) es-
timates work product status and effort. The learner-assignment
model (LAM) then uses values from the RM and BM to update
utilities, knowledge state, and the status of work products in prepa-
ration for the next task session. When assignment completion is
detected, the applicable learner-domain model (LDM) updates using
the final values from the LAM, reflecting changes in the learner’s
domain knowledge and information utilities within the domain.

To summarize, the framework maintains a model of what the
student knows and is learning within each academic domain; the
types of information resources most likely to benefit the learner
in that domain; and work the student is completing to advance
learning.

4 COMPONENTS
This section of the paper provides more detail on each component,
in an order slightly different from the functional view above. First,
we address the learner profile (LP) and domain model (DM), as both
provide information necessary to othermodels, and are independent
from those models. Next, we detail the assignment model (AM) and
learner-domain model (LDM), both of which depend on one other
model and which are interdependent. Then, the learner-assignment
model (LAM) is covered, as it depends on both the AM and the LDM.
The section ends with the retrieval model (RM) and the behavior
model (BM).

4.1 Learner Profile (LP)
The LP captures three types of information about the learner: neuro-
diversity (e.g., dyslexia), skills the learner has acquired to help them
learn (e.g., self-regulated learning skills), and academic focus and
history (e.g., major, transcripts). Profile information helps predict
aspects of the corpus likely to be useful to an individual learner,

as well as the learner’s prior knowledge. The LP uses established
instruments from the learning sciences.

Assessment of neurodiversity depends on a wide range of instru-
ments. For example, validated and reliable professional screening
instruments, that include self-report questionnaires, can detect
conditions such as dyslexia and attention deficit/hyperactivity dis-
order [20, 48, 55].

The LP also captures evidence of learning skills, including read-
ing level, self-regulated learning (SRL, the ability to monitor and
control one’s own learning), and self-efficacy (i.e., one’s perceived
ability to complete a task). All of these skills may be assessed
with well-established instruments. For example, the Independent
Reading Level Assessment framework, captures a learner’s reading
level [37]. Effective SRL improves learning outcomes [46] and may
be assessed using the Motivated Strategies for Learning Question-
naire [35]. Self-efficacy affects an individual’s ability to learn [45],
which may be measured using self-reported scales [44]. SRL skills
and self-efficacy levels are useful for understanding the learning
support a student may require. In Section 5, we discuss how the
system can prompt and encourage learners to engage SRL skills
and reflect on their learning.

Finally, the LP captures the learner’s academic focus and history.
This includes the learner’s major, minor, and course history, such
as preparation in upper secondary school.

In our running example, Alex’s profile captures, among other
information, a low reading level, major in physics, and successful
completion of a physics course during secondary education. Alex’s
profile also reveals mid-range SRL skills and self-efficacy. This
information will provide context for subsequent models (e.g., LDM)
to predict Alex’s knowledge from preparatory studies and the types
of resources most likely to be useful for Alex.

4.2 Domain Model (DM)
The DM is responsible for capturing, inferring, and storing impor-
tant information about an educational domain (e.g., physics). To
be useful, this information must be structured for use by other
models. Here we chose to use a knowledge graph comprising nodes,
node attributes, and edges. Nodes correspond to units of information
within the domain; attributes represent metadata about the nodes;
and edges represent relations between nodes. What these elements
encode is an open research question and is likely to depend on
the domain. In this section, we explore information that might be
encoded and discuss some possible resources (e.g., course syllabi)
for capturing or inferring this information.

Nodes represent important units of information in the domain.
For example, for the humanities, the nodes might represent people,
places, organizations, and events. For the social sciences the nodes
might represent concepts, procedures, and organizations. As an
example, textbook indices can be useful for determining “index-
worthy” nodes to include in a specific DM.

Node attributes encode information about nodes to help the sys-
tem predict relevance, information utilities, and a learner’s state of
knowledge. To illustrate, throughout the remainder of the paper
we discuss possible attributes associated with conceptual nodes.
Education research defines conceptual knowledge as knowledge
about concepts, categories, principles, theories, and models [4].
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Figure 2: Overview of framework and information captured by each component (e.g., LP captures information about the
learner).

Concepts are useful for organizing a body of knowledge in a sys-
tematic and interconnected manner [4, p.79]. Therefore conceptual
nodes are likely to be prevalent in most DMs. As discussed next,
we see four different types of attributes associated with conceptual
nodes: alternative identifiers, topic language, learning complexity,
and information utilities. Other attributes are likely to be pertinent
and we see this as an open and rich research question.

First, alternative identifiers provide the system with alternative
ways to refer to a node. For example, the DM should indicate that
“Newton’s 1st Law” and “inertia” refer to the same construct in
classical physics. This attribute may be sourced from resources
such as textbook indices (e.g., “see also”) and anchor text in educa-
tional websites (e.g., Wikipedia). Second, the system needs a topic
language that represents the node. This could take the form of a
language model or low-dimensional representation (e.g., using a
neural embedding technique) derived from external corpora. The
topic language helps other models, for example associating nodes
with documents in the corpus (e.g., the CM, see section 4.3) or with
a learner’s work products. For example, concepts in a student’s writ-
ten text may suggest an increase in knowledge of the corresponding
node. Third, learning complexity is the complexity of domain knowl-
edge required to understand the concept represented by a node.
For example, economics concepts like “supply” and “demand” are
fundamental, while “inflation” and “deflation” are more complex.
Learning complexity helps the AM (see section 4.4) estimate knowl-
edge dependencies in the domain. Many resources capture this type
of evidence, including educational websites, textbooks, and course
syllabi tailored for specific learners (i.e., novices vs. experts). Ad-
ditionally, position information may also provide useful evidence.
For example, foundational topics are likely to precede advanced
topics in textbooks and course syllabi. Finally, attributes associ-
ated with information utility characterize educational materials
used to teach a concept. Such information characteristics might

include the type of resource (e.g., textbook, news article), the type
of media (e.g., image, interactive visualization), and the genre (e.g.,
definition, summary, example, comparison). To illustrate, the con-
cept of Bernoulli’s principle may be taught most frequently with
definitions and examples, such as lift acting on an airplane wing.
Machine learning may be used to capture and store these utilities.
For example, given a specific feature representation (i.e., informa-
tion characteristics), one could train a simple linear model to predict
the presence/absence of topic in a document. In this respect, the
learned weights in this model will encode the characteristics of ed-
ucational resources that are desirable and undesirable for the given
topic. These weights can then be used to promote content that is
appropriate from an educational standpoint, even if the material is
not explicitly educational.

Edges in the DM represent important relations between nodes,
with associations at different levels of specificity. The edges help the
system support and infer learning. To support learning, the edges
enable identification of concept dependencies. For example, if a
learner wants to understand “inertia,” understanding “conservation
of momentum” is necessary. To infer learning, the edges enable the
system to propagate inferences about what the learner knows. For
example, a learner who understands the principle of inertia probably
also understands the foundational concepts of “velocity” and “force.”
Next, we describe three types of edges in our hypothetical DM and
present some example resources and techniques for inferring such
relations. However, as with node attributes, we see this as an open
research question.

First, simple edges indicate the extent to which nodes are related,
without specifying the type of relation. Weighted edges represent-
ing the strength of concept relations can be derived using a large
corpus and a co-occurrence statistic (e.g., pointwise mutual informa-
tion). Second, directed edges capture prerequisite relations between
concepts. For example, edges can represent that understanding
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“concept B” usually requires prior understanding of “concept A.”
Inferences to foundational concepts for understanding “lift” might
derive from frequent use of “fluid” and “force” within text passages
that introduce “lift” (e.g., definitions, summaries, introductory ma-
terials). Knowing prerequisite relations helps the system do three
things: make inferences about the learner’s preparation for learn-
ing a concept; recommend resources based on prerequisite con-
cepts; and propagate evidence about what the learner knows (e.g.,
a learner who knows B likely knows prerequisite A). Prior research
has proposed techniques for automatically predicting prerequisite
relations between concepts from educational materials [25, 33, 43].
These techniques may provide a starting point for implementing
this component of the DM. Finally, edges may encode information
about nodes that are frequently learned in conjunction. This is
particularly important for concept learning. Concepts exist within
a greater context and are often defined by their relation to other
concepts, such as similarities and differences. For example, the con-
cept of “velocity” is often differentiated from “speed.” Such relations
could be mined from textual corpora by considering concepts that
are frequently compared and contrasted.

Generally, the DM supports the system as a whole by providing
the structure and content of essential information needed by various
models. Prior work in SAL has introduced the idea of manually
generated topical outlines [9]. Our framework extends this idea by
proposing automatically generated relationships among concepts
contextualized by the assignment, as we discuss further below.

4.3 Corpus Model (CM)
The CM has three main tasks. First, it segments the corpus into
units of analysis smaller than the document level, such as sections,
paragraphs, tables, figures, examples, images, and videos. Second,
the CM maps units in the corpus to nodes in the DM by identi-
fying all the locations in the corpus that mention a node. This
mapping process is analogous to entity-linking. A wide range of
possible approaches to this task have been developed (see Reinanda
et al. [39] for a review). Finally, the CM characterizes units in the
corpus by automatically generating document features that convey
important characteristics that support learning. Examples include
the document reading level, source information (bibliographics),
degree of explicit structure (e.g., text density), the presence of visual
information, and content characteristics such as “objective” versus
“subjective.” Identifying these characteristics and their value in sup-
port of learning are open research questions (see for example [3]),
and evidence from the learning sciences provides additional starting
points supported by learning theory.

4.4 Assignment Model (AM)
Undergraduate assignments are often difficult to parse [5, 19], re-
quiring significant inference from the content of lectures, labs, and
other learning experiences. The AM seeks to leverage assignment
texts in two ways. First, it detects explicit task attributes found in
the assignment and infers missing attributes. Second, it uses infor-
mation from the DM to contextualize the assignment with respect
to target and prior knowledge, possible paths for completing the
assignment, and the characteristics of resources likely to be helpful
in completing the assignment.

Initially, the AM assesses an assignment to identify target knowl-
edge (concepts to be learned) and a set of explicit assignment at-
tributes such as work products (e.g., essay, notes), learning ob-
jectives (e.g., evaluate, summarize), and resources (e.g., references,
links). Target knowledge and assignment attributes encode informa-
tion that helps the AM predict the structure of possible subtasks for
the assignment. Where explicit attributes are missing or ambiguous,
they are inferred using a language model for assignments within
the domain and existing learning frameworks such as [4]. If the as-
signment lacks explicit learning objectives (as many do [5, 19]), the
AM infers them. Where an assignment involves student selection of
their own topic, such as in expository writing courses, the system
infers learning objectives with respect to the domain of expository
writing, which includes constructs such as topic development. Also,
while assignments often contain an explicit description of the final
work product to be submitted for a grade, interim products may
also be inferred from the task structure.

Next, starting with nodes representing target knowledge in the
DM, the AM generates a graph for the assignment domain, the
assignment graph, which contextualizes the assignment within the
applicable DM (see section 4.2, above). Two weights are generated
for each node. Prior-knowledge weights use learning complexity and
other data to estimate the probability that an average student will
understand the concept before starting the assignment. Learning
weights estimate the probability that the concept will be understood
if the assignment is completed successfully. Nodes dependent on
target knowledge also contextualize the assignment with respect to
upcoming learning of concepts that depend on the target. The AM
then associates node concepts with applicable attributes from the
DM such as information utilities (see section 4.2, above). Finally,
the AM associates the assignment attributes with nodes in the as-
signment graph. The resulting final graph represents task structure
for the assignment, generally as a set of subtasks with attendant
learning goals, work products, and information utilities.

In our running example, the first assignment in the physics class
is vague and open-ended. It states: The purpose of this assignment
is to explain the phenomenon of lift in an essay focused on concepts
covered in the course so far (see the list below). Discuss how the
concepts explain lift, and be sure to use evidence and logic to show
how the concepts are related. See chapter 3 of your text.

Here, the target knowledge “lift” is explicit, as are the other con-
cepts in the list (not shown). While no explicit learning objectives
are found, the assignment includes general goals using the verbs
“explain” and “show.” From the target concepts and the extracted
verbs, the AM generates the learning objective, “Show how princi-
ples explaining lift are related.” Finally, the AM identifies “essay”
as an explicit work product, the referenced chapter 3 as an explicit
resource, and infers “notes” as an interim product.

Next, the AM uses the physics DM to generate the weighted
assignment graph (see Figure 3). The graph contains subtopic struc-
ture, with two subtopics, one for “Bernoulli’s principle” and the
other for “Newton’s 3rd law.” The edges also suggest possible paths
through topics. For example, understanding of “pressure,” “veloc-
ity,” and “fluid” is required to understand Bernoulli’s principle. The
AM then generates prior-knowledge weights predicting that aver-
age students have only intuitive knowledge of some foundational
concepts (not depicted), and no knowledge of Newton’s laws or
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Figure 3: Example assignment subgraph for “lift”.

Bernoulli’s principle. Learning weights predict that all concepts in
the graph will be understood with successful completion of the as-
signment. The AM then associates the assignment graph nodes with
information utilities from the DM, including a utility for the refer-
enced textbook chapter. For example, summary textual materials
have the highest utility for foundational concepts, while animated
visual simulations have the highest utility for learning Bernoulli’s
principle. Finally, the AM associates assignment attributes with
nodes on the graph, including inferred work product “notes” and
the learning goal “explain” for both subtasks.

4.5 Learner-domain model (LDM)
The LDM combines information from the LP with information
about a single domain of study. The LDM instantiates itself with
an initial estimation of a learner’s knowledge in the domain, then
updates that representation as the student continues to learn in
the domain. The LDM also maintains a record of the student’s
personal information utilities for learning resources in the domain.
These functions occur at different moments and frequencies, with
instantiation occurring once for a domain, and updates occurring
each time the learner completes an assignment within the domain.

When a student begins the first assignment in a new domain, the
LDM estimates what the learner already knows within the domain.
To do this, the LDM uses the relatively static data in the student’s
LP and the average prior-knowledge weights from the AM. With
these data, the LDM creates a weighted learner graph that estimates
the learner’s knowledge in the domain by adjusting the initial AM
weights to represent the probability that this learner understands
each node concept. In our running example, Alex’s profile indicates
successful completion of a preparatory physics course. For the “lift”
assignment, the AM predicts that average students have no prior
knowledge of Newton’s 3rd law. The LDM instantiates itself by es-
timating Alex’s knowledge of each concept in the AM’s assignment
graph. The resulting learner graph weights reflect the likelihood
that Alex has some prior knowledge of Newton’s 3rd law. During
instantiation, the LDM also adjusts information utilities for nodes
in the graph, for example, predicting that because Alex has low
reading skills, utility will be highest for introductory texts with an
easy reading level.

After instantiation, the LDM is updated every time an assignment
is completed in the applicable domain. After each assignment is com-
pleted, the LDM uses learning estimates from the just-completed
LAM (see Section 4.6 below) to revise the prior weights in the
learner graph. The LDM also updates the learner’s prior informa-
tion utilities using utility estimates from the LAM. In our example,

when Alex completes the “lift” assignment the LAM estimates that
they understand Bernoulli’s principle, Newton’s 3rd law, lift, and
related concepts. The LDM thus increases the weights on these
concepts in the learner graph and propagates knowledge increases
to related nodes. Additionally, the LDM updates Alex’s personal in-
formation utilities for physics resources. The utility estimates from
the LAM reflect Alex’s engagement with resources while working
on the assignment, as discussed in Section 4.6 below. In this manner,
for each subsequent assignment in physics, Alex’s LDM is updated
to reflect knowledge gains and changes in personal information
utilities.

4.6 Learner-assignment model (LAM)
The LAM contextualizes the AM, representing one learner working
on the assignment. After instantiation, the model is updated every
time the learner completes a work session on the assignment. Thus,
between task sessions the model estimates the learner’s knowledge
state and information utilities, while also tracking progress on
assignment subtasks and products. Below, each function is discussed
in turn, including derivation of initial values, updates to values, and
how these relate to other models. Here we assume the assignment
is not the first one for the domain. Of course, there are likely to be
complex interdependencies among information utilities, changes
in knowledge, and task progress, but we do not speculate on those
dependencies. Rather, we provide very general examples of possible
associations between these factors and outcomes of interest. We
argue that these interdependencies comprise open and important
research questions.

Knowledge state. The LAM maintains an updated representation
of the learner’s prior knowledge and the target knowledge to be
gained while completing the assignment - the learner-assignment
graph. The goal is to help the RM prioritize resources needed to
close the gap between prior and target knowledge as work contin-
ues on the assignment. Like the AM (see section 4.4 above), the
graph has weights on each node, here representing the learner’s
prior knowledge (prior knowledge weights) and the assignment
target knowledge (learning weights). Prior-knowledge weights are
instantiated using the prior-knowledge weights from the learner’s
LDM, while learning weights from the AM are retained without
adjustment. Both sets of weights are then used to generate features
values passed to the RM for use with the first query of the first
task session. After instantiation, updates to the knowledge repre-
sentation derive from estimates provided by the RM at the end
of a work session (see section 4.7 below), when the LAM updates
its prior-knowledge weights to reflect estimated learning in the
just-ended session. With respect to our running example, when
Alex completes a work session on the “lift” assignment, the RM re-
turns values indicating a high likelihood that Alex now understands
“fluid” and “force.” The LAM updates its prior-knowledge weights
on these concepts in preparation for their next work session on the
assignment.

Utility estimation. Different types of information resources have
varying levels of usefulness for learners, depending on a learner’s
profile and prior knowledge in a domain, as modeled by the LDM.
The LAM estimates these utilities specifically for this learner work-
ing on this assignment. The estimates comprise a set of feature
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values passed to RM at the beginning of each assignment task ses-
sion, where one or more features describe each resource type (see
section 4.7, below). Before the first work session on the assignment,
the LAM instantiates itself with estimates based on average utilities
found in the AM,which the LAMupdates using the learner’s current
personal utility estimates for the domain, found in the applicable
LDM. In our physics example, the AM predicted that for average
students, summary textual materials would have high utility for re-
view of foundational concepts. For Alex, who has low reading skill,
the LAM reduces utility estimates for summary text and increases
utility estimates for animated visual simulations. After instantia-
tion, updates to LAM utilities derive only from data provided by
the RM, as detailed in section 4.7 below. Thus, in preparation for
the start of a subsequent work session on the assignment, the LAM
updates its prior utility estimates to reflect the just-ended session.
In our example, Alex experiences very low utility from written
text during the most recent session, so the LAM further reduces
its estimated utility for text and increases the estimate for visual
resources, which had more utility for Alex. When the next work
session begins with a new query, the RM uses Alex’s now-updated
prior utilities from the LAM to favor resources likely to be useful
to Alex for this assignment.

Task structure. The LAM also serves to track a learner’s path
along predicted possible subtask paths in the learner-assignment
graph. This task structure is instantiated using the assignment
graph and task attributes found in the AM. The resulting represen-
tation of the task generates initial feature values, which inform the
RM of the characteristics of the learning task likely to be underway
at the beginning of the first session. As with utilities and knowledge,
the LAM’s initial model is updated at each session break. Here the
LAM obtains descriptions of work products directly from the BM
(see section 4.8 below). For example, at a session break, observations
made by the BM result in a prediction that Alex wrote “notes” on
several concepts. Using these estimates, the LAM updates its repre-
sentation of the task to reflect Alex’s work products for subtasks
related to these concepts. It then records the status of predicted
work products, estimates progress on predicted subtasks, and adds
unpredicted products. These data, along with the adjusted learning
weights, are then used to model possible new subtasks and concept
areas for the next task session. Finally, the LAM generates values
on task-related features for use by the RM in the first query of the
next session.

4.7 Retrieval Model (RM)
The goals of the RM are to retrieve information that is both rel-
evant to the target knowledge of an assignment, and that allows
the learner to leverage their prior knowledge while favoring re-
sources consistent with their information utilities in the domain.
We have chosen to frame the RM as a learning-to-rank (LTR) model.
Generally, LTR algorithms use features that characterize the query
(e.g., length), the document (e.g., clickthrough rate), and the query-
document pair (e.g., BM25 score). For the learning tasks we are
modeling, input features also capture characteristics of the individ-
ual learner (e.g., prior knowledge) and their learning objective (e.g.,
understand a concept). LTR algorithms can exploit useful feature
interactions, accounting for the effects of one feature on others,

which is essential in modeling the complex context of a unique
learner working on a specific assignment. LTR approaches can be
trained and updated using implicit feedback [22] such as scaled be-
havioral measures correlated with performance goals. The RM has
four main functions, which support the objectives of the framework
when generating a ranking.

Knowledge features. Because the RM favors information that
enables the learner to acquire the target knowledge and leverage
their prior knowledge to facilitate comprehension, the RM obtains
information from the LAM (see section 4.6 above). This information
is passed to the RM in the form of feature vectors that characterize
target knowledge (𝜙TK) and another that captures prior knowledge
(𝜙PK). These feature vectors take the form of probability values
over the node concepts. For 𝜙TK, high values indicate that the
learner needs to acquire knowledge about those node concepts.
Similarly, for 𝜙PK, high values indicate that the learner has high
levels of prior knowledge about those node concepts. To use this
information for ranking, the RM leverages information from the
CM, which associates each document or information unit with node
concepts. Let𝜙D denote a vector of probabilities that map document
𝐷 to nodes in the DM. In this respect, the RM generates features
that capture the extent to which document 𝐷 contains information
relevant to the learner’s target knowledge (i.e., sim(𝜙D, 𝜙TK)) and
their prior knowledge (i.e., sim(𝜙D, 𝜙PK)). Using these two types of
similarity features, the RMwill favor documents that are both novel
and understandable. We have proposed an approach that explicitly
models the similarities between 𝜙D and 𝜙TK and between 𝜙D and
𝜙PK, however, alternative solutions pertain.

Information utilities. The RM is also responsible for favoring
content that is consistent with the information utilities inferred
by the LAM. As previously mentioned, information utilities are
influenced by characteristics of the individual learner (e.g., reading
level) and their current objective (e.g., to understand a concept).
Information utilities are passed from the LAM to the RM in the form
of a feature vector (𝜌IU). While 𝜌IU can take different forms, one
alternative is for 𝜌IU to contain probabilities over a predefined set
of resource attributes (e.g., reading level, visual content, examples,
etc.). Here, a high probability indicates that the learner is likely
to benefit from information with those characteristics. To use this
information for ranking, the RM leverages information from the
CM, which characterizes each document and information unit in
the corpus along a set of dimensions. Let 𝜌D denote a vector of
probabilities that characterize document 𝐷 along the same set of
predefined characteristics. Same as above, the RM can generate
features that capture the extent to which document 𝐷 matches the
information utilities from the LAM (i.e., sim(𝜌D, 𝜌IU)).

Task context. In addition to features on target knowledge, prior
knowledge, and information utilities, the RM also uses features
about the learner’s current task in the context of the assignment,
derived from the LAM. This informationmay include characteristics
of the current subtask (e.g., goal and knowledge type), as well as the
stage of completion. Both factors are likely to influence the types of
information that will benefit the learner. To illustrate, if the current
subtask involves the learning objective “understand,” the learner
may benefit from definitions and examples. On the other hand, if it
involves the learning goal “compare,” the learner may benefit from
multiple perspectives. In terms of task stage, during the beginning
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stages of the task, the learner may benefit from isolated units of
knowledge such as definitions, while in later stages information
situating concepts in a larger context (e.g., concept comparisons)
may be more useful. The RM is responsible for tailoring the search
results based on these contextual factors. To this end, these task
attributes from the LAM can be added directly as input features in
the LTR model. By exploiting feature interactions, the LTR model
can learn to use these contextual cues to favor documents or infor-
mation units with certain characteristics, captured in 𝜌D for each
document 𝐷 .

Updating knowledge states, utilities, and task context. Finally, at
the end of the search session, the RM (with the help of the BM)
is responsible for updating the LAM with respect to the learner’s
knowledge state, information utilities, and the current subtask.
Specifically, the RM and BM work together to infer the knowledge
acquired during the search session, the characteristics of resources
the learner successfully engaged with for the purpose of learning,
and the extent of progress made during the current subtask. As de-
scribed next, the BM makes these inferences based on the learner’s
interactions on the SERP, reading activities on pages and documents
viewed, and writing activities.

4.8 Behavior Model (BM)
The goal of the BM is to observe the learner’s interaction with
learning and information resources to estimate the level and qual-
ity of engagement for the prediction of information utilities and
comprehension. The model has four elements that form a fast and
dynamic unit that provides information for the RM at each query
iteration. The units include a reading component, a writing compo-
nent, a information utility model, and a vocabulary model. These
components are reinitialized for each SERP generated during a ses-
sion. The BM also has a less dynamic element that stores persistent
information about work products engaged during an active session.
The technologies and modeling that underlie these hypothetical
components are active research areas within SAL [7, 51, 52, 56] and
other communities [21, 30, 36, 38].

Using psychophysical instrumentation of engagement (eye/tracking,
mouse movement, keystrokes), the reading component observes
visual attention and the writing component classifies work prod-
ucts. The reading component classifies visual attention as to type
(e.g., skim, scan, read) and difficulty level (e.g., struggling) to esti-
mate a probability of comprehension for engaged resources. The
writing component classifies digital work products produced or
engaged during interaction (e.g. note, code, calculation) and the
type of effort used during engagement (e.g., copy/paste, draft, edit).
Both components also observe engagement with vocabulary to
track terms engaged during reading and writing. These data are
passed to the vocabulary model. The two components continue
observation throughout interaction with each individual SERP and
open document.

When a new query is submitted, the BM uses accumulated data
from the reading and writing components to estimate information
utilities and the learner’s understanding of concepts. The utility
model uses data from both components to derive a utility estimate
for each resource type engaged during the period. The vocabulary
model uses behavior and vocabulary data from both components

to estimate a probability that the learner understands the concepts
engaged. Feature values expressing utility estimates and concept
knowledge are then generated for use by the RM for the new query.

In our running example, the BM observes Alex’s behavior with
opened documents: scanning an academic article and closing it;
scanning the top figure in a web page; rapidly scrolling and scan-
ning several blocks of text in an advanced physics textbook; and
finally reading for comprehension in an introductory physics text-
book, where Alex begins by skimming, then returns to the top to
read through sections discussing “flow deflection” before giving
extended attention to a page of figures. Here Alex uses visual at-
tention indicative of the intention to read for comprehension (i.e.,
not skimming) where there is little evidence of difficulty (e.g., no
excessive fixations or regressions). Alex then switches to writing
notes on “Newton’s 3rd law” before submitting a new query. The
BM then predicts that academic articles and advanced texts have
low utility for Alex, and introductory texts and figures have high
utility. It also estimates that Alex understands the concept of “flow”
as it relates to “Newton’s 3rd law.” As mentioned above, before re-
trieval for the new query, the RM uses values from the BM to update
its prior feature values on Alex’s utilities and concept knowledge.
Retrieval for the new query will demote resources with lower utility
and promote the more useful resources. The next retrieval will also
reflect the prediction that Alex understands the concept of flow as
it pertains to “lift” and “Newton’s third law.”

In addition, the writing component of the BM classifies attention
and effort given to work products during the session. As new or
existing products are engaged during a session they are identified
and classified by type. As the session continues, writing effort is
periodically quantified and classified or reclassified for each product.
At session termination, final values for each product are available
to the LAM for updating task structure and progress, as described
above in section 4.6 above.

5 SUPPORTING REFLECTIVE LEARNING
Above, we have outlined how our proposed models can leverage
knowledge about the student, the domain, and the assignment
with the goal of facilitating the student’s comprehension and pro-
ductivity. Because the LAM maintains information about target
knowledge, knowledge state, information utilities, and task fea-
tures, we also propose that this information be used to generate
interface features, with the goal of assisting the learner in their
broader learning task. Below, we propose six ways the framework
might support learning.

Explanations. Information in the LAM may be used to provide
explanations about why particular resources are recommended.
For example, a student might start their assignment by querying
“how does Bernoulli’s principle explain lift?” The RMmight present
results about these concepts, but also include results about the foun-
dational concepts of “pressure” and “velocity” if the LAM predicts
that the learner has little prior knowledge. To make it clear why
these these concepts are included, the system could provide short
explanations such as “Why recommended: understanding pressure
is a key part of understanding lift.” The explanations could also help
students understand how the document might be useful to their
specific context. For example, each result on a SERP might display
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a short annotation such as “has clear diagrams,” “describes starting
points,” and “recommended because you know calculus.”

Learning maps. The DM provides a rich source of information
that could be used to show the learner a concept map for a domain.
This process could visualize the important concepts in the domain,
how concepts are related, which concepts are prerequisites for
others, and clusters of concepts that are frequently learned together.
The map could help learners understand their learning trajectory
and visualize their current status relative to learning goals. For
example, the map could color-code relevant nodes in the LDM
to indicate the system’s current representation of the learner’s
knowledge in the domain.

Feedback and Guidance. Both the BM and DM contain informa-
tion possibly useful as feedback to learners, including queries en-
tered, results examined, and progress made on the assignment. For
example, the BMmight indicate that the learner is using documents
with a high domain-specific reading level and provide feedback
suggesting engagement with introductory texts. The system could
provide suggestions on next steps (e.g., concepts, work products).
These types of feedback and suggestions could be integrated into
the dashboard and also displayed as direct feedback on SERPs.

Reflection dashboard - SRL. Dashboards can help users reflect
on their plans for working on an assignment [11] and their search
interactions [6]. Information from the LAM could be used to provide
displays to help learners consider the resources they will use, track
progress on assignments, and reflect on their learning. Specifically,
it could provide evaluative information about engagement with
resource types (e.g., reading articles, skimming websites), use of
resources (e.g., number and types of resources engaged), and the
level and types of engagement while writing (e.g., amount pasted
in, concepts noted). Interactive elements could express the model’s
current representation of the learner’s progress on an assignment,
with the option of the learner adding explicit plans and progress
reflections.

Reflection dashboard - learning. We also see opportunities for
the system to leverage its models of the domain, assignment, and
learner’s behaviors to help the learner reflect on the concepts
they’ve engaged, how well they understand those concepts, and
how the concepts are related. The emphasis here is on information
that facilitates reflection rather than questions focused on validating
memory of knowledge. For example, “How confident are you that
you understand lift?” encourages reflection and self-judgement of
learning. Questions like “What are the key concepts in lift?” check
memory for facts. Both types of questions have important roles but
we argue the proposed framework is well-situated for reflection dur-
ing the learning process. Prior research has explored methods for
reflection and shown that presenting users with system-generated
questions that facilitate reflection can have positive impacts for
low-knowledge learners [51].

6 DISCUSSION AND CONCLUSION
Having contemplated our design at length, we are left with the
question of how an operational system could be developed col-
laboratively. There is precedence for large “moonshot” projects,
but success will more likely come from an incremental approach.
This raises questions on development priorities, scale, and scope.

Domain-related prototyping efforts such as for the CM, DM, and
AM, can be constrained by starting with relatively limited and sim-
ple domains. Other efforts are dependent on collaboration in the
learning sciences. For example, advances in behavior models for
reading comprehension and writing output are likely to progress
more rapidly when aligned closely with theory development in
these areas. We envision a tight coupling between domain-related
models and behavior models for the inference of knowledge gain.
The approximation and representation of knowledge gain is thus
dependent on progress in these two general areas. In our design,
a sufficiently accurate model of knowledge gain is necessary for
modeling learning progress, and subsequent refinement of all the
models to optimize for learning outcomes. The payoff, of course,
is the opportunity for longitudinal study of learning outcomes at
scale, where the effects of multiple factors may be observed. We
argue that SAL research can be advanced by alignment of research
questions with this set of goals.

In this paper, we have argued for a view of SAL that embeds
searching within a larger view of the learning process. Our goal
is to motivate research questions that center on facilitating com-
prehension for undergraduate students undertaking assignment
work-tasks known to the system. The proposed framework provides
a rough approximation for the types of functionality that might
enable such an approach. We have presented examples of possible
techniques and data sources for each model, and identified areas
where key research is needed to produce effective models. We have
introduced the novel concept of leveraging school assignments as
rich task context, as well as a novel framework for constructing an
end-to-end system for SAL.
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