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Abstract
Working memory (WM) is involved in high-level cognitive tasks
such as comprehension, reasoning, and learning. Search and sense-
making (SSM) is no exception—a wide range of (meta)cognitive
activities are involved in the process of making sense of a complex
topic by gathering information. Prior studies have found that WM
can influence search behaviors, perceptions, and outcomes. How-
ever, little work has been done to gain insights into how WMmight
affect the SSM process. We report on a lab study (𝑁 = 44) in which
participants were binned into low- and high-WM groups. During
the study, participants were asked to learn about a complex and
multifaceted topic by gathering information using a web search
engine and taking notes. After the search session, participants were
asked to produce a summary of everything they learned. The study
investigated four research questions. RQ1 and RQ2 investigate the
effects of WM on post-task perceptions and search behaviors. RQ3
investigates the effects of WM on the extent to which participants
engaged in specific search, sensemaking, and cognitive activities.
To address RQ3, the study used a think-aloud protocol. Search ses-
sions (i.e., recorded actions and think-aloud comments) were then
analyzed using qualitative techniques. Finally, RQ4 investigates the
effects of WM on learning outcomes. Our RQ4 results found that
high-WM participants had better learning outcomes. Our RQ2 and
RQ3 results point to possible reasons why. Despite differences for
RQ2-RQ4, there were no differences in post-task perceptions (RQ1).
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1 Introduction
Our research in this paper lies at the intersection of two areas of
research: (1) the effects of working memory and (2) search and
sensemaking.

Working memory (WM) refers to an individual’s ability to main-
tain and manipulate information in memory, when it is no longer
perceptually present. Outside of interactive information retrieval
(IIR), studies have found that WM plays an important role in many
higher-level cognitive tasks, such as reading [9, 15, 19], compre-
hension [33, 51], logical reasoning [16], and attentional control [6].
IIR studies have also examined the effects of WM on search behav-
iors, and outcomes. For example, studies have found that high-WM
searchers tend to exhibit greater effort [12, 23] and achieve better
outcomes [35, 43], especially during complex search tasks.

Sensemaking involves making sense of experiences, situations,
or topics. Different models have been proposed to characterize
sensemaking processes [25–27, 40]. At a high level, sensemaking
involves: (1) developing a representation of a topic; (2) encoding
information into the representation; and (3) modifying the repre-
sentation when information does not fit into it or when aspects
of the representation become less useful. Zhang and Soergel [52]
proposed a comprehensive model of sensemaking, drawing on lit-
erature on task-based information seeking and acknowledging the
importance of information search activities in sensemaking pro-
cesses. In our study, we use the term “search and sensemaking”
(SSM) to highlight both aspects of sensemaking. This delineation
can be particularly helpful when the primary task involves learning
about a complex topic through searching for information online.
To our knowledge, prior studies have not investigated the role of
WM in the SSM process.

We report on a lab study that proceeded in two phases. Dur-
ing Phase 1, 60 participants completed a working memory task to
measure their working memory capacity. Forty-four participants
with the most extreme scores were invited to participate in Phase
2 and were binned into low- and high-WM groups (22 per group).
During Phase 2, participants completed a complex SSM task by
gathering information using a web search engine and taking notes.
Specifically, participants were asked to learn about the “gut-brain
connection”, a complex topic that involves many facets and per-
spectives. To gain deeper insights into the role of WM during the
SSM process, the study used a think-aloud protocol. Think-aloud
comments and recorded screen activities (i.e., search, reading, and
note-taking activities) were analyzed using qualitative techniques.
After completing the SSM task, participants were asked to produce
a written summary of everything they learned.
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The study investigated four research questions, which compared
dependent variables between low- and high-WM groups:

• RQ1:What are the effects of working memory on participants’
post-task perceptions?

• RQ2:What are the effects of working memory on participants’
search behaviors?

• RQ3: What are the effects of working memory on the extent to
which participants engaged in specific search, sensemaking, and
other cognitive activities?

• RQ4:What are the effects of working memory on participants’
learning outcomes?

Our results found several important trends. First, high-WM par-
ticipants had greater knowledge gains. Second, high-WM partici-
pants exhibited different search behaviors—they had fewer aban-
doned queries, spent less time searching, and spent more time read-
ing pages and taking notes. Third, low- and high-WM participants
had different levels of engagement in specific SSM and cognitive
activities. For example, high-WM participants were more active in
evaluating the relevance of information based on their goals and
monitoring their progress.

Our study enhances our understanding of the cognitive mecha-
nisms involved in the SSM process through the lens of WM. Our
findings can inform the design of search interfaces that support
individuals with diverse cognitive profiles by encouraging and sup-
porting specific SSM and cognitive activities, which in turn may
improve learning outcomes.

2 Related Work
2.1 Working Memory
Working memory (WM) refers to an individual’s ability to maintain
and manipulate information in memory, even when the informa-
tion is not perceptually present. WM involves holding relevant
information in memory while processing or working with the same
information (e.g., solving a math problem) or different information
(e.g., recognizing connections between newly and previously en-
countered information). In this respect, WM is critical for making
sense of anything that unfolds over time. WM is considered a core
executive function (EF), and overlaps conceptually with other EFs
(e.g., inhibition, updating, and shifting) in that they all relate to at-
tentional control [10, 41]. That is, WM is involved in an individual’s
ability to direct their attention to relevant information while sup-
pressing distractions, prioritize information most pertinent to the
current goals, and redirect their attention as needed. Such cognitive
processes are characterized as top-down, goal-driven, voluntary,
and highly effortful [18].

A substantial body of literature has investigated the effects of
WM on various cognitive tasks. Several studies have found cor-
relations between WM capacity (measured using a reading span
task) and measures related to reading comprehension, such as re-
membering facts, detecting semantic inconsistencies, and resolving
pronouns [9, 15, 19]. Other studies have found that demands onWM
can impact an individual’s ability to integrate information from dif-
ferent parts of a text [33, 51]. Additionally, De Neys et al. [16] found
thatWM plays a central role in logical reasoning (e.g., by facilitating
the retrieval of counterexamples from long-term memory). In terms

of learning, Sanchez and Wiley [42] found that high-WM partici-
pants were less susceptible to the influence of seemingly interesting
but irrelevant information. Banas and Sanchez [6] found that high-
WMparticipants outperformed low-WMparticipants in recognizing
and retaining relationships between interconnected concepts when
learning in a wiki-like environment, where information about dif-
ferent concepts is dispersed across multiple documents. Overall,
the underpinning role of WM in high-level cognitive tasks is by
sustaining attention, resisting distractions, and integrating distinct
pieces of information over time [24].

2.2 Working Memory & Search
Studies have investigated the effects of WM on search behaviors
and outcomes. Sharit et al. [43] had participants aged 60-85 com-
plete search tasks of varying complexity. WM was a significant
predictor of task performance for complex tasks. Gwizdka [22] had
participants complete simple tasks that required finding a fact and
complex tasks that required finding a set items matching certain
criteria. Results found an interesting interaction effect. During sim-
ple tasks, high-WM participants were more efficient—issued fewer
queries, opened fewer documents, and took less time. However,
during complex tasks, high-WM participants exhibited more effort,
possibly because low-WM participants satisficed. Gwizdka [23] had
participants complete search tasks in the medical domain and take
notes. Based on eye-tracking data, high-WM participants spent
more time reading pages, particularly toward the end of the search
session. Additionally, high-WM covered a wider range of topics in
their notes.

Choi et al. [12] conducted a study in which participants com-
pleted decision-making tasks of varying complexity. Tasks involved
comparing a specific set of alternatives along a set of dimensions.
Simple tasks involved two alternatives and two dimensions, and
complex tasks involved four alternatives and four dimensions. Dur-
ing each task, participants were asked to choose an alternative
and write a justification. High-WM participants exhibited greater
effort—issued more queries, clicked on more results, interacted at a
faster pace, and wrote longer justifications. The effect on the justifi-
cation length was more pronounced for the complex task. WM did
not influence participants’ perceptions of workload or satisfaction.

Arguello and Choi [3] had participants interact with two ag-
gregated search interfaces that combined results from different
verticals (web, images, news, shopping, video). One interface had a
fixed layout and organized results by vertical. The other was more
dynamic and visually cluttered. Low-WM participants reported
similar levels of mental demand with both interfaces. However,
high-WM participants reported lower mental demand with the
fixed-layout interface, possibly because they internalized the layout
and directed their attention to relevant verticals.

Choi et al. [11] conducted a study in which participants inter-
acted with two tools to save information. An experimental tool
enabled participants to create “boxes” representing topics and to
drag-and-drop passages from a page into specific boxes. A base-
line tool only allowed participants to drag-and-drop passages into
a list that could not be (re-)organized. In terms of search behav-
iors, regardless of the tool, high-WM participants issued queries
targeting a broader range of topics. With the experimental tool,
high-WM participants had more abandoned queries, suggesting
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that they were more deliberate and selective with the information
they saved. In terms of perceptions, with the baseline tool, low-WM
participants reported greater difficulty in deciding when they had
enough information to complete the task, possibly because they
could not organize the information by topic.

Studies have also considered the effects of WM on learning dur-
ing search, with mixed results. Bhattacharya and Gwizdka [7] asked
participants to learn about a medical subject. Participants were
asked to list topically relevant terms before and after searching,
and knowledge gains were measured based on the increase (and
complexity) of terms listed. WM had no significant effects on knowl-
edge gains. In contrast, Pardi et al. [35] asked participants to learn
about a scientific subject. Learning was measured by counting the
number of relevant concepts included in essays written after the
search session. WM had a positive and significant correlation with
the number of concepts included.

Research has also studied the search behaviors of dyslexic users.
While dyslexia is a heterogeneous condition, it is associated with
deficits in WM capacity [44, 46]. MacFarlane et al. [29] observed
that non-dyslexic participants viewed more documents and judged
a greater percentage as non-relevant, suggesting they were more se-
lective. MacFarlane et al. [30] found that dyslexic participants were
more likely to revisit previously viewed information. Morris et al.
[32] studied the challenges of dyslexic searchers through interviews,
a survey, and a lab study. Interview and survey responses found
that dyslexic searchers prefer content with less clutter, shorter sen-
tences, and more structural elements such as lists and tables. In
the lab study, participants were asked to rate webpages along di-
mensions of understandability. Ratings from dyslexic participants
were less positive. Fourney et al. [21] compared relevance judg-
ments from dyslexic and non-dyslexic participants, and found that
judgments from non-dyslexic participants were more bimodal (i.e.,
either highly relevant or highly non-relevant).

2.3 Search and Sensemaking
The current study builds on the sensemaking literature as devel-
oped in the field of human-computer interaction (HCI). Russell
et al. [40] led the adoption of sensemaking theory from the fields
of communication and library and information science [17] into
the HCI field and developed a conceptual model of sensemaking.
In their case study, they observed that participants engaged in an
iterative process of generating and revising schemas using a knowl-
edge representation tool as they tried to make sense of complex
information. They identified three main phases in the sensemaking
process: schema generation, data coverage, and representational
shift. During the schema generation phase, people create repre-
sentations to capture salient aspects of the task. During the data
coverage phase, people search for task-relevant information and
encode it into the existing representations. During the represen-
tational shift phase, people adjust the representations when they
encounter information that does not fit or when they decide that
parts of a representation are not useful.

Klein et al. developed the “data/frame theory” of sensemaking
[25–27]. A frame refers to an individual’s mental model of reality
and data refers to observations that inform or challenge a frame.
Frames determine which data are relevant and are modified when

they are inadequate in explaining new data. Frames can take vari-
ous forms, such as narratives or diagrams. Klein et al. identified six
sensemaking activities: (1) seeking, (2) elaborating, (3) questioning,
(4) preserving, (5) comparing, and (6) re-framing. Frame seeking
involves searching for and selecting a relevant frame to generate a
plausible explanation of a situation. Elaborating a frame involves
gathering information to refine or expand the frame. Questioning
occurs when the sensemaker identifies inconsistencies in data, and
preserving occurs when the sensemaker reinterprets the data to
maintain the integrity of the frame. Questioning a frame may result
in comparing with other frames and re-framing—altering or replac-
ing the frame to better fit the data. The concept of “frame” in their
theory is comparable to the concept of “schema” in psychology.

Zhang and her colleagues sought to extend existing sensemak-
ing models by integrating theories of cognition and learning. They
drew on learning theories related to schema [2, 5, 38, 49] to bet-
ter characterize the conceptual changes that occur during sense-
making. Additionally, they incorporated the dual-process model of
reasoning [4, 45] to describe the cognitive mechanisms involved
in sensemaking using terms like top-down (i.e., goal-driven) and
bottom-up (i.e., data-driven) processes. Based on an extensive liter-
ature review, the authors developed a “comprehensive model of the
cognitive process and mechanisms of individual sensemaking”[52].
This model was validated through a series of user studies [52–54].
Zhang’s work is particularly relevant to our research for two rea-
sons. First, their user studies were conducted in settings similar
to ours. In their studies, participants in a lab setting completed
complex information-seeking tasks and took notes. Search sessions
were recorded to determine situations where sensemaking occurs.
Second, their model describes search and sensemaking activities at
a concrete level, facilitating the direct observation of these activities.
In our work, we referred to their model [54] and the coding scheme
developed in Zhang and Soergel [53] to deduce observable search
and sensemaking activities in our data.

3 Methods
3.1 Study Overview
To investigate RQ1-RQ4, we conducted an in-person lab study that
proceeded in two phases. Phase 1 involved 60 participants and
Phase 2 involved 44 participants recruited from Phase 1. Phase 2
was the main phase of the study. Phase 1 helped us recruit partici-
pants for Phase 2 with different levels of WM capacity. Participants
were recruited through an opt-in mailing list of employees at our
university. The study was approved by our university’s Institutional
Review Board (IRB).

Similar to prior work [3, 7, 11, 12, 22, 23], participants in Phase
2 were binned into a low-WM group and a high-WM group (22
participants per group). All our analyses for RQ1-RQ4 focus on
differences between groups. We wanted these two groups to have
significantly different levels of WM capacity. To this end, during
Phase 1, 60 participants completed a working memory task called
the Operation Span (OSPAN) task (Section 3.2). The possibility
of not being invited to the second study phase was outlined in
our consent form and was verbally communicated by the study
moderator. All participants agreed to this condition. The Phase 1
session took about 10 minutes and participants were paid US$10.



CHIIR ’25, March 24–28, 2025, Melbourne, VIC, Australia Bogeum Choi and Jaime Arguello

Forty-four participants from Phase 1 participated in Phase 2.
Participants were recruited based on their OSPAN scores. Our initial
plan was to recruit the highest and lowest scoring participants from
Phase 1 as the high- and low-WM groups, respectively. However,
due to a few dropouts, the 22 participants in the low-WM group
originated from the lowest 23 scores and the 22 participants in the
high-WM group originated from the highest 25 scores.

Phase 2 involved a diverse participant sample. Thirty-four partic-
ipants identified as female, seven as male, and three as non-binary.
Their ages ranged from 18 to 65 (𝑀 = 23.98, 𝑆.𝐷. = 11.26). Twelve
participants were under the age of 20, 23 were in their 20s, 1 in
their 30s, 2 in their 40s, and 2 in their 60s. Participants included
32 student employees and 12 non-student employees. In terms of
highest educational degree attained, 27 participants reported hav-
ing completed a high school degree1, 1 an associate degree, 6 a
bachelor’s degree, and 10 a graduate degree.

3.2 Working Memory Task
To measure participants’ WM capacity, we used the Operation Span
(OSPAN) task [13]. During the OSPAN task, participants complete
a series of trials. During each trial, participants are presented with
a visual sequence of 3-7 words one at a time. After each sequence,
participants are asked to recall the words in the order they were
displayed from a 3 × 3 grid of words. Additionally, before each
word in a sequence, participants are presented with a simple math
problem and proposed solution (e.g., (8 x 2) - 8 = 9?). Participants
must indicate whether the proposed solution is correct or not. The
purpose of these math problems is to prevent participants from eas-
ily rehearsing the word sequence by engaging them in a secondary
information processing task. To ensure participants are sufficiently
engaged with the math problems, only OSPAN scores with greater
than 80% accuracy on the math problems are considered valid. All
of our participants met this requirement. A participant’s final score
is equal to the sum of lengths for those sequences perfectly recalled.

We obtained a wide range of OSPAN scores from Phase 1. OSPAN
scores for the 44 participants who participated in Phase 2 ranged
from 12-51 (𝑀 = 35.5). Participants in the low-WM group had
scores 12-31 (𝑀 = 24.5) and those in the high-WM group had scores
38-51 (𝑀 = 43).

3.3 Phase 2 Study Protocol
Phase 2 of the study involved the following sequence of steps. First,
participants completed a short demographics questionnaire. Then,
they watched a video that provided an overview of the study. To in-
vestigate participants’ search and sensemaking activities, the study
used a think-aloud protocol. The video instructed participants to
verbalize their thoughts as they worked on the task. Next, par-
ticipants were given a description of the main learning-oriented
search task (Section 3.4) and were asked to read it aloud. Following
this, participants completed a pre-task questionnaire about their
perceptions of the task (Section 3.5). Then, participants completed
the main search task. Participants were free to use any web search
engine to gather information and were provided with a Google

1Many of these participants were undergraduates employed part-time at our university
and working toward their bachelor’s degree.

Doc to take notes. The Google Doc also included the task descrip-
tion at the top. We used a Chrome Extension to log participants’
search behaviors. The main search task (i.e., screen activities and
think-aloud comments) was recorded. Participants were given 30
minutes to complete the main search task and were notified when
they had 5 minutes remaining. During the main task, the moderator
prompted participants to “please keep taking” if they were silent
for too long. After the main search task, participants were asked to
write an essay outlining “everything you learned during the task”.
Participants could not look at their notes while writing their essay
and were not given a time limit. Participants took 3-15 minutes
to write their essays. Finally, participants completed a post-task
questionnaire about their experiences (Section 3.5). The Phase 2
session took about 60 minutes and participants were paid US$30.

3.4 Search Task
Our study investigates the role of WM during a complex search and
sensemaking task. To this end, we designed a learning-oriented
search task with the following characteristics, inspired by charac-
teristics of exploratory search tasks as defined by Wildemuth and
Freund [50]: (1) the goal is open-ended, emphasizing learning; (2)
the topic is multifaceted; (3) the task is likely to require consulting
multiple sources; (4) the task involves uncertainty; and (5) the task
involves cognitive processes at the level of analyze or higher [1].

The task description was outlined as follows:
Scenario: You recently attended a guest lecture on the emerging

field of the gut-brain connection. The speaker explained the intri-
cate relationship between the gut microbiome and one’s physical
and mental health. After the lecture, you realize there is much more
to learn about the connection between your digestive system and
your overall well-being.

Objective: To the best of your ability, try to find out and learn
about the topic of the gut microbiome and an individual’s physical
and mental health. Potential sub-topics you can explore include but
are not limited to: What is the notion of “gut-brain connection”?
Through what mechanisms do gut microbiota influence one’s phys-
ical and mental health? What factors can influence gut microbiota?
What are some science-backed ways to improve your gut health?

In addition to having the five characteristics outlined above, we
chose the topic of the “gut-brain connection” because there is a
substantial amount of information on this topic as it has gained
popularity in the health and well-being sector, which is relevant to
many individuals. And yet, it remains not too well-known to the
general public and it involves topics of debate (i.e., uncertainty).

3.5 Questionnaires
Participants completed a pre- and post-task questionnaire before
the search task and after summarizing what they learned. In both
questionnaires, participants responded to agreement statements on
a 7-point scale ranging from strongly disagree (1) to strongly agree
(7). The full text of both questionnaires is available online.

Pre-task Questionnaire: The pre-task questionnaire asked
about: (1) interest (2 items), (2) prior knowledge (2 items), (3) mo-
tivation (2 items), (4) expected difficulty (3 items), and (5) a priori
determinability (5 items), which measures the extent to which as-
pects of the task (e.g., requirements, goals, strategies) are known

https://bogeumc.github.io/working-memory/
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in advance [8]. Except for the two motivation items, all groups of
items had high internal consistency (Cronbach’s 𝛼 > .80). There-
fore, responses were averaged to form composite measures for
interest, prior knowledge, difficulty, and determinability. The two
motivation items had lower internal consistency (𝛼 = .60) and were
therefore not combined.

Post-task Questionnaire: The post-task questionnaire was or-
ganized in three parts. First, participants were asked about the level
of satisfaction with their performance (4 items). Second, partici-
pants were asked about the level of cognitive load experienced.
Cognitive Load Theory (CLT) [34] argues that mental effort during
a learning task can be attributed to different sources. Intrinsic load
is attributed to inherent characteristics of the material to be learned
(e.g., the complexity of the topic); extraneous load is attributed
to the learning environment (e.g., distracting ads); and germane
load is attributed to the activities the learner engaged in during
the learning process (e.g., synthesizing information). The second
part of the post-task questionnaire asked about intrinsic load (5
items), extraneous load (3 items), and germane load (5 items). Fi-
nally, the last part of the post-task questionnaire asked about the
extent to which the participant engaged in different cognitive ac-
tivities: (1) planning (5 items), (2) monitoring their progress and
comprehension (4 items), (3) organizing information (3 items), and
(4) evaluating/adapting their approach to the task (5 items).

The groups of items for satisfaction, extraneous load, germane
load, planning, and organizing had high internal consistency (Cron-
bach’s 𝛼 > 0.70). Therefore, responses were averaged to form
composite measures for these constructs. The items for intrinsic
load, monitoring, and evaluating/adapting had lower internal con-
sistency (Cronbach’s 𝛼 < 0.70) and were therefore not combined.

3.6 Search Behaviors
To investigate RQ2, we used a Chrome extension to log search
events and computed the following behavioral measures:
(1) Number of queries.
(2) Number of abandoned queries (i.e., no clicks on the SERP).
(3) Average number of words per query.
(4) Number of distinct URLs visited.
(5) Completion time (minutes).
(6) Time on the SERP (minutes).
(7) Time on pages and notes (minutes).
(8) Number of queries not issued by others.
(9) Number of query terms not used by others.
(10) Number of URLs not visited by others.

Measure #6 captures the amount of time participants spent
searching. Measure #7 captures the amount of time participants
spent reading and taking notes. Participants often positioned the
landing page and their notes side-by-side and iterated between
reading and taking notes. Thus, we decided to use one measure to
capture time spent on both activities. Measures #8-10 capture the
extent to which participants adopted search strategies that were
different from other participants.

3.7 Qualitative Analysis of Search Sessions
To address RQ3, we conducted a qualitative analysis of search ses-
sions using the recorded videos, which included screen activities

and think-aloud comments. Qualitative codes were associated with
three categories: (1) search activities, (2) sensemaking activities, (3)
cognitive activities. Qualitative codes were developed by author
A1 using a combination of deductive and inductive coding [20, 31].
The deductive aspect involved including codes developed by Zhang
et al. [55] to characterize search and sensemaking activities. The
inductive aspect involved introducing new codes based on observa-
tions. New codes were related to cognitive activities associated with
working memory (e.g., participants making connections between
information encountered at different points in time). Next, we de-
scribe the coding process and then describe our code definitions.

Our qualitative analysis of search sessions involved the following
steps. First, author A1 converted each search session into a sequence
of codable units. Each session was represented as a spreadsheet
with three columns: (1) timestamp, (2) screen activity, and (3) think-
aloud comment (if any). Each row represented a codable unit. Not
every codable unit was assigned a code. For example, a codable
unit might describe the participant spending a long time reading
an article without making any comments. No code applied to this
activity. Second, after A1 transcribed every session and developed
an initial coding guide, authors A1 and A2 independently coded
sessions from two participants. Coding involved watching the video
of the search session and adding codes to codable units on the
corresponding spreadsheet. After this, A1 and A2 met to discuss the
coding guide, refine code definitions, and establish detailed rules
for when to apply each code. Finally, A1 and A2 independently
coded sessions from 5 new participants (11% of the data). Intercoder
reliability was measured for each code independently. In terms
of Cohen’s 𝜅, agreement was 𝜅 ≥ .885 across all codes, which is
considered “almost perfect” [28]. At this point, A1 re-coded the
initial 2 participants and coded the remaining 37.

Tables 1-3 describe our codes associated with search, sensemak-
ing, and cognitive activities, respectively. Several of our codes might
benefit from additional clarification. In terms of search activities,
we observed two types of querying behavior. Participants issued
queries that were heavily influenced by topics in the task description
(structure-driven) as well as topics encountered during the search
session (data-driven). Prior work suggests that sensemakers en-
gage in both top-down and bottom-up mechanisms [55]. Structure-
driven querying can be considered as a top-downmechanism, while
data-driven querying can be considered as a bottom-up mechanism.

In terms of sensemaking activities, instantiation and accretion
both involve adding new information into the current knowledge
structure in the participant’s notes. However, instantiation involves
elaborating on information that is already in the notes. Tuning
and re-structuring both involve modifying the current knowledge
structure in the notes. However, tuning is a gradual change (e.g.,
renaming a heading) and re-structuring is a more radical change
(e.g., splitting a heading into two).

In terms of cognitive activities, active maintenance refers to in-
stances where it is clear that the participant maintained information
active in memory. This may be evidenced by the participant relating
new information with previously found information or noticing
that two sources corroborate or contradict each other. Our coding
guide is also available online.

https://bogeumc.github.io/working-memory/
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Table 1: Search Activity Codes

Code Definition Example

Structure-driven
Query Formulation

The query is guided by (sub)topics mentioned in the
task description.

After reading the task description, the participant is-
sues the query “the gut-brain connection”.

Data-driven Query
Formulation

The query is guided by topics encountered during the
search session.

While reading an article, the participant issues the
query “the blood-brain barrier”.

Being Selective with
Source

The participant judges the usefulness of a source based
on factors such as credibility, reliability, or intended
audience. Alternatively, the participant issues a query
for a specific source (e.g., Wikipedia).

After clicking a search result, the participant says: “This
is too technical. I need something for lay people.”

Searching for Struc-
ture

The participant seeks information to get a high-level
overview of the topic.

The participant scans the table of contents of a book
on Amazon to understand how the topic is structured.

Table 2: Sensemaking Activity Codes

Code Definition Example

Gap Identification The participant identifies a gap in their knowledge. “I have no idea what the endocrine system is.”
Building The participant creates a structure in their notes. This

can take the form of adding headings, making a list of
topics, or starting a new paragraph.

The participant adds “how to improve gut health” as a
heading in their notes.

Semantic Fit The participant evaluates whether and how new infor-
mation meets their goals and/or fits into the current
structure in their notes.

While reading an article, the participant says: "Okay,
here is information on how to improve your gut health.”

Accretion The participant adds relevant information into their
notes.

Under the heading “Impacts on physical health”, the
participant adds a note “An abnormal gut microbiome
can affect the immune system”.

Instantiation The participants adds more detailed information to
their notes. This can take the form of adding lower-
level bullet points, adding examples to existing ideas,
or elaborating on previously recorded statements.

After noting that fiber-rich foods can improve gut
health, the participant mentions that fruits and veg-
etable are examples of fiber-rich foods.

Tuning The participant modifies the existing structure in their
notes to reflect a more refined understanding of a topic.
This can take the form of editing a heading or empha-
sizing the importance of something by bolding, under-
lining, resizing, or reordering.

The participant encounters the acronym GBA, which
stands for the gut-brain axis. After adding this concept
to a bulleted list of “mechanisms”, she rearranged the
list to position GBA above other subtopics (e.g., neuro-
transmitters), stating that “it makes more sense here.”

Restructuring The participants revises the existing structure in their
notes. This can take the form of splitting, merging, or
deleting (sub)headings, or splitting a paragraph due to
a change in understanding.

The participant combines information under bullets
“gut bacteria” and “neurotransmitters” under the newly
created heading “mechanisms”.

Table 3: Cognitive Activity Codes

Code Definition Example

Planning The participant engages in planning activities before
or during the search session.

[After taking notes]...“That’s a lot about physical health.
I’m going to look back at the article to see if I can find
anything on anxiety and depression.”

Monitoring The participant tracks their progress toward specific
goals, acknowledges their focus/direction, or checks
how much time remains to finish the task.

“Okay, looking back to my notes to see what I left out...
I haven’t looked at all about mental health except for
stress and anxiety, I guess.”

Reflecting The participant pauses their search and enters a re-
flective phase to review the gathered information and
consolidate their learning.

The participant enters a reflective phase, scrolls up-
and-down their notes, summarizes the topics covered,
and closes tabs no longer wanted/needed.

Active Maintenance The participant keeps information active in their mind
and uses it to make connections with newly encoun-
tered information.

“I’ve seen this in other articles... that the [adult] gut
microbiome weights about four pounds.”
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3.8 Learning Assessment
After completing the search task, participants were given two min-
utes to review their notes and then were asked to write an essay
describing everything they learned. Participants were not given a
time limit and were not allowed to see their notes while writing
the essay. To support the scoring of essays, author A1 examined all
the essays and produced a hierarchy of correct statements included
by participants. When necessary, the correctness of statements was
determined by consulting the source from which the statement was
extracted by the participant (determined using the recording of the
search session). We refer to this hierarchy of correct statements
as the “topic tree”. Statements in the “topic tree” were organized
into six general topics: (1) the gut microbiome (e.g., organs where
gut microbiomes are found); (2) mechanisms through which the
gut and brain communicate (e.g., neural pathways); (3) impacts
of the gut microbiome on physical health and vice versa (e.g., gut
health impacts metabolic health); (4) impacts of the gut microbiome
on mental health and vice versa (e.g., poor gut health is linked to
depressive symptoms); (5) factors influencing gut health (e.g., ge-
netics); and (6) ways to improve gut health (e.g., sleep). Our “topic
tree” of correct statements is also available online.

To measure learning, essays were primarily scored based on
the number of correct statements included. Other measures are
described below. To validate our scoring of essays, authors A1 and
A2 independently scored essays produced by 10 participants (23%
of the data). For each essay, A1 and A2 highlighted the correct
statements in the “topic tree” included by the participant. We mea-
sured agreement by computing the Jaccard coefficient between the
correct statements identified by A1 and A2. Across all 10 essays,
the average Jaccard coefficient was 93.78%. Additionally, we mea-
sured the correlation between scores produced by A1’s and A2’s
annotations. The Pearson correlation was 0.992 (𝑝 < .001) and the
Kendall’s tau correlation was 0.955 (𝑝 < .001). Given this high level
of agreement, A1 assessed the essays produced by the remaining
34 participants. Ultimately, we measured learning based on A1’s
annotations.

In addition to scoring essays based on the number of correct
statements included, we computed three other measures that lever-
aged the organization of correct statements in the “topic tree” into
the six general topics described above. Our breadth measure con-
siders the number of general topics (0-6) with at least two correct
statements. Our depth measure considers the number of correct
statements associated with the general topic with the most correct
statements. Finally, to measure the balance between breadth and
depth, we considered the harmonic mean of breadth and depth
scores.

3.9 Statistical Analysis
Our four research questions (RQ1-RQ4) focus on differences be-
tween low- and high-WM groups. Most of our dependent variables
(94%) were not normally distributed. Therefore, we decided to use
non-parametric Mann-Whitney 𝑈 tests to check for statistically
significant differences between groups. In addition to reporting
𝑝-values, we report𝑈 statistic values. Our𝑈 statistic values can be
interpreted as the number of “pairwise wins” between participants
in the high-WM group versus participants in the low-WM group.

Given that we had 22 participants in each group, our 𝑈 statistic
values range from 0 to 484 (22× 22). Values closer to 0 or 484 imply
significant differences between groups. Values closer to 242 (the
midpoint) imply no significant differences between groups. Given
the exploratory nature of our study, all tests were run as two-tailed
tests.

4 Results
In the following sections, we present our results for RQ1-RQ4. To
conserve space, we only include figures for outcome measures with
significant differences. All figures are box plots. In the text, we use
𝑀L and𝑀H to denote the median for the low-WM and high-WM
groups, respectively.

4.1 Effects on Pre-task Perceptions
Before presenting our results for RQ1-RQ4, we report on differences
in pre-task perceptions. As with any between-subjects study, there
is always a risk of confounding factors based on differences between
participant groups (other than WM). For example, what if high-
WM participants were more interested in the task topic by random
chance? Based on responses to the pre-task questionnaire, there
were no significant differences between low- and high-WM groups
in terms of pre-task perceptions of: (1) interest in the task topic,
(2) prior knowledge, (3) motivation, (4) expected difficulty, or (5) a
priori determinability (all 𝑝 ≥ .54).

4.2 RQ1: Effects on Post-task Perceptions
In RQ1, we investigate the effects of working memory on post-task
perceptions. There were no significant differences between low- and
high-WM groups. Specifically, there were no significant differences
in terms of satisfaction or cognitive load (intrinsic, extraneous,
and germane). Additionally, there were no significant differences in
terms of the extent to which participants perceived to have engaged
in: (1) planning, (2) monitoring their progress and understanding, (3)
organizing information, or (4) evaluating/adapting their approach
to the task.

4.3 RQ2: Effects on Search Behaviors
In RQ2, we investigate the effects of working memory on search
behaviors. To this end, we considered the different behavioral mea-
sures described in Section 3.6. As shown in Figure 1, we found
significant differences between low- and high-WM groups for three
measures. On average, high-WM participants had fewer abandoned
queries (𝑀H = 0.00 vs. 𝑀L = 1.00, 𝑈 = 167, 𝑝 = .025); spent
less time on the SERP (𝑀H = 1.93 vs. 𝑀L = 2.97, 𝑈 = 165.5,
𝑝 = .035); and spent more time either on pages visited or their
notes (𝑀H = 29.33 vs.𝑀L = 26.85,𝑈 = 341.5, 𝑝 = .032).

4.4 RQ3: Effects on SSM and Cognitive Activities
In RQ3, we investigate the effects of working memory on the extent
to which participants engaged in specific search and sensemak-
ing (SSM) and cognitive activities. RQ3 is the research question
that mostly distinguishes our work from prior work. Therefore,
Table 4 shows all differences between groups. Before delving into
differences that were statistically significant (*), it is worth noting

https://bogeumc.github.io/working-memory/
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Figure 1: Effects on Search Behaviors

that some activities (i.e., searching for structure, tuning, restruc-
turing) were rarely observed. As shown in Section 3.4, the task
description given to participants included different subtopics that
participants should consider. Perhaps this explains why participants
rarely needed to search for structure. Additionally, we observed
that participants primarily used these subtopics to structure their
notes, which is a logical approach. Perhaps this explains why they
rarely needed to tune or restructure the organization of their notes.

Our RQ3 results found significant differences for six SSM and
cognitive activities. As shown in Figure 2, high-WM participants
engaged in significantly less data-driven query formulation (𝑈 =

152, 𝑝 = .033) andmore semantic fit (𝑈 = 384.5, 𝑝 = .001); accretion
(𝑈 = 339, 𝑝 = .023); instantiation (𝑈 = 330, 𝑝 = .032); monitoring
(𝑈 = 356.5, 𝑝 = .006); and active maintenance (𝑈 = 357.5, 𝑝 = .004).
Median values are shown in Table 4.

4.5 RQ4: Effects on Learning Outcomes
In RQ4, we investigate the effects of working memory on learning
outcomes. To this end, participants were asked to write an essay
describing everything they learned during the search task. Essays
were scored based on four measures described in Section 3.8. We
found significant differences between groups for all four measures.
As shown in Figure 3, high-WM participants included significantly
more correct statements in their essays (𝑀H = 22.50 vs.𝑀L = 14.50,
𝑈 = 376, 𝑝 = .002); covered a broader range of topics (𝑀H = 4.50
vs. 𝑀L = 4.00, 𝑈 = 324.5, 𝑝 = .045); covered at least one topic in
greater depth (𝑀H = 8.50 vs.𝑀L = 6.00,𝑈 = 360, 𝑝 = .005); and had
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Figure 2: Effects on SSM and Cognitive Activities

higher harmonic means between breadth and depth (𝑀H = 5.77
vs. 𝑀L = 4.61, 𝑈 = 382, 𝑝 = .001). Based on these measures,
our results suggest that high-WM participants had better learning
outcomes.

5 Discussion
In this section, we summarize our results, compare them to results
from prior work, discuss their implications, and propose directions
for future research.

RQ1: Post-task Perceptions: In terms of post-task perceptions,
we did not find any significant differences between groups. Low-
and high-WM participants reported similar levels of satisfaction
with their performance; cognitive load (intrinsic, extraneous, and
germane); and the extent to which they engaged in certain cognitive
activities during the task (planning, monitoring, organizing, and
evaluating/adapting).
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Table 4: Differences in SSM & cognitive activities between groups. * indicates activities with significant differences (𝑝 < .05)

low-WM high-WM
min 𝑀L (Q1,Q3) max min 𝑀H (Q1,Q3) max

structure driven 1 3 (2,5) 7 1 2.5 (2,4) 9
data driven∗ 0 3.5 (1,6) 18 0 1 (0.25,2) 6

selective with source 0 0.5 (0,2) 5 0 2 (0,4) 6
search for structure 0 0 (0,0) 0 0 0 (0,0) 1
gap identification 0 1 (0,2) 6 0 0 (0,2) 6

building 0 1 (0.25,3) 6 0 2 (1,3) 6
semantic fit∗ 0 0 (0,2) 6 0 3 (1.25,4.75) 12

accretion∗ 0 13 (10.25,16) 17 5 16 (13,19.5) 34
instantiation∗ 0 0.5 (0,1) 6 0 1 (1,3.75) 9

tuning 0 0 (0,0) 1 0 0 (0,1) 2
restructuring 0 0 (0,0) 3 0 0 (0,0) 3

planning 0 0 (0,1) 4 0 1 (0,2) 3
monitoring∗ 0 1 (0,2) 4 0 3 (2,3.75) 7

reflecting 0 0 (0,0.75) 2 0 0.5 (0,1) 2
active maintenance∗ 0 0 (0,1) 1 0 1.5 (0,3) 5
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Figure 3: Effects on Learning Outcomes

Based on our results and those from prior work, the impact of
working memory on post-task perceptions does not seem straight-
forward. Prior studies have found conflicting results. Choi et al. [12]
also found that, while high-WM participants exerted more effort,
both groups reported similar levels of workload and satisfaction.
In contrast, Choi et al. [11] conducted a study using two tools to
help participants save information. One tool enabled participants

to organize the saved information by topic and the other (baseline)
tool did not. High-WM participants reported similar perceptions
with both tools. Conversely, when using the baseline tool, low-WM
participants reported greater difficulty in deciding when they had
enough information.

Results from the studies above suggest that post-task perceptions
may be more greatly affected among low-WM participants when
they are exposed to challenging situations with a clear reference for
comparison. Similar to Choi et al. [12], our study did not involve a
within-subjects systemmanipulation, and participants used familiar
tools (i.e., Google Search and a Google Doc) to complete the task.
This might have contributed to the lack of group differences.

Interestingly, our RQ1 results are incongruent with our RQ3 and
RQ4 results. In terms of RQ3, high-WM participants exerted more
effort (e.g., more accretion & instantiation) but did not report higher
levels of germane cognitive load. Similarly, high-WM participants
engaged in more monitoring activities but did not report to have
engaged in higher levels of monitoring. In terms of RQ4, high-WM
participants had better learning outcomes but did not report higher
levels of satisfaction. It may be the low- and high-WM participants
had different standards for measuring effort and the quality of the
task outcome (i.e., knowledge gains).

RQ2: Search Behaviors: Low-WM participants had more aban-
doned queries, spent more time on the SERP, and spent less time
on pages and their notes. There are two possible explanations for
this trend.

One explanation is that low-WM participants were less efficient
at finding the information they sought on the SERP, for several
reasons. First, results from Fourney et al. [21] suggest that dyslexic
searchers make less extreme relevance judgments whereas non-
dyslexic searchers are more likely to judge results as either highly
relevant or highly non-relevant. While a heterogeneous condition,
dyslexia is associated with deficits in working memory [44, 46].
Therefore, low-WM participants may have taken longer to evalu-
ate results on the SERP before deciding what to click on. Second,
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our RQ3 results found that low-WM participants issued more data-
driven queries—queries influenced by information encountered
during the session instead of queries guided by topics in the task de-
scription. Therefore, perhaps low-WM participants spent more time
seeking answers to highly specific questions rather than exploring
more general topics (e.g., factors that influence gut health).

A second explanation is that low-WM participants were more
likely to engage with information directly on the SERP (e.g., “fea-
tured snippets”, “people also ask” cards, “things to know” cards,
etc.). Anecdotally, we observed quite a bit of this behavior in our
video analysis of sessions for RQ3. However, we did not record
exact frequencies of this occurring to compare between low- and
high-WM groups.

Our RQ2 results have both similarities and differences with those
from prior work, which may be due to the types of tasks assigned
to participants across studies. In terms of similarities, Gwizdka
[23] also found that high-WM participants spent more time read-
ing pages. Our task was very similar to those used by Gwizdka
[23]—learning about multifaceted health-related topics. In terms of
differences, prior studies found that high-WM participants issued
more queries [12, 22]. We did not find significant differences in
the number of queries issued between high- and low-WM partici-
pants. The tasks used in Gwizdka [22] and Choi et al. [12] involved
comparing a set of alternatives, which may have required more
querying. Therefore, our RQ2 results suggest that the impact of
working memory on search behaviors may be task-dependent.

RQ3: SSM andCognitive Activities: Prior work has not consid-
ered the effects of working memory on SSM and cognitive activities.
Therefore, here, we elaborate on our RQ3 results.

Low-WM participants issued more data-driven queries. This
suggests that low-WM participants were more likely to engage in
bottom-up processes. Bottom-up processes are guided by unantici-
pated, highly specific needs that emerge during the SSM process.
Conversely, top-down processes are guided by preset goals or gaps
identified within the current knowledge structure. In terms of data-
driven querying, we observed the following three behaviors. First,
low-WM participants conducted look-up searches more frequently.
The need to define unknown terms seemed immediate and they
often interrupted their reading to initiate a search. Second, low-WM
participants were more likely to develop unanticipated information
needs based on information encountered and their personal inter-
ests. These needs were not always pertinent to the overall goal of
the task. Finally, resolving these bottom-up needs often required
several query reformulations, increasing the number of data-driven
queries and explaining the greater number of abandoned queries
(RQ2) from low-WM participants.

High-WM participants engaged in more accretion. This suggests
that high-WM participants exerted more effort in extracting rele-
vant information from pages and recording it in their notes. Prior
studies have also found that high-WM participants exert more
effort [12, 22, 23]. The greater level of accretion from high-WM
participants may also suggest that they were better able to switch
between searching, reading, and note-taking. Cognitive science
research has shown that working memory impacts task-switching
ability more than many other cognitive abilities and personality
traits [36].

High-WM participants engaged in more instantiation. Instan-
tiation captures instances where participants integrated new in-
formation into their existing notes to reinforce, elaborate on, or
expand on previously recorded concepts and ideas. Our results
suggest that high-WM participants were better able to connect
newly encountered information with previously recorded notes.
This is further supported by high-WM participants engaging in
more active maintenance (discussed later).

High- and low-WM participants engaged in similar levels of
building, tuning, and restructuring. In terms of building, 10 out of
44 participants did not engage in any observable organizing activi-
ties. Instead, they took notes chronologically based on the order in
which they encountered information. These 10 participants were
evenly split between high- and low-WM groups. Participants who
engaged in building activities the most were also evenly split be-
tween high- and low-WM groups. It may be that working memory
does not systematically impact an individual’s tendency to orga-
nize their notes by topic. As shown in Table 4, high- and low-WM
participants rarely engaged in tuning and restructuring. There are
two possible explanations for this trend. First, the task descrip-
tion included topics that participants were asked to consider. This
may have served as a form of scaffolding, making tuning and re-
structuring unnecessary. Second, tuning and restructuring typically
occur after some time [38, 39]. We may have observed more tuning
and restructuring if participants had been given much longer than
30 minutes to work on the task. Additionally, a lab-based setting
might not be the most conducive for studying activities like tuning
and restructuring, which requires the repeated use of a structure
or schema. Longitudinal studies involving learning over weeks or
months outside of a lab could provide a better setting for studying
these activities in depth.

High-WM participants engaged in more semantic fit. This sug-
gests that high-WM participants more actively considered how
information was relevant to their current goals, topics in the task
description, and the structure in their notes. Actively assessing
the semantic fit between encountered information and the current
or overall goals of the task can help prevent one from being side-
tracked. This reflects an individual’s ability and effort to maintain
a big-picture perspective on how the encountered information fits
into the broader understanding of the topic, which can be consid-
ered a top-down strategy.

High-WM participants engaged in more active maintenance.
That is, high-WM participants more frequently demonstrated their
ability to keep information active in their memory. This was ob-
served in four scenarios: (1) when participants recognized that
information was relevant to their current goal; (2) when partici-
pants recognized that information was relevant to other subtopics;
(3) when participants noted that information corroborated or con-
tradicted previously encountered information; and (4) when partic-
ipants identified relations between different pieces of information.
Active maintenance is a key aspect of working memory. The scenar-
ios above illustrate how working memory can manifest in search
and sensemaking.

Finally, high-WM participants engaged in more monitoring. This
was observed in three scenarios: (1) when participants revisited
the task description to monitor their progress across subtopics; (2)
when they reviewed their notes to identify gaps; and (3) when they
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checked with the study moderator about the remaining time. While
high-WM participants engaged in more monitoring, perceptions of
monitoring were not significantly different between groups (RQ1).
This result suggests that perceptions of engagement in a specific
cognitive activity may not always align with actual engagement.

RQ4: LearningOutcomes:High-WMparticipants learnedmore.
This was evidenced by the number of correct statements in their
knowledge summaries produced after the task. Additionally, their
correct statements had greater breadth and depth. Pardi et al. [35]
found a similar result—high-WM participants included a greater
number of relevant concepts in their knowledge summaries after
searching. Our study extends this prior work in several ways. First,
we used a more complex task and took a different approach to
measure learning. Second, and more importantly, our RQ3 results
help explain why high-WM participants might have achieved better
learning outcomes. They engaged in more top-down and fewer
bottom-up processes; they actively evaluated information based on
their goals; they maintained information in active memory; and
they actively monitored their progress.

Opportunities for Future Work: Our findings underscore the
need for search tools to support neurodiverse users. Specifically,
we envision four different types of tools. Features of these tools
could be developed using state-of-the-art Generative AI (GenAI)
technologies.

First, our results highlight the need to support searchers with
both top-down (goal-driven) and bottom-up (data-driven) processes.
While both processes are essential, data-driven processes (e.g.,
querying for definitions while reading a page) can sometimes dis-
rupt the task flow. Low-WM individuals may struggle to re-focus
after pursuing a data-driven need. Experimental tools could enable
searchers to query a system and see results directly from a docu-
ment. Such tools could help prevent users from getting sidetracked
and losing sight of their goals.

Second, several prior studies experimented with a tool that al-
lowed participants to explicitly write subgoals associated with the
task, take notes with respect to specific subgoals, and mark subgoals
as completed [47, 48]. In both studies, access to the tool resulted
in better learning outcomes. One study found that access to the
tool resulted in participants engaging in higher levels of monitor-
ing [48]. Specifically, participants with access to the goal-setting
tool were more active in: (1) tracking their progress toward each
subgoal; (2) judging the relevance of information with respect to
their subgoals; and (3) evaluating the time allocated to specific sub-
goals. In our study, high-WM participants engaged in higher levels
of monitoring and semantic fit. Therefore, goal-setting tools could
be particularly beneficial for low-WM individuals. Pop-up and no-
tifications could also remind searchers about the current subgoal
or neglected subgoals. Additionally, GenAI technology could be
used to automatically highlight when information is relevant to an
explicitly written subgoal.

Beyond goal-setting, prior studies have also experimented with
tools to support searchers during complex, multifaceted search
tasks. Examples include: (1) tools to annotate documents and see a
summary of annotations [37]; (2) visualizations about the coverage
of subtopics during the search session [14]; (3) and tools to save and
organize information by subtopic [11]. These tools have one thing
in common—they help searchers track their progress. Low-WM

individuals may benefit from tools that provide a visual reminder
of the different subtopics being pursued and their progress across
subtopics. Additionally, enabling searchers to explicitly represent
the different subtopics being pursued could enable systems to pre-
dict when information is relevant to a subtopic, even when the
subtopic is not the one being currently pursued.

Finally, in our study, high-WM participants demonstrated higher
levels of active maintenance. This manifested in several ways. For
example, high-WM participants noticed when new information
corroborated/contradicted previously encountered information and
drew connections between different pieces of information. GenAI
tools could be used to highlight when new textual passages relate
to previously read passages.

6 Conclusion
We reported on a lab study that investigated the role of working
memory (WM) during a search and sensemaking (SSM) task. We in-
vestigated the effects of WM on: (RQ1) post-task perceptions; (RQ2)
search behaviors; (RQ3) the extent to which participants engaged
in specific search, sensemaking, and cognitive activities; and (RQ4)
learning outcomes. Our results showed the following trends. We did
not observe significant differences in post-task perceptions between
low- and high-WM groups. Interestingly, however, we observed
significant differences for RQ2-RQ4. In terms of RQ2, high-WM
participants had fewer abandoned queries, spent less time on the
search interface, and spent more time reading pages and taking
notes. We observed several significant differences for RQ3. In terms
of search activities, low-WM participants issued more data-driven
queries (i.e., motivated by information encountered during the ses-
sion versus topics that were part of the task description). In terms
of sensemaking activities, high-WM participants were more active
in: (1) evaluating information based on their goals and the structure
in their notes (semantic fit); (2) adding information to their notes
(accretion); and (3) elaborating on information in their notes (instan-
tiation). In terms of cognitive activities, high-WM participants were
more active in monitoring their progress and demonstrated more
active maintenance—keeping information in memory to notice and
make connections. Finally, in terms of RQ4, high-WM participants
had better learning outcomes. Our RQ2 & RQ3 results provide in-
sights intowhy high-WM participants may have had better learning
outcomes.We have discussed possible tools to support neurodiverse
users during complex SSM tasks.
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