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Abstract

The goal of aggregated search is to provide integrated search across
multiple heterogeneous search services in a unified interface—a single
query box and a common presentation of results. In the web search
domain, aggregated search systems are responsible for integrating re-
sults from specialized search services, or verticals, alongside the core
web results. For example, search portals such as Google, Bing, and
Yahoo! provide access to vertical search engines that focus on differ-
ent types of media (images and video), different types of search tasks
(search for local businesses and online products), and even applications
that can help users complete certain tasks (language translation and
math calculations).

Aggregated search systems perform two mains tasks. The first task
(vertical selection) is to predict which verticals (if any) to present in
response to a user’s query. The second task (vertical presentation) is to
predict where and how to present each selected vertical alongside the
core web results.

The goal of this work is to provide a comprehensive summary of pre-
vious research in aggregated search. We first describe why aggregated
search requires unique solutions. Then, we discuss different sources of
evidence that are likely to be available to an aggregated search system,
as well as different techniques for integrating evidence in order to make
vertical selection and presentation decisions. Next, we survey differ-
ent evaluation methodologies for aggregated search and discuss prior
user studies that have aimed to better understand how users behave
with aggregated search interfaces. Finally, we review different advanced
topics in aggregated search.

J. Arguello. Aggregated Search. Foundations and TrendsR© in Information
Retrieval, vol. XX, no. XX, pp. 1–139, 2016.
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1
Introduction

In recent years, the field of information retrieval (IR) has broadened its
scope to address a wide range of information-seeking tasks. Examples
include search for images, video, news, digitized books, items for sale,
local businesses, scholarly articles, and even social media updates such
as tweets. A common finding in empirical IR research is that different
information-seeking tasks require different solutions. Specifically, differ-
ent tasks require different ways of representing items in the index, dif-
ferent retrieval algorithms for predicting relevance, and different ways
of displaying search results to users.

Different types of media may require different representations. For
example, images may need to be represented using text from the sur-
rounding context in the originating page [Feng and Lapata, 2010], social
media updates may need to be represented using text obtained from
the link-to URL (if one is available) [McCreadie and Macdonald, 2013],
and books may need to be represented using text from an external sum-
mary page [Koolen et al., 2009]. Different search tasks may also require
customized retrieval algorithms. For example, news search may require
favoring recently published articles [Diaz, 2009], local business search
may require favoring businesses that are geographically close [Abou-
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Assaleh and Gao, 2007], and scholarly article search may require fa-
voring articles with many citations [Lawrence et al., 1999]. Finally, dif-
ferent search tasks may require different ways of presenting the search
results to users, by highlighting the most important attributes of the
underlying item. In current systems, for example, webpage results are
typically displayed using the webpage title and a summary snippet
showing the context where the query terms appear on the page; items
for sale are typically displayed using a thumbnail image of the product,
a description, and the price; and videos are typically displayed using a
stillframe of the video, a description, and the duration.

Search systems today are more diverse and specialized than ever
before. In fact, search portals that aim to support different information-
seeking tasks typically develop and maintain specialized search systems
for different task types. Rather than attempt to address all task types
with a single monolithic system, the current trend is towards a “divide
and conquer” approach. Naturally, this gives rise to a new challenge:
How do we provide integrated search across these widely different sys-
tems? This is the goal of aggregated search. The aim of aggregated
search technology is to provide integrated search across a wide range of
highly specialized search systems in a unified interface—a single search
query box and a common presentation of results.

To date, most research in aggregated search has focused on the web
search domain. For this reason, most of the research reviewed in this ar-
ticle will also focus on the web search domain. Commercial web search
portals such as Google, Bing, and Yahoo! provide access to a wide
range of specialized search services besides web search. These special-
ized search services are referred to as vertical search services or simply
verticals. Example verticals include search engines for different types
of media (e.g., images, video, news) and search services for different
types of search tasks (e.g., search for local business, products for sale,
scientific articles). In some cases, search portals even provide access
to verticals that help users accomplish specific tasks such as language
translation, unit conversation, and math calculations.

There are currently two ways that users can access vertical content.
If the user wants results from a specific vertical, and if the vertical has
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direct search capabilities, then the user can issue the query directly to
the vertical. In other cases, however, the user may not know that a
vertical has relevant content, or may want results from multiple verti-
cals at once. For this reason, an important task for commercial search
providers has become the prediction and integration of relevant vertical
content alongside the core web search results.

Figure 1.1 shows an example aggregated search results page (SERP)
in the web domain. In response to the query “saturn”, an aggregated
search system decided to display news, image, and video vertical re-
sults in addition to the core web results. The most confidently relevant
verticals are displayed higher on the SERP. In this case, the system
predicted that the most relevant verticals were the news, images, and
video verticals, respectively.

1.1 Aggregated Search Tasks

Most aggregated search systems follow a pipeline architecture with
three subsequent sub-tasks (Figure 1.2). The first sub-task (vertical se-
lection) is to predict which verticals (if any) are relevant to the query.
One can view the vertical selection task as that of deciding which verti-
cals should be displayed on the SERP regardless of their position. It is
impractical, if not impossible, to issue the query to every available ver-
tical. For this reason, most approaches for vertical selection base their
predictions using pre-retrieval evidence (e.g., the query contains the
term “news”, the query is related to the health domain, or the query
contains the name of a location).

The second sub-task (vertical results selection) is to predict which
results from a particular vertical to present on the aggregated SERP.
This sub-task has received the least attention in the research com-
munity. The vertical results selection task has a dual objective. The
primary objective is to satisfy the user directly with the vertical results
that are aggregated on the SERP. The secondary objective is more
nuanced. Some verticals have direct search capabilities. If the user re-
alizes that the vertical may have relevant information, he or she can
navigate to the vertical, examine more vertical results, and even issue
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Figure 1.1: Aggregated SERP in the web domain (truncated). In response to the
query “saturn”, the aggregated search system decides to display news, image, and
video vertical results in addition to the core web results. The most confidently
relevant verticals are displayed higher on the SERP.

new queries to the vertical search engine. In this respect, the secondary
objective of vertical results selection is to convey how the underlying
vertical may have relevant content. Most aggregated search systems
described in the published literature do not perform vertical results se-
lection and simply display the top few results returned by the vertical
in response to the query.

The third and final sub-task (vertical presentation) is to decide
where to present each selected vertical. Different verticals are typically
associated with different surrogate representations. For example, image
results are displayed using thumbnails, while news results are displayed
using the article title, source, publication date, and may include an op-
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Figure 1.2: Aggregated search pipeline.

tional image from the underlying article. For aesthetic reasons and to
better convey how the vertical may have relevant content for the cur-
rent user, vertical results are typically grouped together (either stacked
horizontally or vertically) on the aggregated SERP.

The goal of vertical presentation is to display the most relevant
verticals in a more salient way. One common approach is to display
them higher on the SERP (e.g., above the first web result). Vertical
presentation happens after the query has been issued to the vertical.
Thus, approaches for vertical presentation can base their predictions
using pre-retrieval as well as post-retrieval evidence (e.g., the number of
results returned by the vertical, the top retrieval scores, or the number
of query-terms appearing in the top results).

1.2 Relation to Federated Search

While aggregated search may seem like a new technology, it is rooted
in a fairly mature subfield in information retrieval known as federated
search or distributed information retrieval. The goal of federated search
is to provide integrated search across multiple collections of textual
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documents, also referred to as resources. Similar to aggregated search,
federated search is typically decomposed into three sub-tasks.

The first sub-task (resource representation) is to construct a de-
scription of each distributed resource that can be used to predict which
ones to search in response to a query. Approaches for resource represen-
tation differ greatly depending on whether they assume a cooperative or
uncooperative environment. In a cooperative environment, resources are
assumed to readily publish term statistics that can be used to model
the contents of each collection [Gravano et al., 1997]. On the other
hand, in an uncooperative environment, resources are assumed to only
provide a search interface. In this case, resource descriptions must be
constructed from sampled documents obtained via query-based sam-
pling. In general, query-based sampling involves issuing queries to each
resource and downloading results [Callan and Connell, 2001b; Caverlee
et al., 2006; Shokouhi et al., 2006a].

The second sub-task (resource selection) is to predict which re-
sources to search in response to a query. Typically, the relevant doc-
uments are concentrated in only a few of the available resources. Re-
source selection approaches tend to cast the task as resource ranking—
ranking resources based on the likelihood that they will return relevant
results for the query. Existing approaches can be categorized into two
types: large document and small document models. Large document
models select resources based on the similarity between the query and
a virtual concatenation of all the documents in the resource (or its
samples). These methods treat each collection as a large document
and adapt document-ranking algorithms for the purpose of ranking
collections. In contrast, small document models typically proceed in
two steps. First, they combine documents (or samples) from the differ-
ent resources in a centralized sample index (CSI). Then, at query-time,
they rank resources based on the top-ranked CSI results [Si and Callan,
2003a; Shokouhi, 2007; Thomas and Shokouhi, 2009].

The third sub-task (results merging) is to interleave the results
from the different selected resources into a single ranking. Typically,
this is cast as a score normalization problem [Si and Callan, 2003b].
Because different resources have different collection statistics and per-
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haps use different ranking algorithms, their retrieval scores may not
be directly comparable. Thus, results merging requires transforming
resource-specific scores into resource-agnostic scores that can be used
to produce a single merged ranking. Results merging approaches typ-
ically assume that documents can be interleaved in an unconstrained
fashion. The only goal is to rank the relevant documents higher on the
list, irrespective of the originating resource(s).

Most federated search approaches make assumptions that do not
hold true in an aggregated search environment. Thus, while there are
similarities between aggregated and federated search, aggregated search
requires unique solutions. Next, we discuss some of the main difference
between the aggregated and federated search.

1.3 Differences between Aggregated and Federated Search

Cooperative vs. uncooperative environment. Most federated
search approaches assume an uncooperative environment in which the
different resources provide the system no more than the same func-
tionality they provide their human users—a search interface. For this
reason, most resource selection approaches base their predictions solely
on the similarity between the input query and the documents sampled
from each resource. In contrast, most aggregated search approaches
assume a cooperative environment in which the different verticals are
developed and maintained by the same organization. In a coopera-
tive environment, the aggregated search system may have access to
sources of evidence beyond sampled documents. For example, for ver-
ticals with direct search capabilities, alternative sources of evidence
may include vertical-specific query-traffic data, click-through data, and
query-reformulation data. This type of evidence conveys how users in-
teract directly with the vertical search engine and may be helpful in
predicting vertical relevance. A vertical selection system should be ca-
pable of incorporating these various sources of evidence into selection
decisions.

Heterogeneous vs. homogeneous content. Most federated
search approaches assume that all the distributed resources contain
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textual documents. For example, small document approaches for re-
source selection assume that samples from different resources can be
combined in a centralized sample index (CSI), and that resources can
be selected based on the top-ranked CSI results. In contrast, approaches
for vertical selection need to accommodate the fact that different verti-
cals may contains very different types of items that can not be centrally
indexed and searched (e.g., news articles, images, videos, items for sale,
digitized books, social media updates, etc.).

Heterogeneous vs. homogeneous relevance prediction.Most
federated search approaches apply the same scoring function to every
available resource in order to predict their relevance to a query. For
example, small document approaches score every resource based on the
top CSI results. Similarly, large document models score every resource
based on the similarity between the query and a virtual concatenation
of those documents sampled from the resource. In contrast, approaches
for vertical selection and presentation must be able to learn a vertical-
specific relationship between different types of evidence and a particular
vertical’s relevance to a query.

To illustrate, let us consider two examples. First, certain key words
are likely to predict that a particular vertical is relevant to the query.
For example, the query term “news” suggests that the news vertical is
relevant, while the query term “pics” suggests that the images vertical
is relevant. Second, some verticals tend to be topically focused (e.g.,
health, auto, travel, movies). Thus, in some cases, it may be possible
to predict that a particular vertical is relevant based on the general
topic of the query. For example, we can predict that the health vertical
is relevant to the query “swine flu” because the query is related to the
health domain. Both of these examples suggest that aggregated search
approaches must be able to learn a vertical-specific relation between
certain types of evidence and the relevance of a particular vertical.

Selection vs. ranking Most federated search approaches treat
resource selection as resource ranking. The goal for the system is to
prioritize resources in response to a query, and to select as many or
as few resource as possible given the current computational resources
available. Implicit in this formulation of the resource selection task is
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the assumption that exhaustive search produces a good retrieval and
that the goal for the system is to approximate this retrieval by selecting
only a few resources. In contrast, vertical selection requires predicting
which verticals are relevant to the query and which verticals are not. In
some cases, the system may decide that none of the available verticals
are relevant. Thus, vertical selection requires approaches that can make
binary predictions for each candidate resource.

Constrained vs. Unconstrained Results Presentation. Fi-
nally, most federated search approaches assume that the results from
the different selected resources can be interleaved in an unconstrained
fashion. In contrast, most aggregated search approaches assume that
the results from the same vertical must be presented together on the
SERP in the form of a vertical block. This is mostly done for aes-
thetic reasons and to provide an easy-to-parse overview of how the
vertical may have relevant content for the query. Vertical presentation
approaches must address the unique challenge of deciding where to
present each selected vertical on the SERP.

1.4 Overview of Aggregated Search Algorithms

Most successful approaches for vertical selection and presentation use
machine learning to combine a wide range of evidence as input features
to the model. Features can be generated from the query, from the verti-
cal, or from the query-vertical pair. For example, a type of query feature
might consider whether the query contains the keyword “news”, a type
of vertical feature might consider the number of recent clicks on the
vertical results, and a type of query-vertical might estimate the number
of query-related documents in the underlying vertical collection. The
most effective approaches for vertical selection and presentation make
creative use of the different sources of evidence available to the system,
including vertical-specific query-log data, sampled vertical documents,
and previous user interactions with vertical content.

While evidence integration is key to aggregated search, it also poses
two main challenges. The first challenge is that not all features may be
available for all verticals. For example, some verticals cannot be directly
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searched by users. Consider the weather vertical in most commercial
search portals. Users cannot typically go directly to the weather vertical
and issue a query. Thus, features generated from the vertical query-log
will not be available for verticals that are not directly searchable. Simi-
larly, some verticals are not associated with an underlying collection of
documents. Consider the calculator, language translation, and finance
verticals in most commercial search portals. Features that consider the
similarity between the query and the documents in the underlying ver-
tical will not be available for such verticals. In this respect, approaches
for vertical selection and presentation must deal with the fact that
different verticals may require different feature representations.

The second challenge is that, even if a feature is available for all
verticals, it may not be equally predictive across verticals. For exam-
ple, certain verticals are clicked more than others. For example, a news
vertical is likely to have more clicks than a weather vertical, which is
designed to display the necessary information directly on the SERP.
Features derived from click data (e.g., the number of recent clicks on
the vertical results) may be more predictive for verticals that have
more clicks. Alternatively, a features may be positively predictive for
one vertical and negative predictive for another. Consider, for exam-
ple, a feature that measures whether the query is related to the travel
domain. This feature is likely to be positively predictive for a travel-
related vertical, but negatively predictive for a vertical that focuses
on a different domain. In this respect, approaches for vertical selection
and presentation must deal with the fact that different verticals may
require learning a vertical-specific relationship between certain features
and a vertical’s relevance.

Given the two challenges outlined above, approaches for vertical se-
lection typically learn a different model for each candidate vertical. In
this way, each model can adopt a different feature representation and
can learn a vertical-specific relationship between feature values and
the relevance of the particular vertical. Vertical presentation requires
resolving contention between different verticals to be displayed on the
SERP. Put differently, vertical presentation requires predicting the de-
gree of relevance of a vertical relative to the web results and relative
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to other verticals to be displayed. Approaches for vertical presentation
can be categorized into two types: pointwise and pairwise interleaving
methods. Pointwise methods learn to predict the degree of relevance of
each vertical block or module in response to a query. Vertical blocks are
positioned according to their predicted relevance to the query. Pairwise
methods learn to predict the relative relevance between pairs of vertical
and/or web blocks or modules. Vertical blocks are positioned such that
they are maximally consistent with the pairwise preferences predicted
by the system.

1.5 Related Topics

In this review, we focus on aggregated search in the web domain, where
systems combine results from heterogeneous sources (or verticals) into
a single presentation. We cover a wide range of topics, including pre-
diction, evaluation, and studies of user behavior.

We focus on the web domain because of most of the published
research has been done in this domain. However, the task of search-
ing and integrating information from heterogeneous sources happens
in other domains within the broad field of information retrieval. For
example, in desktop search, the system needs to search across different
types of files, which may require different indexing structures, rank-
ing algorithms, and ways of presenting the search results. Similarly,
news aggregators are responsible for combining content from different
input streams, such as news articles, images, videos, and social media
updates.

In this section, we briefly describe related areas of IR research that
may benefit from the algorithms, evaluation methods, and studies de-
scribed in this review. These areas are described upfront in the interest
of readers who may not have a primary interest in aggregated search
in the web domain.

1.5.1 Full-text Search in Peer-to-Peer Networks

A peer-to-peer (P2P) network is defined as a network of independent
computing resources that do not require a centralized authority to co-
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ordinate and perform tasks. A hierarchical (P2P) network is one with
three types of peers: (1) peers that provide search for a particular col-
lection, such as a digital library (providers), (2) peers that originate
information requests for the network (consumers), and (3) peers that
propagate information requests to neighboring peers and send results
back the corresponding consumer (hubs). Hubs perform the three main
tasks associated with aggregated search: (1) representing the contents
of neighboring peers (i.e., direct providers and other hubs), (2) send-
ing information requests to the neighboring peers most likely to deliver
relevant content, and (3) merging the results returned by the selected
peers and sending these back to the appropriate consumer. Lu [2007]
proposed several approaches for these three different tasks that build
upon traditional federated search techniques (where there is a cen-
tralized federated search system that has direct access to all available
resources).

The techniques discussed in this review might be useful for the tasks
of query routing and results merging in P2P networks that provide dis-
tributed search capabilities. Beverly and Afergan [2007], for example,
proposed a machine learning, evidence integration approach for neigh-
bor selection in P2P networks.

1.5.2 Desktop Search

The goal of desktop search is to facilitate search over files stored in a
user’s desktop computer. One of the main challenges in desktop search
is that different file types are associated very different field structures
and meta-data. Kim and Croft [2010] developed and evaluated a desk-
top search system that maintains different indexes for different file
types. Given a query, the proposed system performs the three basic
steps associated with aggregated search: file-type prediction, file-type-
specific ranking, and results merging. Much like the vertical selection
methods covered in this review, the proposed file-type prediction ap-
proach combined multiple types of evidence as features for a machine
learned model, for example, the similarity between the query and doc-
ument meta-data, the similarity between the query and previously run
queries with clicks on a particular file-type, and the presence of certain
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query keywords such as “email” or “pdf”. As one might expect, the
evidence integration approach to file-type prediction outperformed the
best approach using a single source of evidence.

1.5.3 Selective Search

The aim of selective search is to enable efficient and effective search
from large text collections in environments with modest computational
resources [Kulkarni and Callan, 2015]. First, the system partitions the
large text collection into smaller topical sub-collections or shards. Then,
in response to a query, the system predicts which few shards are most
likely to have relevant documents and merges their results. Selective
search is highly motivated by the cluster hypothesis, which states that
similar documents (ideally assigned to the same shard) tend to be rel-
evant to same information needs [Rijsbergen, 1979]. Shard represen-
tation and selection can be performed using existing federated search
techniques, and results merging is relatively straightforward because
the system has access to global term statistics can be used to compute
comparable retrieval scores. The critical step in selective search is parti-
tioning the collection into topical shards. Kulkarni and Callan [Kulka-
rni and Callan, 2015] proposed a variant of the well-known K-means
clustering algorithm that operates on a sample of documents from the
collection. Experimental results show that selective search can greatly
reduce computational costs and latency, and can yield retrieval per-
formance comparable to exhaustive search, particularly for precision-
oriented tasks.

While current shard-selection techniques do not combine multiple
types of evidence to make predictions, prior work on text-based feder-
ated search used machine learning to combine a wide range of features
for the task of resource selection [Arguello et al., 2009a; Hong et al.,
2010]. In particular, because shards are topically focused, the query cat-
egory features discussed later in Section 2.3 might contribute valuable
evidence for shard selection.
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1.5.4 Contextual Suggestion

The goal of contextual suggestion is to recommend points-of-interest
(POIs) to a user in a particular context (i.e., in a particular location,
at a particular time) [Dean-Hall et al., 2012, 2013, 2014, 2015]. The
system is assumed to have access to ratings on previously recommended
POIs for the same user (or to other users) in different contexts.

Zhuang et al. [2011] describe a mobile contextual suggestion system
with an aggregated search architecture. Rather than index and retrieve
all POIs using a single system, the proposed approach is to build differ-
ent indexes and rankers for different POI-types (e.g., restaurants, coffee
shops, bars, tourist attractions, etc.) The system recommends POIs to
a user in a particular context in two steps. First, the system predicts
the appropriateness of a particular POI-type for the given context, and
then it ranks POIs of a particular type if the user requests to see those
results. Similar to aggregated search, the proposed architecture has two
main benefits. First, the system can use different models for predicting
relevance for each POI-type. For example, the system can learn that
restaurants are more relevant during meal times and that bars are more
relevant in the evening. Second, the system can learn different rankers
for different POI-types. For example, the system can determine that
close proximity to the user is more important for coffee shops than for
tourist attractions (assuming users are more willing to travel longer
distances for the latter).

1.5.5 Search Across Heterogeneous Social Networks

In certain cases, a user may engage in multiple social networks and may
want to receive updates from different networks in a unified interface.
Bian et al. [2012] proposed an algorithm for ranking social network up-
dates originating from different networks. The main challenge is that
different networks may be associated with different sources of evidence
that can be used to predict the relevance of an update for a particular
user. Consider a user who wants to receive aggregated updates from
both Facebook and Twitter. Some sources of evidence are common to
both networks (e.g., Does the update contain a URL?). However, other
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features may aim to exploit the same type of evidence, but be associ-
ated with very different numerical ranges across networks (e.g., number
of comments on Facebook and number of retweets on Twitter). More-
over, some features may only exist in one network and not the other
(e.g., the number of Facebook chat messages between the user and the
author of the update). Rather than rank candidate updates from dif-
ferent networks using a single model (perhaps using only those features
common to all networks), Bian et al. [2012] describe a “divide and con-
quer” approach that learns network-specific rankers and combines their
output rankings into a single ranked list.

Lee et al. [2012] focused on the task of ranking social media updates
and used two test collections: one generated from Facebook updates and
another generated from Twitter updates. The authors did not attempt
the task of constructing a single, merged ranking. However, the authors
concluded that combining updates from different heterogeneous social
networks into a single ranked list is an interesting research direction
for future work.

1.5.6 News Aggregators

News content aggregators such as the Yahoo! homepage or the New
York Times homepage combine results from different heterogeneous
data streams into a single presentation. Data streams may include news
articles from different sources, images, videos, audio interviews, blog
posts, and social media updates such as tweets. The system is respon-
sible for predicting which items to display from each data stream and
where [Bharat et al., 1998; Krakovsky, 2011]. Different data streams
are likely to be associated with very different types of evidence that
can be used to predict relevance. Thus, news aggregators are likely to
benefit from a “divide and conquer” approach—building customized
rankers for different data streams and a system that predicts which
content to display and where.

One interesting aspect of news aggregation is that in some cases, the
system may want to show results from different data streams that are
related to the same topic. For example, the system may want to display
news, images, videos, and opinionated tweets about the same trending
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news story. Hong et al. [2011] proposed an approach for finding related
content in different data streams. In the context of aggregated search,
the results from different sources aggregated on the search results page
are typically independent of each other. However, identifying related
results may be an interesting direction for future work.

1.6 Related Surveys

As mentioned above, aggregated search is related to the subfield of
federated search or distributed information retrieval, where the goal is
to provide integrated search across multiple textual collections. Shok-
ouhi and Si [2011] provide an extensive review of the state of the art
in federated search, and review methods for all three federated search
sub-tasks: resource representation, selection, and results merging.

Chapter 4 in this review focuses on methods of aggregated search
evaluation. Online evaluation approaches learn about a system’s per-
formance from user interactions in a live environment. In the context
of aggregated search, vertical selection approaches can be evaluated by
considering user’s clicks on the vertical results. Interpreting user inter-
actions with a SERP is complicated by the fact that users are biased
by factors that are independence of relevance, such as position and
visual salience. Katja Hofmann [2016] provide an extensive survey of
approaches for online evaluation using real users.

The current survey is most closely related to the book chapter ti-
tled “Aggregated Vertical Search” appearing in Long and Chang [2014].
However, the current survey is different in several respects. First, it in-
cludes new solutions, evaluation methods, and user studies published
since 2014. In recent years, studies have proposed and tested new eval-
uation metrics for aggregated search [Zhou et al., 2013b]. Furthermore,
recent studies have investigated different factors that may affect search
behavior and performance with aggregated search interfaces. For ex-
ample, recent work investigates how users visually scan an aggregated
SERP [Liu et al., 2015], how the results from one source on the SERP
can affect user interaction with the results from other sources [Arguello
and Capra, 2016; Bota et al., 2016], and how users’ cognitive abilities
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can affect different search behaviors and outcomes [Turpin et al., 2016].
Furthermore, this review covers more special topics in aggregated

search. For example, it surveys recent work on composite retrieval,
where the goal for the system is to combine results from different
sources, but to organize them by how they satisfy different aspects
of the user’s task. Also, it covers recent work on aggregated search for
children, who tend to exhibit different search behaviors than adults and
require unique aggregated search solutions [Duarte Torres and Weber,
2011a].

1.7 Outline

As previously mentioned, the most effective approaches for vertical
selection and presentation use machine learning to combine different
types of evidence as features. Chapter 2 reviews different features used
in prior work. These include features that derive evidence from vertical
content, from queries issued directly to the vertical by users, and from
previous users’ interactions with the results from a particular vertical.

In a sense, vertical selection and presentation have a common goal—
to predict the degree of relevance of a vertical to a user’s query. In
Chapter 2, we remain somewhat agnostic as to whether a particular
feature is more appropriate for one task versus the other. That said,
certain features (referred to as post-retrieval features) require issuing
the query to the candidate vertical. Thus, in some places, we empha-
size that post-retrieval features may be more appropriate for vertical
presentation.

Chapter 3 focuses on evidence combination approaches for vertical
selection and presentation. The main challenge in vertical selection and
presentation is that certain features may be predictive for one vertical,
but not another. For example, the publication age of the top vertical
results may be predictive for the news vertical, but not the image ver-
tical. Moreover, certain features may be positively predictive for one
vertical, but negatively predictive for another. For example, the query
term “news” is positively predictive for the news vertical, but nega-
tively predictive for the image vertical. For this reason, in Chapter 3
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we focus on approaches that can learn and exploit a vertical-specific re-
lationship between different features and the relevance of a particular
vertical.

Chapter 4 focuses on evaluation methodologies and metrics for ag-
gregated search. Evaluation is a critical component of all information
retrieval techniques and a research area in its own right. We start with
vertical selection and then cover end-to-end evaluation, which includes
selection and presentation. We cover evaluation methodologies based
on re-usable test collections, which typically include a set of evaluation
queries, cached results from the different sources, and human-produced
relevance judgements. We also discuss on-line evaluation methodologies
based on implicit feedback from real users in an operational setting.

Chapter 5 reviews user studies aimed at further understanding what
users want from an aggregated search system and how they behave. We
cover studies where the goal is to determine the extent to which a par-
ticular evaluation metric correlates with user satisfaction, and studies
where the goal is to understand how different characteristics of the
interface, the search task, and the user can affect outcome measures
associated with the user’s perceptions about the system and their per-
formance.

Chapter 6 reviews special topics in aggregated search. Here, we
touch upon algorithms for predicting how a user will visually scan a
particular aggregated SERP, methods for obtaining implicit feedback
that can improve prediction performance, and approaches for learning
a model for a new vertical with little human-produced training data.
Furthermore, we review the new task of composite retrieval, where the
goal is to organize results from different sources based on different
aspects associated with the task. Finally, we discuss aggregated search
for children, who exhibit different behavior than adults and require
unique solutions.

Finally, in Chapter 7, we conclude by highlighting the main trends
in aggregated search and discussing short-term and long-term areas for
future work.



2
Sources of Evidence

State-of-the-art methods for vertical selection and presentation com-
bine a wide range of evidence to make predictions. A convenient way of
combining evidence is to train a model using machine learning. Machine
learning algorithms learn to make predictions using a set of positive and
negative examples. For instance, we can imagine learning a vertical se-
lection model for a news vertical using a set of example queries for
which the system should and should not select the news vertical. The
system designer, however, is responsible for deciding how to represent
query-vertical pairs using a set of measures or features. Good features
are those that are highly correlated with the vertical’s relevance to a
query and bad features are those that are uncorrelated. A lot of cre-
ativity goes into designing effective features.

There are many ways in which an aggregated search system might
predict that a particular vertical is relevant to a query. Consider the
task of predicting whether a news vertical is relevant. If the query con-
tains the term “news”, it is almost certain the news vertical is relevant.
Similarly, a system might determine that the news vertical is relevant
to the query “presidential election” because many of the documents in
the news collection contain these query terms. Finally, a system might

20
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predict that the news vertical is relevant if the query is similar to a re-
cent burst of queries issued directly to the news vertical by users. The
most successful approaches for vertical selection and presentation use
machine learning to combine a wide-range of evidence as input features
to a model.

In this chapter, we describe the most effective features used in prior
research. In learning about different types of features, it is helpful to
be aware of their similarities and differences. For example, it is helpful
to understand the resources required for generating each feature, and
whether generating a feature requires issuing the full query to a partic-
ular vertical. We begin the chapter with a description of two dimensions
along which predictive features can be categorized. Then, we describe
different types of features used in prior work and their implementation
details.

2.1 Typology of Features

Features can be characterized along two dimensions. The first dimen-
sion relates to whether the value of the feature depends on the in-
put query, the vertical under consideration, or the query-vertical pair.
Query features describe properties of the input query and their values
are independent of the vertical under consideration. A type of query
feature might consider whether the query contains the keyword “news”.
Vertical features describe properties of a particular vertical and their
values are independent of the query. A type of vertical feature might
consider the number of queries issued to the vertical directly by users
in the recent past, which is a measure of the vertical’s current popu-
larity. Finally, query-vertical features describe properties of the specific
query and the vertical under consideration. A type of query-vertical
feature might consider the number of results returned by the vertical
in response to the query, which suggests that the vertical has a large
amount of content related to the query topic.

Characterizing features along this first dimension is helpful in un-
derstanding the role of machine learning for vertical selection and pre-
sentation. Vertical and query-vertical features tend to have a consistent
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relationship between the feature value and the relevance of the vertical
in question (i.e., the vertical from which the feature value was derived).
For example, a sudden burst in query traffic (a type of vertical feature)
is likely to contribute positive evidence for any vertical under consider-
ation. Similarly, the number of documents in the vertical containing all
the query terms (a type of query-vertical feature) is likely to contribute
positive evidence for any vertical.

In contrast to vertical and query-vertical features, query features
tend to have an inconsistent relationship with vertical relevance across
different verticals. In this respect, query features pose a unique chal-
lenge for vertical selection and presentation. For example, the presence
of the query term “news” is positive evidence for the news vertical,
but negative evidence for the images vertical. Similarly, the presence
of the query term “pics” is positive evidence for the images vertical,
but negative evidence for the news vertical. Machine learning provides
a convenient way of learning a vertical-specific relationship between
query features and the relevance of a particular vertical. For example,
a common approach is to learn different models for different verticals.
In doing so, each vertical-specific model can focus on the features that
are uniquely predictive for the vertical in question.

The second dimension along which to characterize features relates
to whether generating the feature value requires issuing the query to
the vertical under consideration. Pre-retrieval features can be generated
without issuing the query to the vertical. Query features and vertical
features tend to be pre-retrieval features. For example, a type of pre-
retrieval feature might describe the topical category of the query (a
type of query feature) or the number of queries recently issued directly
to the vertical by users (a type of vertical feature). In contrast, post-
retrieval features must be generated by issuing the query to the vertical.
For example, a type of post-retrieval feature might consider the average
publication age of the top vertical results.

Characterizing features along this second dimension is helpful in un-
derstanding their usefulness for the tasks of vertical selection and/or
vertical presentation. As previously mentioned, it is oftentimes imprac-
tical, if not impossible, to issue the query to every vertical in order to
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decide which verticals to display. Thus, vertical selection approaches
typically use only pre-retrieval features to make predictions. On the
other hand, vertical presentation approaches typically assume access
to post-retrieval evidence that can be used to decide the degree of rel-
evance of a vertical to a query.

2.2 Notation

We will describe features using the following notation. Vertical selection
and presentation requires predicting the relevance of a vertical to a
query. We use q and v to denote the query and candidate vertical in
question. In some cases, it is important to normalize feature values
by comparing across all candidate verticals. For example, consider a
feature that measures the probability of query q from a language model
derived from vertical v’s documents. Such a feature might be more
effective if we consider its value relative to the other candidate verticals.
In such cases, we will V to denote the set of all candidate verticals.

Finally, we use φ? to denote a vector of features of type ?. Query
features are denoted by φ?q , vertical features are denoted by φ?v, and
query-vertical features are denoted by φ?q,v.

Using this notation, we can think of a query-vertical pair as a vector
of features that describe different attributes of the query, the candidate
vertical, and the query-vertical pair:

[
φ?q . . . φ

?
v . . . φ

?
q,v

]
2.3 Query Features

Query features are generated from the query and are independent of
the vertical being considered.

Query string features. Query string features consider the pres-
ence or absence of certain keywords appearing in the query [Arguello
et al., 2009b, 2010; Diaz and Arguello, 2009; Jie et al., 2013; Li et al.,
2008; Tsur et al., 2016; Wang et al., 2016]. For example, query terms
such as “images”, “pictures”, and “pics” suggest the image vertical is
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relevant, while query terms such as “buy”, “price”, and “shop” suggest
the shopping vertical is relevant.

Tsur et al. [2016] also considered certain parts-of-speech appear-
ing in the query for the task of predicting relevance for a community
question-answering (CQA) vertical.

Query string features are typically binary-valued.
Query characteristic features. Query characteristic features de-

scribe attributes of the query, such as the query length, capitalization,
or the presence of certain characters [König et al., 2009; Ponnuswami
et al., 2011b,a; Tsur et al., 2016]. For example, a long query ending in
a question mark may suggest that the CQA vertical is relevant, while
capitalization may indicate the presence of a named entity and may
suggest that the news vertical is relevant.

Prior work has also considered the presence of a particular named-
entity type (e.g., person, location, organization) [Arguello et al., 2009b;
Diaz and Arguello, 2009; Arguello et al., 2010, 2011a]. For example, the
presence of a city name may suggest that the maps vertical is relevant,
while the presence of a company name may suggest that the finance
vertical is relevant.

Query class features. Queries can be categorized into different
classes associated with the user’s intent. For example, Broder [2002]
characterized web queries into three classes: navigational (the intent
is to reach a specific page), informational (the intent is to find infor-
mation present in one or more pages), and transactional (the intent
is to perform a web-mediated transaction). Certain query classes are
more likely to benefit from vertical results than others. For examples,
information queries are more likely to benefit from vertical results than
navigational queries.

In the context of aggregated search, prior work considered features
associated with the likelihood of the query being a navigational query
(presumably one for which the system should not display vertical re-
sults). König et al. [2009] used simple regular expressions to determine
whether the query contains a URL. Ponnuswami et al. [2011b] used a
proprietary query classifier. While details of the query classifier are not
described in the paper, one could imagine that navigational queries are
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frequent, have a low click entropy (i.e., are associated with clicks on the
same result(s)), and have a high term-overlap with the title of the most
clicked result(s). Jansen et al. [2008] discusses several simple heuristics
for identifying navigational, informational, and transactional queries.

Query category features. One of the most effective query fea-
tures used in prior work are query category features, which measure the
the query’s affinity to a pre-defined set of topical categories [Arguello
et al., 2009b,a, 2010, 2011a; Diaz and Arguello, 2009; Ponnuswami
et al., 2011b,a; Wang et al., 2016]. Query category features have been
successful for two reasons. First, many of the verticals investigated in
prior vertical selection and presentation research have been topically
focused (e.g., finance, health, movies, sports, travel). Second, query
categorization has been studied widely in the context of other infor-
mation retrieval tasks such as document ranking [Bennett et al., 2010]
and ad matching [Broder et al., 2007]. Thus, aggregated search sys-
tems can make use of well-tested query categorization approaches for
the purpose of feature generation.

Query categorization is challenging because state-of-the-art classi-
fiers tend to use a bag-of-words representation and queries are usually
very terse. A simple and effective solution is to categorize the query
indirectly by issuing the query to a collection of pre-categorized docu-
ments and classifying the query based on the categories associated with
the top search results [Shen et al., 2006].

Let C denote the set of topical categories under consideration (e.g.,
finance, health, movies, sports, travel, etc.) and let Rnq denote the top-
n search results returned in response to query q from the collation of
pre-categorized documents. The affinity of query q to category c ∈ C
can be computed as:

P (c|q) = 1
Z
∑
d∈Rn

q

P (c|d)× score(d, q),

where P (c|d) denotes the prediction confidence value that document d
belongs to category c, score(d, q) denotes the retrieval score of doc-
ument d in response to query q, and the normalizing factor Z =∑
d∈Rn

q
score(d, q).

In the above formula, P (c|q) is proportional to the average affinity of
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documents in Rnq with respect to category c. However, the average is a
weighted average, where the weights are associated with each top docu-
ment’s mass-normalized retrieval score. This is analogous to how we es-
timate the probability of terms in a relevance language model [Lavrenko
and Croft, 2001]

Arguello et al. [2009b] conducted a feature ablation study and found
that removing query category features caused the largest drop in verti-
cal selection performance. Naturally, many of the verticals considered
in this study were topically focused (e.g., travel, health, games, music,
autos, sports, movies, finance, etc.).

König et al. [2009] focused on the task of vertical selection for the
news vertical and computed query category features using a differ-
ent approach. In this case, the authors computed different query-term
statistics (e.g., average collection term frequency) from three different
collections. Two collections were intended to represent newsworthy top-
ics: a collection of recently published blogs and a collection of recently
published news articles. The third collection (i.e. Wikipedia) was in-
tended to represent non-newsworthy topics. The query was classified as
belonging to the “news” category by comparing query-term statistics
such as the average collection term frequency (averaged across query
terms) between the different collections.

Query ambiguity features. Given an ambiguous or underspec-
ified query, a common strategy for a search system is to diversify its
results. Prior research in aggregated search has not considered query
ambiguity as a source of evidence. However, it seems plausible that
presenting results from different verticals might be one way to address
the different possible intents of the user. Luo et al. [2014] describe a
query ambiguity classifier and mention vertical selection as one pos-
sible down-stream application that may benefit from knowing about
query ambiguity. The authors combine different features derived from
the query string (e.g., the query length), click information from pre-
vious impressions of the same query (e.g., the click entropy), and the
topical diversity associated with same-session queries in a query-log.
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2.4 Vertical Features

Vertical features are derived from the vertical and are independent of
the input query. In document retrieval, document priors are typically
used to favor certain documents over others irrespective of the query. In
the context of aggregated search, a vertical feature can be viewed as a
type of prior probability that the vertical is relevant to a query. Broadly
speaking, vertical features measure the current demand for a particular
vertical. A greater demand suggests that the vertical is relevant.

Vertical features have not been frequently used in prior aggregated
search research. Two studies used the click-through rate associated with
previous presentations of the vertical for any query [Jie et al., 2013;
Wang et al., 2016]. We could imagine using other measures to capture
the current demand for a given vertical. For example, we could consider
the number of queries or the number of clicks within the vertical search
interface (if one is available). Moreover, we could consider the number
of recently indexed documents in the vertical collection. In this case, the
assumption is that vertical supply is correlated with vertical demand.

2.5 Query-vertical Features

Query-vertical features measure the relationship between the query and
the vertical. In this respect, their values depend precisely on the query-
vertical pair under consideration. Query-vertical features can be cate-
gorized into pre-retrieval and post-retrieval features. Pre-retrieval fea-
tures can be computed without issuing the full query to the vertical in
question, while post-retrieval feature require issuing the full query to
the vertical.

2.5.1 Pre-retrieval Query-Vertical Features

Pre-retrieval query-vertical features can be generated without issuing
the query to the vertical. For this reason, these features are particularly
appropriate for vertical selection versus vertical presentation.

Co-occurrence features. Co-occurrence features are motivated
by the following intuition. Suppose a user issues the query “buy iphone”.
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The term “buy” suggests the user almost certainly wants shopping
vertical results. Now, suppose another user issues the query “iphone”.
A system might determine that the shopping vertical is still relevant
because many queries containing the term “iphone” also contain the
term “buy”.

Co-occurrence features consider the extent to which the input query
terms frequently appear in other queries containing keywords that are
strongly predictive for a particular vertical [Arguello et al., 2011a; Jie
et al., 2013; Zhou et al., 2012a]. A system might predict that the shop-
ping vertical is relevant to the query “iphone” because this term has
a high degree of co-occurrence with other query terms such as “buy”,
“price”, “shop”, and “deal”. Similarly, a system might predict that the
local vertical is relevant to the query “pizza” because this term has a
high degree of co-occurrence with other query terms such as “local”,
“nearby”, “places”, and “restaurants”.

Generating co-occurrence features requires two steps: (1) construct-
ing a list of “trigger” terms for the candidate vertical and (2) measuring
the degree of co-occurrence between the input query terms and the can-
didate vertical’s “trigger” terms. Step 1 is done in advance and only
once, while Step 2 is done at query time.

Constructing a list of trigger terms can be done manually or auto-
matically. For a well-understood vertical such as images, one can easily
come up with terms that are likely to remain predictive of relevance
over time (e.g., “pics”, “images”, “photo”, etc.) An automatic method
might consider how frequently the term appears in queries issued di-
rectly to the vertical.

Measuring the degree of co-occurrence between the input query
terms and the candidate vertical’s trigger terms can be done using
any co-occurrence measure. A commonly used one is point-wise mutual
information (PMI). Let q denote the input query and Tv denote the set
of trigger terms associated with vertical v. The PMI between the ith
input query term and the jth trigger term is given by:

PMI(qi, Tv,j) = log2

(
P (qi, Tv,j)

P (qi)× P (Tv,j)

)
.

The individual and joint term probabilities can be estimated using a
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query log. In this case, P (qi, Tv,j) corresponds to the proportion of
queries that contain both terms, P (qi) corresponds to the proportion
of queries that contain term qi (with or without Tv,j), and P (Tv,j)
corresponds to the proportion of queries that contain Tv,j (with or
without qi).

Assuming an input query with n terms and a candidate trigger list
of m terms, the affinity to between query q and vertical v can then be
measured using the average PMI between all query-/trigger-term pairs:

φco-occurq,v = 1
n×m

n∑
i=1

m∑
j=1

PMI(qi, Tv,j)

In prior work, Arguello et al. [2011a] used a set of manually con-
structed trigger terms and computed the input query’s affinity to the
vertical using the chi-squared statistic and the AOL query-log.

Vertical query-log features. In some cases, a vertical may have
direct search capabilities. For example, Google users can issue queries
directly to the news vertical if they already know they want news re-
sults. Query-log features assume that the queries in the vertical query-
log exemplify the types of queries for which the vertical is relevant.

One approach is to consider the number of times the query was
issued directly to the vertical by users. For example, Diaz [2009] con-
sidered the frequency of the query in the last k queries issued directly
to the vertical and in the last k queries issued directly to the vertical
on the previous day.

A different approach is to measure the similarity between the input
query and the queries in the vertical query-log. A simple approach that
has been effective in prior work is to compute the query-generation
probability given a language model constructed from the vertical’s
query-log [Arguello et al., 2009b; Diaz and Arguello, 2009; Arguello
et al., 2010]. Let θqlogv denote the query-log language model for vertical
v. The query-generation probability for query q can be computed as:

φqlogq,v = 1
Zq

∏
w∈q

P (w|θqlogv ). (2.1)

The query-generation probability depends on the length of the query.
Queries with more query terms will usually have a lower probability
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than those with fewer query terms. Machine learned classifiers per-
form better when features values are comparable across training and
test instances. For this reason, it is important to normalize the query-
generation probability as follows:

Zq =
∑
v∈V

∏
w∈q

P (w|θqlogv )

 . (2.2)

Vertical query-log features have been found to be highly effective.
Arguello et al. [2009b] found vertical query-log features to be the best
single-evidence predictor. In this case, the authors simply predicted
the vertical with the greatest query likelihood (Equation 2.1) if it was
above a threshold that was tuned using validation data.

General query-log features. Some verticals may not have di-
rect search capabilities and may therefore not have a vertical-specific
query-log available. For example, consider the weather vertical in most
commercial search engines. The address this issue, Zhou et al. [2012a]
proposed the following approach.

Again, let Tv,j denote a set of “trigger” terms associated with verti-
cal v. For example, for the weather vertical, Tv,j can contain the single
term “weather”. Zhou et al. [2012a] used a general query-log find queries
related to vertical v by including all queries with at least one term in
Tv,j and all queries with clicks on URLs containing at least one term
in Tv,j . Then, the affinity of vertical v for query q was be measured as:

φgen-qlogq,v = 1
Zq

∏
w∈q

P (w|θgen-qlogv ),

where θgen-qlogv denotes a language model generated from all queries
related to vertical v, and Zq is computed as in Equation 2.2.

Vertical corpus features. Vertical corpus features aim to esti-
mate the amount of query-related content in the vertical. This is typi-
cally done using documents sampled from the vertical.

In cases where vertical documents are only accessible via a search
interface, vertical documents can be obtained using query-based sam-
pling [Callan and Connell, 2001b; Shokouhi et al., 2006a; Caverlee et al.,
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2006]. The basic idea behind query-based sampling is to gather a sam-
ple of vertical documents by issuing random queries to the vertical
and downloading the top results. Sampling queries can be generated
by randomly selecting terms from the downloaded results [Callan and
Connell, 2001a], or by randomly selecting queries for an external query-
log [Shokouhi et al., 2006a]. Usually, the same number of documents
are sampled from each vertical. Callan and Connell [2001a] found that
300-500 samples per resource is enough for smaller collections, and
Shokouhi et al. [2006a] found that larger samples of about 1,000 docu-
ments per resource improved resource selection performance for larger
collections.

In general, vertical corpus features can be generated in two ways.
The simplest approach is to compute the similarity between the query
and the set of documents sampled from the vertical. Si et al. [2002]
proposed the following “large document” approach for the task of re-
source selection in text-based federated search. Let vs denote the set
of documents sampled from vertical v and θvs denote the language
model generated from these samples. The query-sample similarity can
be computed as:

φlarge-docq,v = 1
Zq

∏
w∈q

P (w|θvs), (2.3)

where normalizer Zq =
∑
v∈V

(∏
w∈q P (w|θvs)

)
. Again, the raw query

likelihood score depends on the query length. Thus, to make these val-
ues comparable across queries, Zq normalizes across candidate verticals.
This is considered a “large document” approach because the vertical
is modeled as a single large document (a virtual concatenation of all
documents in vs).

Some vertical documents (e.g., images, videos) may not be inher-
ently associated with lots of text (if any). In such cases, we may be
able to use textual metadata information to represent the query and
the vertical documents. Duarte Torres et al. [2013] proposed such an
approach and used metadata tags from Del.icio.us, a social bookmark-
ing site where users tag webpages using freely chosen index terms.1 The

1https://delicious.com/

https://delicious.com/
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input query was represented using the metadata tags associated with
the top-n results from an external collection of tagged documents, and
each vertical was represented using tags associated with its sampled
documents. The query-vertical similarity was then computed based on
the probability given to the query-tags from the vertical’s tag-based
language model (similar to Equation 2.3). Duarte Torres et al. [2013]
found this approach to be highly effective as a single-evidence predictor.

One potential limitation of large document approaches is that they
do not directly model the absolute number of query-related documents
in the vertical. An alternative approach is to use an algorithm like
ReDDE [Si and Callan, 2003a], which stands for Relevant Document
Distribution Estimation.

The ReDDE algorithm proceeds as follows. First, it combines the
samples from each vertical v ∈ V in a centralized sample index (CSI).
Then, given query q, it performs a retrieval from the CSI. Let Rnq,csi
denote the top-n CSI results returned in response to query q. ReDDE
estimates the number of query-related documents in vertical v as:

φreddeq,v = |v|
|vs|

∑
d∈Rn

q,csi

I(d ∈ vs), (2.4)

where |vs| denotes the number of documents sampled from vertical v, |v|
denotes the total number of documents in v, and I denotes the indicator
function, which returns 1 if the argument is true and 0 otherwise.

The intuition behind ReDDE is that each document d in the top-
n CSI results represents exactly |v|

|vs| unseen documents in the verti-
cal from which document d originated. Factor |v||vs| in the equation is
responsible to estimating the absolute number of query-related doc-
uments in the vertical. The ReDDE algorithm, and variants such as
Soft.ReDDE [Arguello et al., 2009b], have proven to be important fea-
tures for the task of vertical selection [Arguello et al., 2009b; Diaz
and Arguello, 2009; Arguello et al., 2009a, 2010; Zhou et al., 2012b;
Duarte Torres et al., 2013].

Equation 2.4 requires knowing the total number of documents in
each vertical. In a cooperative environment, the system might have
access to this information. Alternatively, several collection size estima-
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tion approaches have been proposed in prior work [Liu et al., 2002;
Khelghati et al., 2012; Shokouhi et al., 2006b].

Two simple collection size estimation approaches are: sample-
resample [Si and Callan, 2003a] and capture-recapture [Liu et al., 2001].

The sample-resample approach works as follows. Let dfi,v denote the
number of documents in vertical v that contain term ti, and let dfi,vs

denote the number of documents in vs that contain ti. If we assume vs
to be a truly representative sample of v, then:

dfi,v
|v|

= dfi,vs

|vs|
.

If this equality holds true, then the number of documents in v can be
estimated as:

|v| = dfi,v × |vs|
dfi,vs

.

The capture-recapture approach works as follows. Let vs1 and vs2
denote two random samples from vertical v. Given these two samples,
the number of documents in v can be estimated as:

|v| = |vs1| × |vs2|
|vs1 ∩ vs2|

, (2.5)

where the denominator corresponds to the number of documents in
common between both samples.

Pre-retrieval query performance features. The goal of query
performance prediction is to automatically estimate a query’s retrieval
performance without user feedback or document relevance judgements.
Within the context of aggregated search, query performance predictors
can be used to favor verticals that are likely to produce an effective
retrieval for the given query.

Query performance predictors can be classified into pre-retrieval
predictors (do not require conducting a full retrieval from the collec-
tion) and post-retrieval predictors (require conducting one or more full
retrievals from the collection).

At their core, query performance predictors assume that well-
performing queries are highly topically focused. One simple pre-
retrieval approach is to measure the degree of co-occurrence between
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the query terms. If the query terms tend to appear together in the same
documents, then the query describes a coherent topic with respect to
the vertical collection.

Hauff [2010] used the average point-wise mutual information (PMI)
between query-term pairs. The PMI between query terms wi and wj is
given by:

PMI(wi, wj) = log2

(
P (wi, wj)

P (wi)× P (wj)

)
.

In this case, P (wi, wj) corresponds to the proportion of documents in
vertical v that contain both terms, while P (wi) and P (wj) correspond
to the proportion of documents in v that contain term wi (with or
without wj) and term wj (with or without wi), respectively.

Implicit Feedback Features. In an operational setting, a system
may be able to use previous user interactions to predict whether a
vertical is relevant to a query. Implicit feedback features are typically
derived from previous clicks on the vertical results, either from the
same query or similar queries. One approach is to simply count the
number of times a previous user clicked on results from a particular
vertical for the same query.

Another approach is to measure the query-vertical click-through
rate [Ponnuswami et al., 2011b,a; Wang et al., 2016]. Let Cvq denote
the number of times vertical v was presented for query q and the user
clicked on it, and let Svq denote the number of times vertical v was
presented for query q and the user did not click on it. The query-
vertical click-through rate is give by:

φclickq,v =
Cvq

Cvq + Svq
. (2.6)

The same idea can be extended to derive evidence from previous
queries that are similar to the input query, but not exactly the same.
Suppose that the input query is “new york style pizza central park”,
which suggests that the system should display results from a local busi-
nesses vertical. Furthermore, suppose that this query has not been en-
tered into the system before, but the query “new york pizza central
park” has, and has a local vertical click-through rate of about 20%.
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One would expect the similar query “new york style pizza central park”
to have a similar click-through rate.

Let Q denote the set of all previously run queries and let sim(q, q′)
denote a similarity measure between query q and q′. The click-through
rate for similar queries can be computed as:

φsim-click
q,v = 1

Z
∑
q′∈Q

sim(q, q′)× φclickq,v , (2.7)

where normalizing constant Z =
∑
q′∈Q sim(q, q′).

Query similarity can be measured in different ways, for example,
based on the query-term overlap, based on the overlap between the top
results returned from a particular collection, or based on the similar-
ity between the language models of the top results returned from the
vertical or an external collection [Diaz, 2009].

Finally, another approach is to generate a language model from pre-
vious queries with clicks on results from the particular vertical. Then,
we can measure the query-generation probability given by this language
model to the input query [Arguello et al., 2009a, 2011a]. Let θclickv de-
note a language model generated from queries with clicks on results
from vertical v. The query generation probability is given by:

φlm-click
q,v = 1

Z
∏
w∈q

P (w|θclickv ). (2.8)

Again, because the query generation probability depends on the
query length, it is important to normalize this value by Z =∑
v∈V

(∏
w∈q P (w|θclickv

)
.

2.5.2 Post-retrieval Query-Vertical Features

Post-retrieval query-vertical features are generated directly from the
vertical results in response to the query. Because post-retrieval fea-
tures are more computationally expensive than pre-retrieval features,
these features are typically used for vertical presentation. Post-retrieval
query-vertical features measure the quality of the vertical results re-
turned in response to the query.

Some of the features used in prior work seem fairly general and
are likely to be effective for different verticals. Examples include the
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number of results returned by the vertical [Wang et al., 2016], the
retrieval score of the top result [König et al., 2009], the average retrieval
score of the top-n results [Ponnuswami et al., 2011b], and the average
number of query terms appearing in the top-n results [Arguello et al.,
2011a]. For the task of vertical presentation, Arguello et al. [2011a]
conducted a feature ablation study and found the greatest performance
drop from removing features measuring the term overlap between the
query and the top vertical results.

Other features are more specific to a particular vertical. For exam-
ple, Diaz [2009] focused on the task of vertical selection for the news
vertical and included features measuring the recency of the top news
results: the average publication age of the top-n vertical results and
the proportion of most recently indexed news articles in the top-n re-
sults. Including such features is motivated by the fact that recency
is an important criterion for predicting relevance for news. The same
idea could be applied to other verticals. For example, for local the
vertical, we could measure the average geographical proximity of the
top-ranked locations, and for the video vertical, we could measure the
average number of views associated with the top-ranked videos.

Post-retrieval query performance features. Post-retrieval
query performance predictors estimate a query’s effectiveness from the
retrieval itself. For textual verticals, a commonly used query perfor-
mance predictor is the Clarity score [Cronen-Townsend et al., 2002].
Clarity assumes that the top results from an effective query will have a
highly topical language model, which will diverge significantly from a
general, query-independent language model. To this end, Clarity mea-
sures the Kullback-Leibler divergence (or dissimilarity) between the
language model of the top-ranked documents and a background lan-
guage model.

Let θq,v denote a query-biased language model derived from v and
let θG denote a general, query-agnostic language model. The Clarity
score can be computed as:

φclarityq,v =
∑
w∈q

P (w|θq,v) log
(
P (w|θq,vs)
P (w|θG)

)
. (2.9)

Let Rnq,v denote the top-n results returned from vertical v in response
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to q. Language model θq,v can be estimated as:

P (w|θq,v) = 1
Z

∑
d∈Rn

q,v

P (w|θd)× score(d, q), (2.10)

where θd denotes the language model of document d, score(d, q) de-
notes the retrieval score given to document d, and normalizing factor
Z =

∑
d∈Rn

q,v
score(d, q). Equation 2.10 essentially averages the top-

n document language models in a weighted fashion (weighted by the
mass-normalized document retrieval score).

Prior work in aggregated search used the Clarity score as a type
of feature, but used retrievals from a collection of documents sampled
from the vertical rather than the vertical’s actual retrieval [Arguello
et al., 2009b,a; Diaz and Arguello, 2009; Arguello et al., 2010; Zhou
et al., 2012b; Duarte Torres et al., 2013].

[König et al., 2009] used a feature similar to post-retrieval Clarity
(Equation 2.9) for the purpose of vertical selection for the news vertical.
Given a query, the authors considered the average text-based similarity
between the top-50 results returned by the news vertical search engine.
Similar to Clarity, the underlying assumption is that the top results
from an effective retrieval should be focused on the same topic.

2.6 Summary and Considerations

In this chapter, we reviewed a wide range of features considered in
prior vertical selection and presentation research. We considered fea-
tures generated from the query, the vertical, and the query-vertical
pair.

Table 2.1 provides a summary of the different features types dis-
cussed in this chapter. We indicate whether the feature is a pre- or
post-retrieval features, provide a brief description, and mention any
resources or tools required to generate the feature value.

At this point, it is worth highlighting a few important points.
First, not every feature will be available for every vertical. For ex-

ample, vertical query-log features will not be available for verticals that
do not have direct search capabilities. Similarly, vertical corpus features
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will not be available for verticals that do have an underlying collection
of retrievable items.

Second, not every feature will be equally predictive of relevance for
every vertical. This is especially the case for query features (derived
from the query and independent of the vertical in question). For exam-
ple, features that describe the topic of the query will be more effective
for verticals that are topically focused (e.g., autos, games, health) than
for verticals that cover a wide range of topics (e.g., community Q&A,
images, video).

Third, in this chapter, we also characterized features as pre-retrieval
and post-retrieval features. As previously mentioned, vertical selection
approaches tend to focus on pre-retrieval evidence, while vertical pre-
sentation approaches tend to focus on pre- and post-retrieval evidence.
That said, in an operational setting, certain queries are likely to be
seen over and over again. In this respect, aggregated search systems
can also cache post-retrieval feature values to inform future vertical se-
lection decisions for the same query. For example, an end-to-end system
can cache the number of image vertical results in response to the query
“jaguar” (a type of post-retrieval features) and use this as a vertical
selection feature for future impressions of the same query. Moreover,
we could imagine diffusing post-retrieval feature values across similar
queries to be used as vertical selection features, similar to how we dif-
fused click-through rate in Equation 2.8.

Finally, certain verticals are highly dynamic. Consider the task of
predicting whether the news vertical is relevant to a query. A query’s
newsworthiness is likely to change over time. Given a dynamic environ-
ment, certain features may be more effective than others. For example,
a vertical feature such as the number of queries recently issued to the
news vertical by users may remain predictive over time. Similarly, a
query-vertical feature that measures the average age of the top news
vertical results may also remain predictive. Other features, for exam-
ple, query category features that describe the topic of the query may
become less effective as the vertical changes. It is important for system
designers to consider features that do not grow “stale” over time. Oth-
erwise, the model needs to re-trained periodically to update how it is
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combining evidence to make predictions.
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Table 2.1: Summary of features types discussed in Chapter 2. The description
provides a brief explanation of the features and the required resources indicate the
resources or tools required to compute the feature values.

Pre/post Feature Name Description Required Resource

Pre Query keywords
Precense of certain key-
words in the query (e.g.,
news, pics, shopping)

Manually selected key-
words

Pre Query characteristic
Query length, punctu-
ation, capitalization,
named entity types

Named-entity Tagger

Pre Query class Navigational, informa-
tional, transactional Query class classifier

Pre Query category
Query’s affinity to
pre-defined topical
categories

Collection of pre-
classified documents or
topical classifier

Pre Query ambiguity Likelihood of query hav-
ing ambiguous intent

Query ambiguity classi-
fier

Pre Vertical click-through
rate

Vertical click-through
rate for any query Click data

Pre Co-occurrence with ver-
tical triggers

Average co-occurrence
between query terms
and vertical trigger
terms

Manually selected trig-
ger terms and query-log

Pre Vertical query-log
Query likelihood from
vertical query-log lan-
guage model

Vertical query-log

Pre General query-log
Query likelihood from
language model of
queries with clicks on
vertical documents

Query-log

Pre Large document query-
vertical similarity

Query likelihood from
vertical document lan-
guage model

Sampled vertical docu-
ments

Pre ReDDE
Estimated number of
query-related vertical
documents

Sampled vertical docu-
ments and vertical size
estimates

Pre
Query-term co-
occurrence in vertical
collection

Average point-wise
mutual information be-
tween query term pairs
in vertical collection

Vertical inverted lists

Pre Query-vertical click-
through rate Clicks divided by views Click data

Pre
Estimated query-
vertical click-through
rate

Weighted average click-
through rate from simi-
lar queries (weighted by
similarity)

Click data

Post Vertical scores Retrieval scores from top
vertical results Vertical retrieval scores

Post Clarity
Divergence of top results
from a background (gen-
eral) language model

Top vertical results and
background language
model

Post Top vertical results sim-
ilarity

Average pairwise simi-
larity between top verti-
cal results

Top vertical results



3
Approaches for Vertical Selection and

Presentation

In the previous chapter, we reviewed different sources of evidence that
can be used to inform vertical selection and presentation decisions. In
this chapter, we review approaches for using these sources of evidence
to make predictions. We first review approaches for vertical selection—
deciding which verticals to select in response to a query. Then, we
review approaches to vertical presentation—deciding where to present
each selected verticals relative to the web results and each other.

3.1 Vertical Selection

The goal of vertical selection is to decide which verticals to present in
response to a query. Vertical selection is essentially a multiclass classi-
fication task. Given a query, the system must make a binary decision
for each candidate vertical.

3.1.1 Single-evidence Approaches

The simplest vertical selection approaches use a single source of evi-
dence to predict which verticals to select in response to a query. Single-
evidence approaches involve two steps: (1) computing the measure for

41
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each candidate vertical and (2) using one or more thresholds to predict
which verticals to select and which ones to suppress. One alternative is
to use the same threshold for all candidate verticals. This alternative
makes sense if we believe the single-evidence measure is directly compa-
rable across all candidate verticals. Alternatively, we can use different
thresholds for the different candidate verticals.

Several single-evidence approaches have been evaluated in prior
work. Arguello et al. [2009b] evaluated a single-evidence predictor de-
rived from vertical query-log data (i.e., from queries issued directly to
the vertical by users). This approach measured the query likelihood
score given by a language model generated from the vertical query-
log (Equation 2.1). The same threshold was applied to make binary
predictions for each candidate vertical. The threshold was tuned using
training data in the form of a set of queries with relevance judgements
for each candidate vertical.

Duarte Torres et al. [2013] evaluated several single-evidence ap-
proaches derived from sampled vertical documents. These included the
ReDDE score (Equation 2.4), the Clarity score (Equation 2.9) and
the query-likelihood score (Equation 2.3). The ReDDE and query-
likelihood scores were found to be more effective than the Clarity score,
possibly because Clarity scores are not directly comparable across ver-
ticals.

Diaz [2009] proposed a a single-evidence approach derived from
vertical click-through data (previous vertical clicks and skips). Again,
let Cvq denote the number of times the system selected vertical v and the
user clicked on it, and let Svq denote the number of times the system
selected vertical v and the user did not click on it. As described in
Equation 2.6, the click-through rate for vertical v and query q (denoted
as φclickq,v ) is the number of times the vertical was clicked (Cvq ) out of the
number of times it was displayed on the SERP (Cvq + Svq ). Finally, the
system can decide to select vertical v in response to q if the historical
click-through rate exceeds a threshold.

The main limitation of this approach is that it requires an ex-
act match between queries. In theory, vertical v should have a similar
click-through rate for similar queries. For example, the news vertical
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should have a similar click-through rate for the queries “u.s. presidential
elections” and “american presidential elections”. Diaz [2009] suggested
smoothing the click-through rate for vertical v and query q by using the
click-through rate for vertical v and queries similar to q (Equation 2.8).
The basic idea is to share click-through statistics across queries that are
likely to have the same intent. As previously mentioned, the similarity
between two queries can be computed in different ways, for example,
based on the overlap between query terms, based on the overlap be-
tween the top results return from an external collection, or based on the
similarity between the relevance models associated with both queries
(Equation 2.10). Diaz [2009] computed the Bhattacharyya correlation
between the relevance models associated with both queries:

sim(q, q′) =
∑
w

√
P (w|θq)P (w|θq′).

Other query-similarity measures have been proposed in prior
work [Metzler et al., 2007; Sahami and Heilman, 2006; Wen et al.,
2001].

Single-evidence predictors are simple and intuitive. However, they
have to main shortcomings. First, they require that the source of ev-
idence be available for all candidate verticals. Vertical query-log evi-
dence will not be available for verticals that do not have direct search
capabilities. Likewise, vertical click-through data will not be available
for verticals that are not designed to be clicked. Second, single-evidence
predictors rely on a single source of evidence to make predictions. Prior
research has found that approaches that combine multiple sources of
evidence perform better [Arguello et al., 2009b,a; Hong et al., 2010].
Next, we review approaches that combine multiple sources of evidence
for predicting which verticals a relevant to a query.

3.1.2 Multiple Evidence Approaches

The most successful approaches for vertical selection using machine
learning to combine multiple sources of evidence as input features to a
model. All the sources of evidence reviewed in Chapter 2 can be seen
as potential features for a vertical selection model.
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Combining evidence for vertical selection poses two main challenges.
First, certain features may not be available for some verticals. For ex-
ample, verticals without direct search capabilities will not have ver-
tical query-log features. Second, vertical selection requires learning a
vertical-specific relationship between certain features and the relevance
of a particular vertical. For example, query-category features may be
more effective for verticals that are topically focused than for verticals
that cover a wide range of topics, such as a community Q&A vertical.
In all prior work to date, both of these challenges have been addressed
by training independent binary classifiers (one per vertical) [Li et al.,
2008; König et al., 2009; Diaz and Arguello, 2009; Arguello et al., 2009b,
2010]. In this respect, each classifier can adopt a different feature rep-
resentation and focus on the features that are uniquely predictive for
its corresponding vertical.

Machine learned classifiers use training data to learn a predictive
model. In the context of vertical selection, training data is in the form
of a set of queries Qv with relevance judgments with respect to vertical
v. The machine learning algorithm uses the training data to learn a
predictive relationship between the set of input features and the rel-
evance of the vertical. We can think of a vertical selection model as
follows:

f(q, v) = g(φ(q,v), θv),

where f(q, v) denotes the model’s confidence value that vertical v is
relevant to query q, φ(q,v) denotes a m× 1 vector of m features, and θv
denotes the parameters of the model. Feature vector φ(q,v) can include
any of the features reviewed in Chapter 2. Function g and the exact
definition of θv depend on the learning algorithm used.

Prior work on vertical selection has used different machine learned
classifiers. One important decision is whether to use a linear or non-
linear classifier.

Linear Classifiers. In a linear classifier, each feature contributes
to the model’s final prediction, but the model does not exploit interac-
tions between features. For example, the model cannot learn that the
vertical v is more likely to be relevant if the value of feature i is high
and the value of feature j is low (or vice-versa).
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As an example of a simple linear classifier, a perceptron classifier
would predict that vertical v is relevant to q using the following func-
tion:

f(q, v) =

1 if φ(q,v) · θv > 0
0 otherwise.

In this case, θv is defined as a m × 1 vector of feature weights.1 The
algorithm learns parameters θv such that the classification accuracy in
the training set Qv is minimized.

A popular linear classifier used in prior vertical selection work is
logistic regression [Li et al., 2008; Diaz, 2009; Arguello et al., 2009b;
Diaz and Arguello, 2009]. In the case of logistic regression, φ(q,v) is also
defined as an m× 1 vector of feature weights, and f(q, v) is given by:

f(q, v) =
exp(φ(q,v) · θv)

1 + exp(φ(q,v) · θv)
.

Non-linear Classifiers. Other approaches for vertical selection
have used non-linear classifiers that are able to exploit feature interac-
tions. König et al. [2009] and Arguello et al. [2010] used the Gradient
Boosted Decision Trees (GBTD) algorithm [Friedman, 2002]. The main
component of a GBDT model is a regression tree. A regression tree is a
simple binary tree. Each internal node corresponds to a feature and a
splitting condition which partitions the data. Each terminal node cor-
responds to a response value, the predicted output value. GBDT com-
bines regression trees in a boosting framework to form a more complex
model. During training, each additional regression tree is trained on
the residuals of the current prediction.

Non-linear classifiers such as GBDT have advantages and disad-
vantages. The main advantage is that they can exploit complex inter-
actions between features. This, however, also allows the algorithm to
overfit the training data. While it may seem counter-intuitive at first,
a more flexible model that is able to perfectly classify the training data
may be less able to generalize well to new data. Choosing between a
linear or non-linear classifier may depend on different factors, such as

1For simplicity, we are omitting the bias parameter b
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the size of the training data and whether we believe that modeling
feature interactions is likely to improve vertical selection performance.

3.1.3 Adaptive Models

A vertical’s relevance to a query is likely to change over time. This
is especially the case for verticals that focus on recent events such as
news. For example, the query “boston” may be a newsworthy query
during some time periods (when some significant event happens), but
not others. Ideally, we would like a vertical selection system that can
adapt to changes in users’ demands.

As mentioned in Section 2.6 certain features are useful in building
an adaptive model. For example, the input query’s likelihood given by
the vertical’s query-log language model is a type of adaptive feature,
as long as the language model can be updated to reflect the previous
queries recently issued to the vertical by users. The feature value should
be high when the query “boston” is newsworthy and low otherwise.

Another approach to developing an adaptive solution is to period-
ically re-train the system using vertical clicks and skips [Diaz, 2009;
Ponnuswami et al., 2011b,a; Jie et al., 2013]. This would allow use to
exploit features whose values do not change over time (e.g., the query
contain the word “boston”). As previously mentioned, a vertical click
is a click on the vertical results block, and a vertical skip is a click on a
lower-ranked result, but not the vertical. Clicks can be treated as true
positive predictions and skips are treated as false positive predictions.
We can use the current model to gather a set of vertical clicks and
skips, and then use this data to re-train the model to predict clicks and
skips with (hopefully) greater accuracy.

The process outlined above has one main limitation. We can use
clicks and skips to reason about the current system’s level of precision.
However, because we cannot observe clicks on verticals that are not
presented, we cannot reason about the current system’s level of recall.
That is, we cannot estimate how often the system should have presented
the vertical, but did not.

In machine learning, exploitation happens when a model outputs
the prediction with the greatest confidence value. Conversely, explo-
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ration happens when the model outputs a random prediction in order
to obtain feedback. Systems that aim to learn from user feedback must
decide how to balance exploitation versus exploration. If we only do
exploitation, then the system has no way of improving its level of re-
call. On the other hand, if we only do exploration (by always making
random predictions), then we start deteriorating the user experience.
Next, we cover two approaches that can balance exploration versus
exploitation.

ε-greedy. The simplest approach for balancing exploration and ex-
ploitation is referred to as the ε-greedy approach. In this case, the sys-
tem outputs its most confident prediction with probability 1 − ε, and
outputs a random prediction with probability ε [Sutton and Barto,
1998]. Parameter ε controls the level of exploration versus exploitation.
A high value (e.g., ε = 0.9) results in a large number of random predic-
tions, while a low value (ε = 0.1) results in a small number of random
predictions.

Diaz [2009]. One limitation of the ε-greedy approach is that level
of exploitation versus exploration is stationary. In certain cases, we may
want to decrease the level of exploration as we accumulate more user
feedback. Diaz [2009] proposed a vertical selection approach that can
balance exploration versus exploitation in a more principled way.

Let Cvq and Svq denote the number of observed clicks and skips for
vertical v and query q. Suppose we have a vertical selection system for
vertical v and suppose that p̃vq denote the system’s predicted probability
that v is relevant to q. The system is configured to select v in response
to q when its prediction confident value exceeds a threshold τ .

Diaz introduced exploration into this framework as follows. Suppose
we have a machine learned model that outputs a probability that v is
relevant to q denoted as πqv. Instead of having the final system output
p̃vq = πqv, we can sample p̃vq from a Beta distribution defined by the
following parameters:

p̃vq ∼ Beta(a, b)
a = µπvq + Cvq

b = µ(1− πvq ) + Svq ,
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where µ is a parameter of the system.
To better understand this approach, let us consider the four dif-

ferent Beta distributions illustrated in Figure 3.1. Figures 3.1(a)
and 3.1(b) correspond to cases where a < b, while Figures 3.1(c)
and 3.1(d) correspond to cases where a > b. Given the above definitions
of a and b, the value a is directly proportional to three factors: (1) that
machine learned model’s confidence that v is relevant to q (πvq ), (2) the
number of previously observed clicks for the query-vertical pair (Cvq ),
and (3) parameter µ. Likewise, the value of b is proportional to: (1) that
machine learned model’s confidence that v is not relevant to q (1−πvq ),
(2) the number of previously observed skips for the query-vertical pair
(Cvq ), and (3) parameter µ.

Suppose we configure the system to display vertical v in response
to q if p̃vq is greater than τ = 0.5. It is more likely that p̃vq < 0.5 (v is
not selected) in cases where a < b (Figures 3.1(a) and 3.1(b)), either
because πvq is low or because Cvq < Svq . Moreover, if we compare the two
figures, the likelihood that p̃vq < 0.5 is much greater for high values of
a and b (e.g., more implicit feedback). Conversely, it more likely that
p̃vq > 0.5 (v is selected) in cases where a > b (Figures 3.1(c) and 3.1(d)),
either because πvq is high or because Cvq > Svq . Again, the likelihood that
p̃vq > 0.5 is much greater for high values of a and b (e.g., more implicit
feedback).
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Figure 3.1: Beta distributions with different values of parameters a and b. Fig-
ures 3.1(a) and 3.1(b) represent cases where the system should suppress vertical
v because a < b. The likelihood that p̃v

q < 0.5 (gray area) is much greater when
a << b. In a similar fashion, Figures 3.1(c) and 3.1(d) represent cases where the
system should select vertical v because a > b. The likelihood that p̃v

q > 0.5 (gray
area) is much greater when a >> b.
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Given this framework, the variance of p̃vq depends on four different
components: the machine learned model’s confidence that the vertical
is relevant (πvq ) or not relevant (1− πvq ), the observed number of clicks
(Cvq ), the observed number of skips (Svq ), and the value of parameter µ.
As all these values increase, the expected value of p̃vq converges to the
mean of the Beta distribution, which in this case corresponds to:

Cvq + µπvq
Cvq + Svq + µ

.

This framework has several nice properties. First, the level of ex-
ploration is greater in cases where the machine learned model is less
confident about the vertical’s relevance or non-relevance for the query.
Second, parameter µ controls the amount of exploration as well as the
amount of confidence given to the machine learned model in light of
previously observed clicks and skips. Finally, as the system observes
more clicks and skips, p̃vq approximates the click-through rate:

Cvq
Cvq + Svq

.

3.2 Vertical Presentation

The goal of vertical presentation is to decide where to present the
selected verticals relative to the web results and each other. In general,
vertical presentation is a more difficult task than vertical selection,
for several reasons. First, if we assume graded relevance, the goal of
the system is to present the more relevant vertical or web results in
a more salient way. In practice, this translates to presenting the most
relevant results higher on the SERP. Thus, the system must predict the
degree of relevance of a vertical to a query. Second, the system must
consider different factors in deciding where to present each selected
vertical. At the very least, the system must consider the query’s vertical
intent as well as the quality of the results returned by the vertical. For
example, while the query “buy iphone” clearly has shopping vertical
intent, a system may decide to present the shopping results lower on
the SERP if the results appear to be poor. In fact, in some cases, a
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system may even have the option of not displaying a previously selected
vertical in light of post-retrieval evidence. Finally, vertical presentation
systems have to deal with the fact that different verticals are associated
with different levels of visual salience. So, for example, displaying non-
relevant images in the middle of the SERP may have a more negative
effect than displaying non-relevant news results in the same position.

Previously proposed approaches to vertical presentation can be clas-
sified into two different types: pointwise and pairwise approaches. In
both cases, each selected vertical v corresponds to a block—a sequence
of tv results that must be presented together on the SERP. In current
systems, certain verticals (e.g., news) organize the results vertically
within the block, while other verticals (e.g., images) organize the re-
sults horizontally.

3.2.1 Pointwise Approaches

Pointwise approaches directly predict the degree of relevance of each
vertical block to a query. In this respect, pointwise approaches for verti-
cal presentation can be very similar to vertical selection approaches. We
can train independent, vertical-specific classifiers to predict the degree
of relevance of a vertical to a query and use the prediction confidence
values the different classifiers to decide where to present each selected
vertical. By training independent classifiers we can have each classifier
use a different feature representation and learn a vertical-specific rela-
tionship between feature values and the relevance of the corresponding
vertical.

Several pointwise approaches investigated in prior work assume that
vertical blocks can only be presented in specific slots within the web
results [Arguello et al., 2011a; Ponnuswami et al., 2011b,a]. This idea
is illustrated in Figure 3.2. In this example, vertical blocks can only be
presented above the first web result (slot s1), between the third and
fourth web result (slot s2), between the sixth and seventh web result
(slot s3), and below the tenth web result (slot s4).

Pointwise approaches investigated in prior work trained indepen-
dent, vertical-specific classifiers to predict the degree of relevance of a
vertical to a query [Arguello et al., 2011a; Ponnuswami et al., 2011b,a].
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Figure 3.2: Some pointwise approaches to vertical presentation assume that vertical
results can only be slotted in certain position on the SERP (s1 − s2). EOS denotes
the end of SERP.

Arguello et al. [2011a] used training data produced by human annota-
tors. Each classifier was trained to predict whether the vertical should
be presented on the SERP or not. Ponnuswami et al. [2011b,a] used
training data derived from previous vertical clicks and skips. Each clas-
sifier was trained to predict vertical clicks and skips when the vertical
was displayed above the first web result. In all three studies, vertical
blocks were positioned on the SERP using different thresholds, denoted
as τ1 − τ4 in Figure 3.2, where τ1 > τ2 > τ3 > τ4. Each vertical block
was presented in the top-ranked slot si as long as the vertical prediction
confidence value exceeded threshold τi. Vertical blocks within the same
slot were ordered in descending order of prediction confidence value.

In terms of features, Arguello et al. [2011a] used some of the pre-
and post-retrieval features described in Chapter 2. Interestingly, Pon-
nuswami et al. [2011b,a] also included features derived from the top-10
web results on the SERP. Displaying vertical results in the top slots
displaces more of the web results below the fold. To model the vertical’s
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relevance relative to the web results, the authors considered features
derived from the web results, including the retrieval score of the top
web result, the average retrieval scores across the top-10 web results,
and the query/web-result click-through rate for each of the top-10 web
results.

Jie et al. [2013] proposed a pointwise approach for vertical pre-
sentation with fewer presentation constraints—vertical blocks could be
presented above the web results, below the web results, and in between
any two web results. Training data for each vertical was generated us-
ing previous clicks and skips when the vertical was displayed anywhere
on the SERP. Verticals were slotted on the page using the following ap-
proach. In addition to training vertical specific classifiers, the authors
trained a model to predict clicks and skips for web results using dif-
ferent features, including the web result rank, retrieval score, and the
query category. At test time, the slotting mechanism proceeded down
the web results (from top-to-bottom) and slotted vertical v above web
result wi if the predicted click probability for v was greater than the
predicted click probability for wi.

Pointwise approaches have the advantage that they are simple and
intuitive. Vertical-specific classifiers can use different feature represen-
tations and learn to predict relevance using evidence that is uniquely
predictive for the corresponding vertical. The main challenge is that
the prediction confidence values from independent classifiers are not
always directly comparable. Pairwise approach address this issue by
learning to predict the relative relevance between pairs of blocks.

3.2.2 Pairwise Approaches

Pairwise approaches learn to predict the relative relevance between
candidate block-pairs to be displayed on the SERP. Arguello et al.
[2011a] proposed a pairwise approach that proceeds as follows. Let Bq
denote the set of vertical and web blocks to be displayed in response
to query q. Furthermore, let us assume that vertical blocks can only
be displayed in specific slots on the SERP. If we assume the four slots
depicted in Figure 3.2, then Bq would include one block for each vertical
selected in response to query q and three web blocks that are always
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displayed (denoted as w1, w2, and w3).
The approach from Arguello et al. [2011a] was to train one binary

classifier per block-type-pair. Here, a block type refers to the search
system that produced the block (i.e., the particular vertical or the web
search engine). If we assume n different verticals, then we would train(n

2
)

+ n different classifiers. The first term corresponds to those classi-
fiers trained to predict the relative relevance between blocks from two
different verticals, while the second term corresponds to those classi-
fiers trained to predict the relative relevance between blocks from a
particular vertical and a web block. Each classifier can use its own
feature representation, which can be thought of as the concatenation
between two feature vectors: those features thought to be predictive for
the first block type and those feature thought to be predictive for the
second block type. Arguello et al. [2011a] generated training data from
human-produce preference judgements on block-type pairs for a set of
queries.

At test time, the approach Arguello et al. [2011a] proceeds in two
steps: (1) predict the relative relevance between all candidate block-
pairs (bi, bj) ∈ Bq and (2) use the predicted pairwise preferences to
generate an aggregated SERP. The first step is just a matter of pro-
ducing preference predictions using the appropriate binary classifiers.
The second step is more complicated. Arguello et al. [2011a] used the
Schulze Voting Method to derive a block-ranking from the predicted
preferences [Schulze, 2011].

The general idea behind the Schulze voting method is the following.
Let πq(bi, bj) denote the strength with which block bi is preferred over
block bj (in this case, the output of pairwise classifier associated with
block-types of bi and bj). We say that bi directly defeats bj if π(bi, bj) >
π(bj , bi). A beatpath from bi to bj is defined as a direct or indirect defeat
from bi to bj . An indirect beatpath from bi to bj is a sequence of direct
defeats from bi to bj . For example, if bi directly defeats bk and bk directly
defeats bj , then this is an indirect beatpath from bi to bj . The strength
of an indirect beatpath corresponds to the strength associated with the
weakest direct defeat in the beatpath. Finally, we say that bi defeats bj
if the strongest (direct or indirect) beatpath from bi to bj is stronger
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than the one from bj to bi. Finally, blocks are ranked by their number
of defeats.2

Pairwise approaches such as the one described above also have ad-
vantages and disadvantages. As with pointwise methods, each indepen-
dent classifier can use its own feature representation and focus on the
evidence that is uniquely predictive for the block-type-pair in ques-
tion. Moreover, there are principled ways of combining a set of pair-
wise preferences into a ranking of items. The main disadvantage is
that it requires training a large number of pairwise classifiers, which
is cumbersome if we have a large number of verticals. Next, we re-
view learning-to-rank approaches, which require training only a single
model.

3.2.3 Learning-To-Rank Approaches

In machine learning, learning-to-rank (LTR) algorithms learn to order
items as a function of a set of features. In the context of information re-
trieval, LTR algorithms have been used mostly for ranking documents
in response to a query. In this case, predictive features are typically gen-
erated from the query-document pair and the document (independent
of the query).

Existing LTR methods can be classified into three types. Point-
wise methods (e.g., Gradient Boosted Decision Trees [Friedman, 2002])
learn to predict a document’s relevance grade independent of other
documents. Pair-wise methods (e.g., RankSVM [Joachims, 2002]) learn
to predict whether one document is more relevant than another. List-
wise methods (e.g., AdaRank [Xu and Li, 2007]) directly optimize an IR
evaluation measure such as NDCG, which considers the quality of the
ranking as a whole. LTR methods have also been applied to other IR
tasks such as ranking query suggestions [Santos et al., 2013], ranking
query autocomplete query candidates [Shokouhi, 2013], and ranking
related news articles for an input article [Lv et al., 2011].

Using LTR for vertical presentation poses two main challenges.
First, LTR approaches require a common feature representation. In the

2If we assume that web blocks must be presented in their original order, then we
can set πq(wi, wj) =∞, ∀i < j.
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context of vertical presentation, certain blocks may not have certain fea-
tures available. For example, certain verticals may not provide retrieval
scores. If we want use vertical retrieval scores to generate post-retrieval
features, then these features will not be available for some block types.
Second, some LTR approaches assume a consistent predictive relation-
ship between features and the relevance of an item. Specifically, this
is the true for linear LTR models. So, for example, in the context
ad-hoc document retrieval, a linear LTR model may assume that the
BM25 score between a query and a document is positively predictive
of relevance for all documents. In the context of vertical presentation,
certain features (e.g., the presence of the query term “news”) will not
be predictive in the same direction for different block types.

In general, there are at least three ways of addressing these two
challenges.

The first solution is to only use features that are available for all
block-types and are expected to be equally predictive of relevance across
all block-types. Query-vertical and vertical features are good candi-
date features that meet this criterion. For example, the historic query-
vertical click-through rate is likely to be predictive in the same directly
for different block-types. The main limitation behind this approach is
it ignores evidence that is unique predictive for a particular block-type.

The second and third solutions are more complex. Suppose that
each web and vertical block is represented by a feature vector of size
m. Furthermore, suppose that we have n different block-types. The
second alternative is to introduce n binary features (also referred to as
indicator features) into the feature representation. The resulting fea-
ture representation would be of size m+n. The goal of these indicator
features is to identify the type associated with a candidate block. For
example, one indicator feature could represent the image vertical, an-
other could represent the news vertical, another could represent the
web search engine, and so on. For each instance, one indicator feature
is set to ’1’ (the one corresponding to the block-type of the instance)
and the rest are set to ‘0’. Given this augmented feature representa-
tion, we can use a non-linear LTR algorithm such as GBDT and hope
that the algorithm learns to exploit useful interactions between indi-
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cator and non-indicator features. For example, the model could learn
that query term “news” is positive evidence if the news vertical indi-
cator feature is ‘1’, but not if it is ‘0’. An obvious risk with this second
approach is that the learning algorithm may not discover these useful
feature interactions.

The third solution is to explicitly include interactions between all
indicator and all non-indicator features in the feature representation.
In this case, each interaction feature represents the product between
an indicator feature and a non-indicator feature. The resulting feature
representation would be of size m × n. Note that most feature values
would equal zero for each candidate block. In fact, for each instance the
number of zero-ed features would be m × n−m, and only m features
per instance would not necessarily equal zero.

Prior work explored different LTR approaches for vertical presen-
tation [Arguello and Capra, 2012]. Here, the vertical presentation task
was cast as a block-ranking task—ranking vertical and web blocks in re-
sponse to a query. Results found that the third approach outline above
outperformed the first. The second approach was not tested.

3.3 Summary

In this chapter, we reviewed different approaches for combining sources
of evidence to make vertical selection and presentation decisions. Most
vertical selection approaches use independent binary classifiers (one
per vertical). In this way, each classifier can use it its own feature
representation and focus on the evidence that is uniquely predictive
for the corresponding vertical.

Vertical presentation solutions are more varied. Pointwise ap-
proaches are similar to vertical selection approaches. The main dif-
ference is that they can harness post-retrieval evidence and must make
decisions about where to slot each selected vertical in the web results.
Pairwise methods learn to predict the relative relevance between ver-
tical and web block pairs, and can use a voting approach to construct
the final SERP. Finally, learning-to-rank (LTR) methods learn a single
model to rank blocks in response to a query. LTR methods may require
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augmenting the feature representation so that the model can exploit
evidence that is not consistently predictive across block-types.



4
Evaluation

Evaluation is critical to all subfields of information retrieval, and the
same is true for aggregated search. Evaluation facilitates the objective
comparison between different sources of evidence for predicting vertical
relevance, different algorithms for combining sources of evidence, and
different parameter configurations for a particular system.

As previously mentioned, aggregated search involves two sub-tasks:
(1) predicting which verticals to display in response to a query (ver-
tical selection) and (2) predicting where in the web results to display
each selected vertical (vertical presentation). Vertical selection involves
predicting which verticals to present and which verticals to suppress.
Vertical presentation involves resolving contention between the differ-
ent selected verticals and presenting the most relevant verticals in a
more salient way. In practice, this typically means presenting the most
relevant verticals higher on the aggregated SERP.

In some cases, we may want to evaluate the vertical selection com-
ponent in isolation. In this case, the evaluation focuses on the system’s
ability to predict which verticals are relevant to a query and which
verticals are not. In Section 4.1, we review evaluation methods used in
prior vertical selection research. In other cases, we may want to evaluate

58
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the end-to-end system, which includes vertical selection and presenta-
tion. In Section 4.2, we review methods for evaluating the end-to-end
output of an aggregated search system.

4.1 Vertical Selection Evaluation

The goal of vertical selection is to predict which verticals are relevant
to a query. Given a query, the vertical selection system makes a binary
prediction for each candidate vertical: to select the vertical or not. In
general, a good vertical selection system is one that correctly selects
all the relevant verticals and correctly suppresses all the non-relevant
ones.

4.1.1 Vertical Selection Evaluation Metrics

We review vertical selection evaluation metrics using the following no-
tation. Let Q denote the set of evaluation queries and V denote the
set of candidate verticals. As is often the case in IR, we typically care
about average performance, either by averaging across queries in Q or
verticals in V. To facilitate both options, let Qv denote the set of eval-
uation queries for which vertical v is relevant and Q̃v denote the set
of evaluation queries for which the system predicts v to be relevant.
Likewise, let Vq denote the set of verticals that are relevant to query q
and Ṽq denote the set of verticals the system predicts are relevant to q.

Accuracy. Fundamentally, vertical selection is a multiclass clas-
sification problem. Thus, all metrics that are relevant to multiclass
classification also apply to vertical selection.

A widely used evaluation metric in multiclass classification is accu-
racy. There are two types of correct predictions that a vertical selection
system can make in response to a query. The system can either cor-
rectly predict that a particular vertical is relevant (a true positive pre-
diction) or correctly predict that a particular vertical is not relevant (a
true negative prediction). In the context of vertical selection, accuracy
measures the percentage of true positive and true negative predictions
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across all queries and verticals:

A = 1
|Q| × |V|

∑
q∈Q

∑
v∈V
I(v ∈ Vq ∧ v ∈ Ṽq) ∨ I(v /∈ Vq ∧ v /∈ Ṽq).

The first component denotes a true positive prediction with respect
to query q and vertical v, and the second component denotes a true
negative prediction with respect to q and v.

Accuracy has two main drawbacks. The first drawback is that ac-
curacy, by design, masks the types of errors being made. In some cases,
we may want to know whether the system is making more false positive
or false negative vertical relevance predictions. The second drawback
is that accuracy values may be difficult to interpret. To illustrate, a
system that selects every vertical for every query (or suppresses every
vertical for every query) will almost certainly have an accuracy value
greater than zero. In fact, given a query, only a few verticals (if any) are
likely to be relevant. Therefore, a system that suppresses every vertical
for every query is likely to achieve a high accuracy value.

Precision, Recall, and F-measure. Metrics such as precision
and recall can help address both of these issues associated with accu-
racy. Precision and recall can be measured by macro-averaging across
queries or across verticals. Precision and recall macro-averaged across
queries is given by:

PQ = 1
|Q|

∑
q∈Q

|Vq ∩ Ṽq|
|Ṽq|

RQ = 1
|Q|

∑
q∈Q

|Vq ∩ Ṽq|
|Vq|

In this case, for a given query q, precision measures the system’s ability
to reject the non-relevant verticals from the predicted set, while recall
measures the system’s ability to include the relevant verticals in the
predicted set.
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Precision and recall macro-averaged across verticals is given by:

PV = 1
|V|

∑
v∈V

|Qv ∩ Q̃v|
|Q̃v|

RV = 1
|V|

∑
v∈V

|Qv ∩ Q̃v|
|Qv|

In this case, for a given vertical v, precision measures the system’s
ability to suppress the vertical when it is not relevant, while recall
measures the system’s ability to select the vertical when it is rele-
vant. Macro-averaging performance across queries emphasizes robust-
ness across queries, while macro-averaging performance across verticals
emphasizes robustness across verticals.

Independent of whether we compute precision and recall macro-
averaged across queries or verticals, in some cases we may want a single
metric that measures the balance between precision and recall [Zhou
et al., 2012a]. In this case, the f-measure is equivalent to the harmonic
mean of precision and recall:

F∗ = 2× P∗ ×R∗
P∗ +R∗

Precision-Recall Curves.Machine learned classifiers usually out-
put a prediction confidence value in addition to a binary decision. In
such cases, one can introduce a threshold parameter τ . The basic idea
is to have the system select vertical v in response to query q only if the
classifier’s prediction confidence value is above τ . Parameter τ can be
tuned to favor precision over recall or vice-versa. If we assume that the
classifier’s confidence values are in the [0,1] range, with higher values
indicating a higher confidence that v is relevant to q, then we can set τ
to a high value (τ = 0.90) to favor precision over recall, or we can set
τ to a low value (τ = 0.10) to favor recall over precision.

Parameter τ can be introduced into the vertical selection evaluation
process in two ways. One alternative is to tune parameter τ using a
validation set. This process involves three steps: (1) evaluating different
values of τ using a validation set, (2) selecting the value of τ with the
best performance in terms of some metric of choice (e.g., f-measure
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macro-averaged across queries), and (3) evaluating the system with
the best parameter value on a held out test set.

A second alternative is to measure precision and recall for different
values of τ (say, τ = 0.0, 0.1, 0.2, . . . , 1.0) and report different precision-
recall operating points. A precision-recall curve (or PR curve) is a
graph that visualizes precision (in the y-axis) as a function of recall (in
the x-axis). A PR curve provides a more complete picture of a system’s
trade-off between precision and recall. Given two competing systems,
the ideal case is to have one system achieve higher values of precision
for all values of recall. In this case, it is unquestionable that the system
with the greater area under the PR-curve is better. Alternatively, we
can focus on the precision values associated with the level of recall we
think is more important to users. If we think that users typically want
to see every vertical that is relevant, then we can focus on precision
values associated with high levels of recall. On the other hand, if we
think that users do not want to see every vertical that is relevant, then
we can focus on precision values associated with low levels of recall.
Figure 4.2 illustrates an example precision-recall curve.
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Figure 4.1: A precision-recall- or PR-curve shows precision as a function of recall

Prior research in vertical selection has evaluated using PR-curves
constructed in two different ways. One approach is to calculate pre-
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cision and recall macro-averaged across queries [Duarte Torres et al.,
2013]. In this case, the evaluation focuses on the system’s ability to rank
verticals in descending order of their relevance to a query. This is anal-
ogous to how we construct PR-curves in document ranking. The second
approach is to calculate precision and recall for each vertical indepen-
dently [Li et al., 2008; König et al., 2009]. In this case, the evaluation
focuses on the system’s ability to rank queries in descending order of
the vertical’s relevance to a query.

Receiver Operating Characteristic (ROC) Curves. Prior
work in aggregated search has not used ROC curves for evaluation.
However, an ROC curve conveys similar information as a PR curve.
An ROC curve plots recall (in the y-axis) as a function of the false
positive rate (in the x-axis). Suppose we wanted to use an ROC curve
to evaluate a vertical selection model for vertical v given a set of eval-
uation queries. Again, let Q denote the set of evaluation queries and
Qv denote the subset of Q for which v is relevant. An ROC curve is
constructed by completing the following steps: (1) Rank all queries in
Q in descending order of prediction confidence value that v is relevant;
(2) Proceed down this ranking, and at each rank k, plot recall (or the
true positive rate): (i.e., the % of Qv within the top-k) in the y-axis
and the false positive rate (i.e., the % of Q−Qv within the top-k) in
the x-axis. The best ROC curve is one with an area of 1.0—all queries
for which v is relevant (Qv) are ranked above those for which v is not
relevant. Figure 4.2 illustrates an example ROC curve.

Rank-based Metrics. Prior work has also evaluated vertical se-
lection by directly measuring the system’s ability to rank the candidate
verticals in descending order of their relevance to the query. This was
the evaluation methodology adopted in the TREC Federated Search
Track, which ran on 2013 and 2014 [Demeester et al., 2013, 2014]. For
a given query, each vertical was assigned a relevance grade proportional
to number of relevant documents in its top-10 results. Participating sys-
tems were then asked to produce a ranking of verticals in response to
each evaluation query, and systems were evaluated using NDCG@20
(Normalized Discounted Cumulative Gain) [Järvelin and Kekäläinen,
2002].
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Figure 4.2: An ROC curve shows recall (or true positive rate) performance as a
function of the false positive rate.

NDCG@k is computed as follows. Let r(i) denote the relevance
grade associated with the vertical at rank i. DCG@k is given by:

DCG@k =
k∑
i=1

2r(i) − 1
log2 (i+ 1)) .

DCG@k is not in the [0,1] range. Thus, NDCG@k is computed by
dividing DCG@k by the best possible (or ideal) DCG@k value for the
given query (IDCG@k):

NDCG@k = DCG@k
IDCG@k .

IDCG@k can be computed by simply computing DCG@k for a ranking
of verticals in descending order of relevance grade (the ideal ranking
for the query).

4.1.2 Vertical Relevance Judgements

Vertical selection evaluation requires knowing which verticals are rel-
evant to each query in the evaluation set. Ultimately, we need either
binary or graded relevance assessments for each query-vertical pair.
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Prior efforts in gathering vertical relevance assessments vary across
five different dimensions.

Anchored vs. Unanchored Assessments. One might view the
vertical selection task as that of selecting a particular vertical only if
it adds value or complements the core web results, which are always
included on the SERP. Prior work investigated the option of asking
assessors to judge the relevance of each candidate vertical relative to
the web results. In this respect, the vertical relevance assessments are
anchored on the web results. Zhou et al. [2012a] anchored their vertical
relevance judgements implicity by asking assessors whether a candidate
vertical might complement the web results for the given search task. In
this case, the assessors did not actually see the vertical and web results.

In a follow-up study, Zhou et al. [2013a] investigated the differ-
ences between relevance judgements anchored implicitly and explicitly,
by displaying the actual vertical and web results side-by-side. Results
found two interesting trends. First, agreement between assessors was
slightly lower when the vertical relevance assessments were anchored
explicitly. One possible explanation is that seeing the actual vertical
and web results caused assessors to take more factors into consideration
when making a judgement (e.g., the vertical’s relevance to the search
task, the relevance of the top vertical results, and the aesthetics of
the vertical results). Second, the authors experimented with anchoring
the vertical relevance judgements with web results of different quality
(web results 1-3, 4-6, and 7-10). Interestingly, there were no significant
differences between the assessors’ judgements.

Expert Assessors vs. Crowdsourced Assessors. Several stud-
ies used trained assessors who were employees of a commercial search
engine company and had expert knowledge of the different candidate
verticals [Arguello et al., 2009b, 2010]. Assessors were given a random
sample of queries that were issued by real users to the search engine’s
main portal and were asked to select which candidate verticals were
most likely to be relevant to the user.

Prior work has also gathered vertical relevance judgements from
crowdsourced workers [Zhou et al., 2013a]. Crowdsourced workers may
have less training than expert assessors. Thus, a commonly used strat-
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egy is to gather redundant assessments from multiple crowdsourced
workers and to derive final assessments using a majority vote [Ar-
guello et al., 2011b; Zhou et al., 2012c]. A study from the early days
of Amazon Mechanical Turk found that combining redundant crowd-
sourced assessments using a majority vote can approximate an expert’s
assessments for different tasks in the field of natural language process-
ing [Snow et al., 2008]. In the context of aggregated search, the level
of agreement between crowdsourced and expert assessors has not yet
been investigated.

Query vs. Query + Narrative. Another differentiating factor
is whether the assessors were given a query and a description of the
user’s information need [Zhou et al., 2014] or whether the assessors were
only given a query [Arguello et al., 2009b, 2010]. This distinction may
seem subtle at first. However, assessments gathered without providing a
description are likely to reflect the search intents of different users. For
example, given only the query “flowers”, an assessor may determine
that the images, local, shopping and Q&A verticals are likely to be
relevant. In this case, the assessor might be thinking about the different
possible intents from different users who might enter this query. If a
narrative had been provided along with the query (e.g., “The user is
wants to buy flowers or have flowers delivered for a friend.”), an assessor
might select a narrower set of relevant verticals that are relevant to the
specific information need (e.g., the local and shopping verticals).

Relevance judgements created using only the query (and no narra-
tive) may be more appropriate for evaluating systems based on their
ability to diversify the aggregated search results in order to satisfy the
search intents from different users.

Vertical-level vs. Document-level Assessments. In general,
there are two ways to derive vertical relevance judgements from asses-
sors. One alternative is to ask assessors which verticals are relevant to
the query. In this case, assessors make judgements based on the user’s
intent and their own expectations about the results a vertical might
return in response to the query. A second alternative is to ask assessors
to judge the top results from each vertical, and to aggregated these
document-level relevance judgements up to the vertical level.
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Zhou et al. [2014] present a user study that compared these two dif-
ferent ways of gathering vertical relevance judgements. Results found a
high level of agreement between vertical relevance judgements derived
in both ways. Thus, if the ultimate goal is to gather vertical-level rele-
vance judgements for a set of queries, it may not be necessary to gather
relevance judgements on the top results from each vertical.

Explicit vs. Implicit Assessments. An alternative to gathering
explicit relevance judgements from assessors, is to use implicit feedback.
In the context of vertical selection, implicit feedback comes in the form
of vertical clicks and skips. A vertical click is defined as a click anywhere
on the vertical block. On the other hand, a vertical skip is defined as
a click on a lower-ranked result, but not the vertical. A vertical click
signals that the vertical was relevant to the user and a skip signals that
it was not relevant.

Diaz [2009] and König et al. [2009] evaluated a news vertical selec-
tion system using implicit feedback. Clicks and skips were generated by
always displaying the news vertical for a small percentage of query traf-
fic. The news vertical was always displayed in the top position (above
the first web result). In both studies, model development and evalu-
ation was done retrospectively. In other words, the system logged all
queries, all vertical clicks and skips, and cached the top web and news
vertical results for feature generation. Then, using these resources, the
authors evaluated vertical selection systems based on their ability to
select the news vertical in cases where it was clicked and suppress the
new vertical in cases where it was skipped. Because the news vertical
was always displayed for this percentage of query traffic, it was possible
to compute click-based precision and recall.

Clicks only suggest perceived relevance. In other words, the landing
page of a clicked vertical result may not actually provide useful informa-
tion. To address this issue, a common approach is to also consider dwell
time (the period of inactivity between the click and the next SERP
event). Prior work has also considered inferring search result relevance
using mouse movement information on the landing page [Lagun et al.,
2014a]. Mouse movements on the landing page can be captured user a
browser toolbar. Lagun et al. [2014b] describe a method for discover-
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ing common mouse movement patterns (or motifs), which can then be
used as features for a predictive model of landing page relevance. Prior
work has not considered whether predictive motifs on landing pages
from one type of vertical (i.e., images) are also predictive for landing
pages from another source (i.e., web pages). Otherwise, one might need
to learn different models for different sources.

4.2 End-to-end Evaluation

The goal of end-to-end evaluation is to evaluate the final output from an
aggregated search system. End-to-end evaluation is less straightforward
than vertical selection evaluation. For example, consider the aggregated
SERP shown in Figure 1.1. The basic question in end-to-end evaluation
is: How good is this particular presentation of results? What if we
omitted the news vertical results? How much would this impact the
user’s experience? What about a more subtle change, such as swapping
the image and video vertical results? Would users even notice?

In this section, we review different methods for end-to-end eval-
uation. We focus on whole-page evaluation methods, test collection
evaluation methods, and on-line evaluation methods.

4.2.1 Whole-page Evaluation

Possibly the most straightforward way to determine the quality of an
aggregated SERP is to simply ask users. This is the basic intuition be-
hind whole-page evaluation. Bailey et al. [2010a,b] proposed the Student
Assignment Satisfaction Index (SASI) approach. The general idea is to
assess the quality of an aggregated SERP similarly to how a teacher
might evaluate a student’s assignment—by determining the extent to
which the aggregated SERP satisfies a number of predefined criteria.
The SASI interface presents the aggregated SERP to an assessor and
asks the assessor to judge individual components on the SERP (e.g.,
top vertical results, web results 1-3, middle vertical results, web results,
4-10, etc.). Additionally, the assessor is asked to judge the whole SERP
along different dimensions (e.g., authority, freshness, diversity, caption
quality, overall quality).
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The SASI approach has two main advantages. Typically, quality
assessments on search results are made out of context. In other words,
the relevance of a particular result is independent of the relevance of
another. Quality assessments made out of context do not consider fac-
tors such as redundancy—a relevant result may be less useful to a user
if it contains information that is redundant with a higher-ranked result.
In the SASI approach, each component on the SERP is judged within
the context of all the other components. So, for example, a vertical
presented between the third and fourth web result could be judged less
relevant if it contains information that is redundant with web results
1-3. Second, the quality of the overall SERP may be diminished if the
results from a highly salient vertical on the SERP (e.g., image vertical
results) are very poor.

The main limitation of the SASI approach is that it is entirely ret-
rospective. We can learn from assessors and determine trends that are
likely to generalize across SERPs. However, we cannot directly reuse
assessors judgements to evaluate new SERPs. Next, we discuss test-
collection evaluation, where the goal is to create a portable test collec-
tion with relevance judgements that can be used to evaluate completely
new SERPs (subject to certain layout constraints).

4.2.2 Test-Collection Evaluation

Test-collection evaluation follows the Cranfield evaluation
paradigm [Cleverdon, 1960], which is an important evaluation
paradigm in ad-hoc document retrieval. In the case of ad-hoc retrieval,
a test collection consists of: (1) a set of evaluation queries, (2) a corpus
of documents, and (3) a set of human-produced relevance judgements
indicating the binary or graded relevance of each document for each
evaluation query. Given a test collection, ad-hoc retrieval systems can
be evaluated using metrics that measure the system’s ability to rank
documents in descending order of their relevance to the query. Test
collections are portable, reusable, and allow us to compare different
systems in a highly controlled environment.

In the context of aggregated search, a test collection consists of: (1)
a set of evaluation queries, (2) a set of cached results from the different
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verticals available to the system, and (3) a set of human-produced
relevance judgements indicating the (binary or graded) relevance of
each set of cached vertical results for each evaluation query. To date,
aggregated search test collections have been built under the assumption
that the aggregated search system is not responsible for deciding which
results to retrieve from each candidate vertical. For this reason, human
relevance judgements are gathered for the top results returned by each
candidate vertical in response to the evaluation query. Given these three
components, an end-to-end aggregated search system can be evaluated
using metrics that measure the system’s ability to include the relevant
verticals on the SERP and display them in a way that is consistent
with their relevance to the query. Next, we review previously proposed
methods that fit the general “test collection mold”.

Arguello et al. [2011b]. This methodology makes the following
modeling assumptions. First, each vertical v ∈ V is associated with
some number (tv) of results that must be displayed if v is included on
the SERP. Second, if vertical v is displayed on the SERP, then the
system must display the top-tv results returned by v in response to
query q. Third, all tv results from the same vertical must be displayed
together in a vertical “block” (either stacked horizontally or vertically,
depending on v). Fourth, vertical results can only be displayed in fixed
locations relative to the web results (e.g., above the first web result,
between the third and fourth web result, between the six and seventh
web result, and below the last web result).

Given these presentation constraints, the aggregated search task can
be cast as a block ranking task. Let Bq denote the set of vertical and
web blocks associate with evaluation query q. Bq includes one vertical
block for each vertical v ∈ V that retrieves at least tv results in response
to query q, and one web block per sequence of web results that can not
be split (e.g., web results 1-3, 4-6, and 7-10). Given query q, the goal
of the aggregated search system is to produce a ranking of Bq (denoted
as σq). The quality of σq is measured based on its similarity to an ideal
or reference ranking of Bq (denoted as σ∗q ).

Two open questions remain: (1) How do we generate the refer-
ence block ranking σ∗q? and (2) How do we measure the similarity
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between a predicted block ranking σq and the reference block rank-
ing σ∗q? To address the first question, Arguello et al. [2011b] used
crowdsourced workers to gather pairwise preference judgements on all
pairs of blocks (bi, bj) ∈ Bq. Then, the authors used the Schultz Voting
Method [Schulze, 2011] to generate σ∗q from these pairwise preferences.
The Schultz Voting Method is designed to combine a set of pairwise
preference judgements in order to score and rank elements in a set. To
address the second question, Arguello et al. [2011b] used a variant of
Kendall’s τ [Kumar and Vassilvitskii, 2010] to measure the number of
discordant pairs between blocks in σq and σ∗q . Lower values of this met-
ric indicate a greater similarity between σq and σ∗q and are therefore
better.

This methodology is explained graphically in Figure 4.3. The
method assumes that vertical results can only be displayed in certain
slots within the top web results (Figure 4.3(a)). Given query q, we first
construct the web and vertical blocks associated with the query. In this
case, we have three web blocks (due to having four slots) and three
vertical blocks (Figure 4.3(b)). Then, we gather redundant preference
judgements on all blocks pairs (Figure 4.3(c)). Next, we generate the
ideal or reference presentation based on our pairwise block preferences
(Figure 4.3(d)). Finally, we can evaluate any given presentation for
this particular query by measuring its distance between the predicted
presentation σq and the reference σ∗q (Figure 4.3(e)).

Arguello et al. [2011b] used the Schultz Voting Method [Schulze,
2011] to convert web and vertical block preference judgements into a
reference presentation, and used a variant of Kendall’s τ [Kumar and
Vassilvitskii, 2010] to measure the distance to the reference presenta-
tion. One could imagine other ways of using block-level relevance judge-
ments to generate an idea block ranking and other ways of measuring
distance or similarity with the reference.

Zhou et al. [2012c]. The test collection methodology proposed
by Zhou et al. [2012c] also treats aggregated search as a block ranking
task. However, there are two main differences. First, the methodology
gathers human relevance judgements on individual blocks of web or
vertical results, rather than judgements on pairs of blocks. Second, the
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(a) fix slots (b) compose blocks Bq (c) collect preferences πq

(d) derive reference σ∗q

reference

(e) evaluate

Figure 4.3: Approach Overview.

methodology proposes an evaluation metric for directly measuring the
quality of a particular block ranking σq, rather than evaluating based
on the similarity between σq and an ideal ranking σ∗q .

The proposed metric (referred to as utility) considers three impor-
tant attributes of a block bi within the context of a predicted block
ranking σq: (1) the block’s relevance or gain with respect to the task
(G(bi)), (2) the block’s examination probability (E(bi)), and (3) the
cognitive effort required to process the results within the block (F (bi)).
The utility of block ranking σq is given by:

U(σq) =
∑
bi∈σq

(E(bi)×G(bi))∑
bi∈σq

(E(bi)× F (bi))
(4.1)

Equation 4.1 has the following intuition. The numerator can be
viewed as the expected cumulative gain associated with block ranking
σq. The gain of each web or vertical block bi ∈ σq is discounted by the
probability that a user will actually notice and examine the block. On
the other hand, the denominator can be viewed as the expected effort
in processing block ranking σq. The effort associated with each block



4.2. End-to-end Evaluation 73

bi ∈ σq is also discounted by the block’s examination probability. The
utility value is greater when σq provides the greatest gain (numerator)
at the lowest cost (denominator).

In its raw form, utility is not necessarily in the range [0,1], which
makes averaging across queries tricky. Zhou et al. [2012c] suggested nor-
malizing the raw utility value by dividing Equation 4.1 by the greatest
utility attainable for query q and blocks Bq.

Zhou et al. [2012c] proposed several alternatives for estimating
E(bi), G(bi), and F (bi). E(bi) can be a combined function of the posi-
tion of block bi in σq and the visual salience of the block. For example,
a block of image vertical results may have a higher examination prob-
ability than a block of web results (independent of its position). G(bi)
can be a combined function of the topical relevance of results within bi
and the query’s affinity for the vertical or source that produced bi. For
example, the query “pizza pics” has a high affinity towards the image
vertical, while the query “pizza recipes” has a high affinity towards the
web results. Finally, F (bi) can depend on whether the surrogate rep-
resentation includes image thumbnails, text, or a combination of both.
Prior research considered the amount of effort required to make rele-
vance assessments on surrogates containing different elements. Results
suggest, for example, that surrogates augmented with images pulled
from the underlying page can help users make more accurate and faster
relevance judgements [Capra et al., 2013; Xue et al., 2008].

In follow-up work, Zhou et al. [2013b] proposed a variant of Equa-
tion 4.1 in which the examination probability of a particular block,
E(bi), also considers the gains associated with blocks ranked above
bi in σq. This block examination probability estimate is motivated by
the rank-biased precision (RBP) metric used in ad-hoc document re-
trieval [Moffat and Zobel, 2008]. The basic intuition behind RBP is that
the likelihood that users will examine a particular result is not only a
function of its rank, but also a function of the relevance associated with
higher-ranked results. In other words, users are more likely to continue
examining a ranked list if they are finding relevant documents.

TREC 2013 and 2014 Federated Search Track. The primary
goals of the Federated Search Track was to evaluate algorithms for ver-
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tical selection and results merging [Demeester et al., 2013, 2014]. The
2013 test collection includes 50 evaluation queries and the top-10 cached
results from 157 different search engines, which include vertical-style
search engines focused on different domains (e.g. games, health, recipes,
sports) and different types of media (e.g., audio, images, videos), as well
as a general Web search engine. All search engines correspond to on-
line search services, and the top-10 results for each evaluation query
were obtained by either screen-scraping or using APIs provided by the
service. For each evaluation query, all top-10 search results from each
search engine were assessed for relevance. Assessments were made us-
ing four different relevance grades: not relevant (0), relevant (1), highly
relevant (2) and key (4). Finally, the test collection also includes sam-
pled documents from each search engine. The Track organizers used
2000 single-term “queries” for sampling, which originated from differ-
ent frequency-based bins from the vocabulary of the ClueWeb09-A test
collection.1 Track participants were encouraged to use these sampled
documents to inform the vertical selection task.

For the 2013 Track, results merging (which corresponds to produc-
ing the end-to-end output) was evaluated as follows. Participants were
allowed to merge the top-10 search results from all 157 search engines
in an unconstrained fashion and the primary evaluation metric was
NDCG@20. In other words, the ultimate goal for the system was to
simply combine the top-10 search results from the different sources in
a single ranked list, and to order the results in descending order of their
graded relevance to the query. Results from the same non-web search
engine were not required to be displayed together in a vertical block.

The Federated Search Track ran again in TREC 2014 and used
a new test collection. The 2014 test collection includes 50 evaluation
queries, the top-10 cached results from 149 different search engines,
and 4000 sampled documents from each the available resources (twice
as many as the 2013 test collection).

The 2014 results merging task was different from the 2013 results
merging task in two respects. First, while results could still be merged
in an unconstrained fashion, they could only originate from 20 differ-

1http://lemurproject.org/clueweb09/

http://lemurproject.org/clueweb09/
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ent search engines. Thus, systems were required to predict at most
20 search engines to include in the merged ranking. Second, while the
primary evaluation metric was NDCG@20, systems were also evalu-
ated based on intent-aware NDCG@20 [Zhou et al., 2013b] (or IA-
NDCG@20).

Intent-aware NDCG was originally proposed by Agrawal et al.
[2009] for evaluating systems that diversify the search results from a
single source. In the context of aggregated search, the idea behind IA-
NDCG is to combine document relevance with vertical relevance. Let
pvq denote the probability the vertical v is relevant to q. IA-NDCG@k
is given by:

IA-NDCG@k =
∑
v∈V

pvq ×NDCGv@k,

where NDCGv@k is computed by only considering the top-k docu-
ments originating from vertical v. Essentially, IA-NDCG@k consid-
ers the weighted average of NDCG@k values across all verticals. The
weights are proportional to each vertical’s relevance to the query.

While the results merging task in the TREC 2013 and 2014 Feder-
ated Search Tracks involved unconstrained interleaving of results from
different sources, both test collections can be used to evaluate systems
that present vertical results in a blocked fashion [Bota et al., 2014]).

4.2.3 On-line Evaluation

On-line evaluation methods measure end-to-end system performance in
a live environment using implicit feedback from real users. One type of
on-line evaluation involves having a certain percentage of users use a
baseline or (control) system and a different percentage of users use an
experimental system for some period of time. The evaluation typically
focuses on user interaction measures that are thought to be correlated
with the quality of the user’s experience. For example, the evaluation
might consider the percentage of queries without any clicks, which can
be viewed as evidence of an unsuccessful search.

On-line evaluation has several advantages. First, it focuses the eval-
uation on real users in real situations. In this respect, on-line evaluation
is ideal for testing systems that learn from individuals’ preferences and
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behaviors and serve personalized results. For the same reason, it is ideal
for testing systems that customize results based on the user’s context,
for example, based on the current time and location. Second, on-line
evaluation typically involves lots of users. In this respect, it ensures that
the observed trends are likely to generalize across different populations.

On-line evaluation also has some limitations. First, implicit feed-
back is noisy. Two commonly used feedback signals in aggregated search
are vertical clicks and skips. A vertical skip indicates that the user did
not click the vertical, but clicked on a lower-ranked result. Clicks and
skips are noisy indicators of relevance and non-relevance.2 Users tend
to click on results that are ranked higher on the SERP and results that
are more visually salient. Moreover, users click results because they
perceive the result to be relevant based on its surrogate representa-
tion, which may be misleading. Vertical skips are also noisy. In some
cases, a user might extract valuable information from the vertical sur-
rogate representation without clicking on it. The second limitation of
on-line evaluation is that experiments are not repeatable. That is not
to say that a hypothesis cannot be tested more than once. However, the
users and the queries will be different, which means that the outcome
measures will also be different. This can make it difficult to determine
whether a particular approach has been re-implemented correctly.

A/B Testing. A/B testing evaluation involves having the experi-
mental system respond to a small percentage of query traffic and eval-
uating the system based on measures derived from user interactions
with the SERP [Jie et al., 2013; Ponnuswami et al., 2011b]. Prior work
evaluated an end-to-end system by measuring the click-through rate
(CTR) for each vertical independently.

The click-through rate can be measured two different ways. Jie et al.
[2013] and Ponnuswami et al. [2011b] computed the click-through rate
as the percentage of queries for which the vertical was displayed on
the SERP and was clicked by the user. In contrast, Ponnuswami et al.
[2011a] computed the click-through rate as the number of vertical clicks

2Interpreting implicit feedback is an on-going challenge in on-line evaluation and
experimentation. For example, research shows that searchers who are struggling
and searchers who are engaged in an exploratory task can exhibit similar search
behaviors [Hassan et al., 2014].
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over the total number of clicks and skips (Equation 2.6). In this case,
a vertical skip requires a click on a lower-ranked result. This second
version of the click-through rate is more conservative because we can
be more confident that the user viewed the vertical and decided to not
click it.

Another related metric that has been used in on-line evaluation is
the long dwell-time vertical click-through rate [Jie et al., 2013]. This
metric measures the percentage of vertical clicks where: (1) there were
at least 100 seconds between the click and the next event on the SERP
or (2) the click was the last event in the session. The idea behind
this metric is to distinguish between productive clicks where the user
found useful information and unproductive clicks where the user almost
immediately returned to the SERP.

Evaluating based on the vertical clicks has one main drawback—
the evaluation focuses on precision, but ignores recall. Obviously, we
can not observe a click on a vertical that the system did not display.
Therefore, it can be difficult to reliably estimate the number of false
negative vertical predictions. For this reason, it is also useful to re-
port each vertical’s coverage, which measures the percentage of queries
for which the vertical was displayed (whether or not it was clicked).
Coverage is related to, but not equal to recall. A system is said to im-
prove over a baseline system if a vertical’s click-through rate increases
and its coverage also increases or remains the same. Ponnuswami et al.
[2011b] reported click-through rate and coverage for different verticals
and different positions on the SERP.

Random Output. One limitation of A/B testing is that a new
evaluation needs to conducted each time we want to test a new ex-
perimental system. Conducting a new evaluation requires additional
resources and risks degrading the experience of real users if the new
system is unsuccessful. To address this limitation, Ponnuswami et al.
[2011a] proposed a methodology that gathers implicit feedback on ran-
domly generated aggregated SERPs (subject to certain layout con-
straints) and then performs the evaluation of an experimental system
retrospectively.

The basic idea is the following. Suppose that verticals can only be
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displayed in certain slots on the SERP (e.g., top, middle, bottom). Dur-
ing the data collection period, a certain percentage of query-traffic is
shown randomly generated aggregated SERPs. In this case, the system
displays all of the selected verticals in random slots with equal proba-
bility.3 The system caches all the search results and user interactions
for feature generation, model training, and evaluation. Let Q denote
the set of queries observed by the system during the data collection pe-
riod. After the data collection period, a new experimental system can
be evaluated retrospectively as follows. Suppose that we want to eval-
uate the system based on the click-through rate of the image vertical
when it is slotted in the top position. Then, the experimental system
can be evaluated by computing the click-through rate only only the
subset of queries in Q for which the experimental system would have
displayed the image vertical in the top position.

Jie et al. [2013] and Wang et al. [2016] used the same method to
evaluate end-to-end systems with fewer constraints. In this case, ver-
tical results could be slotted above, below, and between any two web
results. For a subset of queriesQ observed in a production environment,
the system displayed randomly generated SERPs (subject to business
constraints).4 Finally, systems were evaluated retrospectively by con-
sidering only the subset of queries in Q for which the system would
have produced exactly the same randomly generated SERP.

Jie et al. [2013] and Wang et al. [2016] evaluated end-to-end systems
using the following metric. Let k denote the set of items displayed on
a particular SERP. Each clicked item receives a reward of −1 and each
skipped item receives a reward of +1. All items below the lowest-ranked
click receive a reward of 0. The total reward for a particular SERP is
equal to the sum of rewards over all k items. Finally, systems were
evaluated based on the average reward across evaluation SERPs.

Interleaving. Interleaving methods were originally developed for
evaluating document ranking algorithms. The basic idea is to merge

3The approach assumes an upstream vertical selection component that selects
those verticals that should be presented on the SERP.

4Commercial systems typically have business constraints that require the aggre-
gated search system to present certain verticals at certain locations for a fraction of
queries for which vertical returns results.
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the results from two or more competing systems (omitting duplicates)
and to measure performance using clicks. Each click on a document
represents a “point” in favor of the ranking algorithm from which the
document was selected. In the end, the best system is the one with
the greatest number of clicks averaged across queries. A wide range of
interleaving methods have been proposed in prior work [Chapelle et al.,
2012; Hofmann et al., 2011, 2013; Radlinski et al., 2008]. Interleaving
approaches are judged based on their ability to perform an unbiased
evaluation and their ability to evaluate systems using as few queries
as possible. To test whether an interleaving approach is unbiased, all
competing rankers should end-up in a tie for a randomly clicking user.

Chuklin et al. [2013a] proposed an interleaving approach that can
be used to interleave the results from two competing aggregated search
systems. The proposed approach (Vertical-Aware Team Draft Inter-
leaving, or VA-TDT) is an extension of the Team Draft Interleaving
(TDI) approach used to evaluate rankers that return results from the
same collection.

The TDI approach takes two rankings as input (A and B) and
returns a single interleaved ranking (I). The algorithm resembles the
process of two sports team captains selecting players for their respective
teams (TA and TA). The two input rankings (A and B) represent both
captains’ priority lists of players. The two captains iteratively flip a coin
to decide which captain chooses the next player. To avoid accidentally
favoring one captain over the other, no captain can choose more than
two players consecutively. When either captain chooses a player, they
choose their top player that has not already been drafted.

The VA-TDI interleaving approach is similar to the original TDI
approach [Chuklin et al., 2013a]. The algorithm proceeds normally until
the first vertical result is appended to the interleaved list (I). Then, the
algorithm only interleaves results from that same vertical v until the
vertical block is formed—until there are no more results from vertical
v in either A or B, or until the pre-determined block size (tv) has been
reached. Chuklin et al. [2013a] present a simulation experiment that
shows that VA-TDI was able to correctly predict the best aggregated
search system with a reasonable degree of success, and also remained
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impartial—the approach predicts a tie between rankers if exposed to
randomly generated clicks.

4.3 Summary

In this chapter, we reviewed different evaluation methodologies for ver-
tical selection and presentation.

Vertical selection evaluation is relatively straightforward. The goal
of the system is to predict which candidate verticals are relevant to the
query. In this respect, vertical selection is a multiclass classification
task, and systems can be evaluated using metrics such as precision and
recall (macro-averaged across queries or verticals).

The main challenge in vertical selection evaluation is obtaining the
relevance label for a particular query-vertical pair. Prior work has con-
sidered using trained assessors with expert knowledge of the candidate
verticals [Arguello et al., 2009b] or crowdsourced assessors whose redun-
dant judgements can then be combined into gold standard judgements
using a majority vote [Zhou et al., 2012c].

Relevance labels can also be derived from vertical clicks and skips
in an on-line or live environment. In this case, a vertical click suggests a
true positive prediction and a vertical skip (a click on a lower-ranked re-
sult, but not the vertical) suggests a false positive prediction. Deriving
relevance labels from vertical clicks and skips has one main challenge—
the system cannot observe clicks if the vertical was not selected. In this
respect, it is easy to measure precision, but difficult to measure recall.
One solution is to evaluate the vertical selection system retrospectively.
In this case, the system always displays the vertical in the same position
for some fraction of query traffic. Then, a vertical selection system can
be evaluated based on its ability to correctly predict usersâĂŹ clicks
and skips.

End-to-end evaluation, which involves vertical selection and presen-
tation, is complicated by the fact that the system needs to make more
decisions. The system must decide which candidate verticals to display,
where, and possibly even how. Whole-page evaluation methods gather
quality judgements retrospectively. Assessors are shown SERPs pro-
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duced by the system and rate the quality of the output along different
dimensions. Test collection evaluation methods use a set of evaluation
queries, relevance labels on the results produced by the different can-
didate verticals, and evaluate using metrics that are thought to be cor-
related with user satisfaction. Finally, on-line methods evaluate using
clicks from real users in a live environment.

In terms of on-line methods, a very principled approach is inter-
leaving. The general idea is to merge the output from two or more
competing aggregated search systems and to evaluate using clicks. The
system with the greater number of clicks is deemed the most effective.



5
Search Behavior with Aggregated Search

User studies are essential for understanding how real users interact with
information retrieval systems, including aggregated search systems. In
a general sense, running a user study involves exposing participants to
different experimental conditions and measuring differences in one or
more outcome measures. User studies aim to understand what factors
influence user behaviors and how. Because user studies are conducted
in a controlled setting, the researcher can manipulate different charac-
teristics of the system, the search task, or the search context. Moreover,
the researcher can target users with different characteristics, for exam-
ple, users with different levels of search experience or different cognitive
abilities. Likewise, the researcher can study the effects of a particular
manipulation on both objective measures of performance (e.g., the time
to task completion), as well as subjective measures of performance (e.g.,
participants’ perceived level of system support).

In the context of aggregated search, user studies have been con-
ducted to answer two main questions: (1) What do you users want
from an aggregated search system? and (2) What are different factors
that affect users’ behaviors and experiences? With respect to the first
question, prior studies have focused on validating different metrics used
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in aggregated search evaluation. With respect to the second question,
prior studies have considered how different characteristics of the sys-
tem, the user, the search task, or the search context influence search
behaviors and effectiveness.

5.1 Evaluation Metric Validation

In Section 4.2.2, we discussed two test collection evaluation methods
proposed in prior work [Arguello et al., 2011b; Zhou et al., 2012c]. As a
reminder, Arguello et al. [2011b] proposed an evaluation methodology
that considers the similarity between a predicted aggregated SERP and
an ideal (or reference) aggregated SERP for the given query. Zhou
et al. [2012c] proposed a utility-based evaluation metric that considers
three aspects of verticals displayed on the SERP: (1) the vertical’s
relevance to the query, the vertical’s examination probability (based on
its position and visual representation), and the cognitive effort required
to process the vertical results. Both of these evaluation methodologies
were validated with user studies.

One might argue that a good evaluation metric is one with a high
level of agreement with users’ preferences. In other words, aggregated
SERPs that are preferred by users should be scored as being superior
by the metric. In both studies, the researchers measured the level of
agreement between the proposed metric and participants’ preference
judgements on pairs of aggregated SERPs displayed side-by-side. Both
studies found three important trends.

First, the level of agreement between study participants was far
from perfect. Agreement was measured in terms of Fliess’ Kappa
(κf ), which corrects for the expected agreement due to random
chance [Fleiss, 1971]. Agreement between participants was about 20%.
This level of agreement is better than random agreement (i.e., κf =
0%), but is still fairly low. Thus, one would never expect an evalua-
tion metric to predict preference behavior for individual users 100%
perfectly.

The second important trend is that both metrics agreed with a
majority vote preference at a level of about 60%, which is well above
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random. In both experiments, pairs of aggregated SERPs were rated by
multiple assessors, and these assessments were combined into final pref-
erence using a majority vote. If we consider a majority vote preference
as representative of the “average user”, then both metrics predicted the
preference of this “average user” with some degree of success.

The final important trend is that agreement between the metric
and the majority vote preference was higher for pairs of aggregated
SERPs with very different metric values. In other words, agreement
was high for pairs were the metric value for one SERP was high and
the other was low. Agreement was lower for pairs of aggregated SERPs
with similar metric values. Put differently, both metrics were relatively
poor in predicting preferences between two SERPs of similar quality
(i.e., middle vs. low and middle vs. high).

From both of these studies, we can determine that users’ preferences
on pairs of aggregated SERPs are not random and can be modeled
using an evaluation metric to some extent. That said, there is room
for improvement. Developing evaluation metrics that achieve a higher
level of agreement with users’ preferences is a promising direction for
future work.

5.2 Studies Supporting Vertical Selection and Presentation

Current aggregated search systems are defined by three important de-
sign considerations.

First, current systems predict which verticals are relevant to a query
and display a few of the top results from each selected vertical alongside
the core web results. The goal of the system is to “showcase” verticals
that may be useful to the current user. An alternative to combining
results from different sources in a single presentation would be to simply
provide access to the web and vertical results using tabs. Users could
then click on different tabs to see results from a specific source.

Second, current systems display the results from the same vertical
together in a vertical block (either stacked horizontally or vertically).
An alternative would be to interleave results from different sources in
a completely unconstrained fashion as is typically done in text-based
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federated search.
Finally, current systems construct the aggregated SERP dynam-

ically. In other words, current systems attempt to display only the
relevant verticals and display the most confidently relevant verticals in
a more salient manner, for example, by presenting them higher on the
SERP. An alternative would be to show results from all verticals (or
only the most relevant) in fixed positions.

Next, we discuss user studies that lend support to the current
paradigm.

Aggregated vs. Tabbed.One alternative to the current paradigm
would be to have users switch between results from different sources
using tabs. However, studies have found that integrating results from
different sources in a single presentation has at least three main bene-
fits: (1) it reminds users that a particular vertical has relevant content,
(2) it provides easy access for users who want results from different
sources, and (3) it raises awareness about the contents in a particular
vertical, which can help users in future searches.

Several studies have found that users are more likely to click on
and bookmark vertical content when it is blended into the core web
results [Arguello et al., 2012; Sushmita et al., 2009; Turpin et al., 2016].
This result suggests that users do not always know a priori that a
particular vertical has relevant content and may therefore benefit from
seeing vertical results without explicitly requesting them.

Sushmita et al. [2010a] present a query-log analysis that shows that
users often click on results from different sources for non-navigational
searches (searches with more than one click). Bota et al. [2015] report
on a user study that asked participants to construct “bundles” of rele-
vant search results associated with different aspects of a multi-faceted
search topic. Specifically, participants were asked to imagine that they
were preparing a blog post on a particular topic and were given ac-
cess to an aggregated search system in order to find relevant content.
Results found that about 80% of all bundles had results from differ-
ent sources, suggesting that users may benefit from seeing results from
different sources on the same SERP.

Bron et al. [2013] investigated search behavior across multiple ses-



86 Search Behavior with Aggregated Search

sions with a system that allowed users to switch between an aggregated
view, which combined results from different sources, and a source-
specific view, which allowed users to restrict the search results to a sin-
gle source. Results found that the aggregated view helped raise aware-
ness about the contents in each source, and influenced participants to
explore different sources in later search sessions. Thus, aggregated in-
terfaces may have long-term benefits in helping users understand the
different resources available to them.

Together, the results from these studies suggest users may benefit
from seeing results from different sources on the same presentation.

Constrained vs. Unconstrained Interleaving. Current sys-
tems display the results originating from the same vertical together
in the form of a vertical block (stacked horizontally or vertically). An
alternative strategy would be to interleave the results from different
sources in an unconstrained fashion. Results from different sources
could simply be merged into a single ranked list. To date, no single
user study has directly compared these two different ways of present-
ing aggregated search results. However, prior research suggests that
users would prefer a grouped display.

Early work in psychology developed the Gestalt principles of pat-
tern recognition [Koffka, 1935]. These principles explain how people
perceive groups of objects in an information display, such as an ag-
gregated SERP. For example, the Gestalt principles of similarity and
proximity state that items in a display that are visually similar or closer
together are perceived as a group. More recently, Palmer [1992] pro-
posed the principle of common region, which states that items displayed
in a common region (such as within a border or a different-colored back-
ground) are perceived as a group.

Based on the Gastalt principle of proximity, it seems logical that
grouping same-vertical results together communicates to the user that
they are the same type of result and originate from the same source.
In this respect, a grouped display may help users more quickly identify
results from a relevant vertical and ignore results from a non-relevant
vertical.

While this has not been empirically studied in the context of aggre-
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gated search, studies suggest it is a sensible hypothesis. Nygren [1996]
report on an early study of users scanning a webpage in search for
a specific piece of information. Results found that participants were
quicker at finding items on the page in cases where similar items were
grouped together. More closely related to information retrieval, Dumais
et al. [2001] evaluated six different search interfaces that were aug-
mented with category information. The goal was to help users identify
relevant documents by displaying the topical category of each search
result along with its title and summary snippet. Half of the interfaces
were grouped (results from the same category were displayed together)
and the other half were ungrouped (results from the same category were
not displayed together). Participants used both interfaces to search for
relevant documents for a given task. Results found that participants
completed search tasks quicker when using all three grouped interfaces
than when using all three ungrouped interfaces.

Static vs. Dynamic. The current paradigm is to construct the
aggregated SERP dynamically for each query. Specifically, current sys-
tems aim to only display those verticals that are relevant and to display
the most relevant verticals higher on the SERP. Another alternative to
this current paradigm would be to combine results from all the different
sources in a static, query-independent layout.

Several studies have found that users prefer to not see results from
non-relevant verticals on the aggregated SERP. Arguello et al. [2012]
and Turpin et al. [2016] experimented with an aggregated interface that
always presented results from four different verticals in fixed positions
on the SERP irrespective of the query. Study participants rated the
system poorly compared to a system that only provided access to the
different sources using tabs.

Sushmita et al. [2010b] present a study where participants were
given search tasks and access to an aggregated SERP. The study manip-
ulated three variables: (1) the vertical presented (image, news, video),
(2) the vertical’s position on the SERP (top, middle, bottom), and (3)
the vertical’s relevance to the search task (high, medium, low). Results
found that participants preferred SERPs in which the more relevant
verticals were positioned higher on the SERP.
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More recently, Chen et al. [2015] measured user satisfaction with
relevant versus non-relevant vertical results presented on the SERP.
Participants in the study were asked to complete search tasks using
pre-constructed queries and SERPs, and reported their satisfaction
with SERPs using a 5-point scale. The authors experimented with five
different types of verticals and three different positions on the SERP.
Non-relevant vertical results were produced by altering the query sent
to the vertical search engine.

The results from this study found several interesting trends. First,
as one might expect, participants reported greater levels of satisfaction
with SERPs that presented relevant versus non-relevant vertical results.
Second, the effect was stronger for salient verticals such as images.
Third, the effect was stronger when the vertical was displayed higher
on the SERP.

5.3 Factors Affecting Vertical Results Use and Gain

Several studies have investigated different factors affecting user en-
gagement with results from different sources aggregated on the SERP.
Specifically, prior work has focused on how different factors of the ver-
tical, the search task, and the user can affect user engagement with
vertical results aggregated on the SERP. In terms of the vertical, stud-
ies have found that the vertical’s relevance, position, and presentation
affect user engagement. In terms of the search task and the user, stud-
ies have found that search task’s complexity and the user’s perceptual
speed (a type of cognitive ability) can also have an effect.

Vertical Relevance. As might be expected, studies have found
that relevance increases user engagement with the vertical results. As
mentioned above, Arguello et al. [2012] and Turpin et al. [2016] exper-
imented with interfaces that always displayed results from the same
verticals (in fixed positions) irrespective of the query. Because the ver-
ticals were always displayed, in many cases they were not relevant to
the search task. Study participants reported a preference towards in-
terfaces that did not showcase vertical results on the main SERP.

Chen et al. [2015] measured user satisfaction with aggregated
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SERPs with relevant vertical results versus non-relevant vertical re-
sults, generated by altering the query before issuing it to the ver-
tical. Participants reported greater levels of satisfaction with SERPs
that presented relevant vertical results. Liu et al. [2015] report on an
eye-tracking study that measured percentage of eye fixations on dif-
ferent results on SERPs with relevant versus non-relevant vertical re-
sults. Again, non-relevant vertical results were generated by altering the
query issued to the vertical. More visual attention was given to verti-
cals that presented relevant results. However, this effect was weaker
for visually salient verticals. For highly salient verticals, the amount
of visual attention was less influenced by the relevance of the vertical
results.

Vertical Position. Studies have also found that the vertical’s po-
sition influences user engagement with the vertical results. In general,
users are more likely to engage with vertical results that are presented
higher on the SERP. Chen et al. [2015] experimented with relevant
versus non-relevant results displayed in three positions on the SERP.
Participants reported higher levels of satisfaction for SERPs that dis-
played relevant vertical results higher on the SERP (i.e., rank 1 vs. rank
3 vs. rank 5), and lower levels of satisfaction for SERPs that displayed
non-relevant vertical results lower (i.e., rank 5 vs. rank 3 vs. rank 1).

Vertical Presentation. Prior research has also found that user
engagement (as measured by clicks and visual attention) is also bi-
ased by the way results are presented on the SERP. Even with SERPs
that present results of the same type (e.g., web results displayed using
the page title, summary snippet, and URL), users are influenced by
different presentation decisions. For example, Yue et al. [2010] found
a click-through bias in favor of textual snippets with bolded versus
non-bolded query-terms. Hofmann et al. [2012] focused on the task of
predicting clicks on web search results. The authors generated different
features from the textual surrogate representation, including the title,
snippet, and url length, as well as the presence of bolded query-terms
in each component. These attributes of the surrogate representation
were found to be predictive of users’ clicks.

Within the context of aggregated search, studies have also found
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that users click on vertical results that are more visually salient. Sush-
mita et al. [2010c] found a click bias in favor of image results and Sush-
mita et al. [2010b] found a click bias in favor video results. Finally,
as mentioned above, Liu et al. [2015] found greater levels of visual
attention given to more salient verticals (e.g., images) irrespective of
relevance.

Together, these results show a complex interplay between vertical
relevance, position, and presentation. All three influence user engage-
ment with the vertical results, either measured in terms of clicks or eye
fixations. However, there are interaction effects. For visually salient ver-
ticals, relevance and position seem to matter less. This has important
implications for aggregated search evaluation and prediction. A verti-
cal’s position on the SERP may matter less for verticals that are more
visually salient. Similarly, evaluation methods for vertical selection may
need to more severely punish false positive mistakes for highly salient
verticals.

Task Complexity. A search task’s cognitive complexity refers to
the amount of learning and cognitive effort required to complete it. A
simple search task might require finding or verifying a particular fact,
for example: What is the name of the deepest part of the ocean? In
contrast, a complex task might require comparing/contrasting a set of
items along a number of different dimensions and making a priority list
or recommendation, for example: Which hybrid SUV would you to buy
based on criteria such as price, gas mileage, and warranty?

Prior work has found that more complex tasks are associated
greater levels of search interaction [Aula et al., 2010; Liu et al., 2010a,b,
2012; Wu et al., 2012]. For example, more complex tasks are associated
with a greater number of queries, clicks, and bookmarks; a greater num-
ber of queries without a click and clicks without a bookmark; longer
landing-page dwell times; and longer completion times. Additionally,
Jansen et al. [2009] observed that participants completing more com-
plex tasks engaged with search results from a wider range of sources.

In the context of aggregated search, Arguello et al. [2012] inves-
tigated whether participants completing more complex tasks engaged
more with content from different verticals. Participants were given tasks
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of varying levels of complexity and interacted with two different sys-
tems: a blended system that combined results from different verticals
in an aggregated SERP and a tabbed system that only provided ac-
cess to the different verticals using tabs. While the effect was subtle,
participants interacted more with results from different verticals while
completing more complex tasks, but only with the blended system.

Perceptual Speed. A person’s perceptual speed (PS) refers to their
“speed in comparing figures and symbols, scanning to find figures or
symbols, or carrying out other simple tasks involving visual percep-
tion.” [Ekstrom et al., 1979]. Several studies have found that low-PS
searchers experience greater workload and interact at slower rates than
high-PS searchers [Al-Maskari and Sanderson, 2011; Brennan et al.,
2014].

In the context of aggregated search, Turpin et al. [2016] investi-
gated the effects of perceptual speed on search behavior and perfor-
mance. Low-PS and high-PS participants interacted with two different
systems: one that blended vertical and web results into the main SERP
(blended) and one that only provided access to different verticals using
tabs (tabbed). High-PS participants rated both systems and their own
performance as higher than low-PS participants. Furthermore, high-PS
participants spent similar amounts of time completing tasks with both
interfaces, but low-PS participants took significantly longer with the
blended interface. This result sets into question a “one size fits all”
aggregated search solution, and suggests that individuals with differ-
ent cognitive abilities may benefit from different ways of displaying
aggregated search results.

5.4 Spillover Effects in Aggregated Search

In the context of vertical selection, a false positive prediction happens
when the system displays a particular vertical that is not relevant to
the user. For example, suppose that a user enters the query “tesla”
because they want to find biographical information about Nikola Tesla.
Presenting image vertical results might be considered a false positive
prediction because they do you satisfy this particular user’s information
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need.
Aggregated search evaluation methods typically assume that all

false positive predictions are equally bad. However, let us consider two
different situations. In the first situation, the system displays images of
Nikola Tesla, and in the second situation, the system displays images
of “tesla” the electric car. Would these two sets of non-relevant image
results equally degrade the user’s experience? Seeing images about the
unintended query-sense (i.e., the electric car) might cause the user to
have less confidence in the other results presented on the SERP.

Several studies have investigated how the results from one particu-
lar source can affect user engagement with results from other sources
aggregated on the SERP [Arguello and Capra, 2012; Arguello et al.,
2013; Arguello and Capra, 2014; Arguello, 2015; Bota et al., 2016].
This phenomenon has been referred to as the “spillover” effect. Thus
far, prior work has focused exclusively on the spillover effect in the
context of ambiguous queries such as “tesla”, and most of this work
has focused on understanding how the query-senses represented in a
set of vertical results can influence user engagement with the core web
results [Arguello and Capra, 2012; Arguello et al., 2013; Arguello and
Capra, 2014; Arguello, 2015]. As an exception, Bota et al. [2016] inves-
tigated how the query-senses represented in an entity card displayed
on the SERP can influence user engagement with the web results. An
entity card or knowledge graph display provides background informa-
tion about an entity associated with the query and may include images,
links to related pages, and links to related queries.

Results from all these studies suggest that users are more likely to
engage with the web results when the query-senses associated with the
vertical results (or the entity card results) are more consistent with the
user’s intended query-sense. For example, a user looking for information
about “tesla” the scientist is more likely to engage with the web results
if the image vertical results contain pictures of the scientist versus the
car.

Prior work has also investigated how different factors influence the
level of spillover from the vertical to the web results, including the ver-
tical’s visual salience, the vertical’s position on the SERP, and whether
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the vertical is displayed in a way that distinguishes it from the other
results on the SERP. In all these studies, the level of spillover was mea-
sured by manipulating the vertical results and observing the differences
in participants’ interactions (e.g., clicks, bookmarks, mouseovers) with
the web results on the SERP.

In all these studies, the spillover was measured by measuring user
engagement with other results on the SERP using clicks, bookmarks,
and other measures.

Vertical Salience. Several studies have found that the spillover ef-
fect is stronger for verticals that are more visually salient [Arguello and
Capra, 2012; Arguello et al., 2013; Arguello and Capra, 2014; Arguello,
2015]. For example, the spillover effect is stronger for the images ver-
tical than the news vertical. An eye-tracking study by Liu et al. [2015]
found that images attracted participants’ visual attention more than
news results. Thus, image results may cause more spillover because
participants are more likely to notice that query-senses in the image
results and then assume that the other sources on the SERP are also
skewed towards the same query-senses.

Arguello et al. [2013] investigated this same factor by considering
two different versions of the shopping vertical: one that included a
thumbnail image of each product displayed in the vertical block (in
addition the title and price) and one that did not include a thumbnail
image. The version that included a thumbnail image (i.e., the more
salient version) had a slightly more spillover, although the effect was
not significant.

Vertical Position. Prior results also suggest that the vertical’s
position on the SERP can affect the level of spillover. For example, the
level of spillover is greater when the vertical is displayed above the web
results versus somewhere in the middle [Arguello and Capra, 2014] or to
the right side of the web results [Arguello and Capra, 2016]. Displaying
the vertical above the web results may have caused a stronger spillover
effect for two possible reasons: (1) perhaps participants were more likely
to notice the vertical results, or (2) perhaps participants assumed that
the system as a whole was more confident about the query-senses in
the vertical results.
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Vertical Layout. As mentioned above, the Gestalt principle of
common region states that items displayed in a common region, such as
within a border or with a different-colored background, tend to be per-
ceived as a group [Palmer, 1992]. In the context of aggregated search,
vertical results are typically displayed on the SERP without a strong
visual cue to distinguish them from other results on the SERP. In con-
trast, for example, advertisements on the SERP are typically displayed
using a different-colored background.

Prior work investigated whether displaying the vertical results en-
closed in a border reduces the level of spillover [Arguello and Capra,
2014]. Including a border had a subtle moderating effect—for some ver-
ticals, the level of spillover was slightly greater without a border than
with a border.

In a follow-up study, Arguello and Capra [2016] found an interesting
additive effect between the vertical’s position and the presence of a
border—the highly salient image vertical results had almost no spillover
when presented to the right side of the web results and enclosed in
a border. This result suggests an interesting additive effect from the
Gestalt principles of proximity and common region—the images had
little spillover when presented away from the web results and with a
border to distinguish them as a different group.

5.4.1 Improving Aggregated Search Coherence

Incoherent aggregated search results are likely to occur when the query
is ambiguous and the results from different sources aggregated on the
SERP are skewed towards different senses. A natural question is: How
often does this happen? With respect to query ambiguity, Sanderson
[2008] conducted an analysis of a commercial search engine’s query-
log, and found that about 4% of all unique queries and 16% of all
unique head queries had an exact match with an ambiguous entity
in Wikipedia or an ambiguous concept in WordNet. With respect to
different sources being skewed towards different senses, an analysis by
Arguello and Capra [2016] found that the top results from four different
verticals were typically skewed towards one particular sense of an am-
biguous query. By comparison, the top web results appeared to be more
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diversified across different query-senses. Santos et al. [2011] found the
same trend in the top queries issued to different verticals. For example,
the image vertical had mostly queries about “amazon” the rainforest,
and the shopping vertical had mostly queries about “amazon” the com-
pany.

Arguello [2015] proposed a simple method for improving the level of
coherence between the vertical and web results. Broadly speaking, the
approach proceeds in two steps: (1) cluster the top web results based
on their query-sense similarity and (2) iteratively select vertical results
that are similar to different web clusters. Vertical and web results were
represented using the prediction confident values from about 200 top-
ical classifiers trained on ODP data.1 Results found that improving
the level of coherence between the vertical and web results influenced
study participants to make more correct decisions about their level of
engagement with the web results—to engage with the web results when
at least one of them was relevant, and the avoid engaging with the web
results when none of them were relevant.

5.5 Scanning Behavior in Aggregated Search

Understanding how users scan search results is critical for IR evalu-
ation. One might argue that the goal for an IR system is to present
the most confidently relevant material in areas where the user is most
likely to examine it. In the context of a “ten blue links” interface, where
users typically scan results top-to-bottom, this boils down to ranking
documents by their probability of relevance.

In the context of aggregated search, the scanning behavior of users
is less predictable for several reasons. Aggregated search systems com-
bine results with very different surrogate representations (e.g., web re-
sults, images, videos, news, local business, etc.). Certain results are
more visually salient than others. Furthermore, in many current ag-
gregated search systems, results are not only stacked vertically from
top to bottom. Instead, it is now common practice to display vertical
results or entity cards (also referred to as knowledge graph displays)

1https://www.dmoz.org/

https://www.dmoz.org/
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to the right side of the web results (also referred to as the two-column
format [Navalpakkam et al., 2013]). Knowing how users will scan a par-
ticular SERP can help us determine how to reward (or penalize) the
presentation of relevant (or non-relevant) web or vertical results in a
particular location on the SERP.

Next we review three areas of related work. Research on click mod-
eling aims to estimate the probability that a user will click a result
presented in a particular position on a SERP. Research on mouse move-
ment modeling aims to predict mouse movement patterns. Prior work
shows that, under certain conditions, eye gaze and mouse cursor move-
ments are highly correlated [Huang et al., 2011, 2012a,b]. Thus, pre-
dicting mouse cursor movements on a SERP can help predict how a
user might visually scan the page. Finally, visual attention modeling
attempts to directly predict where the user is looking based on mouse
cursor data and characteristics of the SERP. In all three areas, we fo-
cus mostly on research that directly addresses aggregated SERPs with
heterogeneous results (possibly using a non-linear layout).

Click Models. Click models attempt to estimate the probability
that a user will click a particular search result displayed on position
i on a SERP. This probability is denoted as P (Ci = 1). Click models
have received considerable attention in prior work partly because clicks
are observed by the search engine. In this respect, a click model can be
easily evaluated based on how well it predicts clicks from real users. A
commonly used metric for evaluating a click model is perplexity, which
is inversely proportional to the probability assigned by the model to a
series of observed clicks.

A click model can be used as part of an evaluation metric. For
example, Chuklin et al. [2013b] proposed the following utility-based
metric:

UMB =
n∑
i=1

P (Ci = 1)× ri,

where n denotes the number of items on the SERP and ri denotes the
relevance of the item in position i, which can be estimated using graded
judgements as ri = 2Gi−1

2Gmax [Markov et al., 2014]. The idea behind this
utility-based metric is to place more emphasis on the relevance of items
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more likely to be clicked. The click model can consider different fac-
tors, including the item’s predicted relevance, its position, the predicted
relevance of nearby items, and the visual salience of nearby items.

With respect to click-behavior in the presence of vertical results on
the SERP, prior research has found four important trends.

First, users tend to click more on a vertical result than on a web
results displayed in the same position [Chen et al., 2012; Diaz et al.,
2013; Wang et al., 2013]. One possible explanation is that current sys-
tems are mostly successful in displaying vertical results when they are
relevant to a query. Another explanation is that vertical results are
more visually salient and attract more clicks independent of relevance.

Second, users are more likely to click on web results that are in
close proximity to highly salient vertical results such as images and
videos [Chen et al., 2012].

Third, clicks on highly salient verticals tend to be the last click
on the SERP [Chen et al., 2012]. In this case, the authors argue that
highly salient verticals allow users to make more correct click decisions
based on the surrogate representation. In this respect, vertical clicks
tend to ultimately result in the user being satisfied.

Finally, results show that if the first of multiple SERP clicks is on
a vertical result, users tend to subsequently click on a higher-ranked
web result if one is available [Wang et al., 2013]. The authors argued
that users tend to skip web results to click on a lower-ranked vertical
result that is more visually salient. In cases where the vertical result
does not satisfy the information need, users tend to return to scanning
the web results top-to-bottom.

Several click models have been proposed that consider the presence
of vertical results on the SERP. Chen et al. [2012] proposed a click
model that considers the rank of the item, its visual salience (depend-
ing on the originating source), and its distance from the vertical results
presented on the SERP. Wang et al. [2013] proposed a click model that
also favors clicks on results that are in close proximity to a vertical,
but favors clicks above the vertical more than below. Markov et al.
[2014] proposed a click model that also favors clicks on results that are
close to the vertical, but allows the model to estimate different proba-
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bilities for results above or below the vertical. To date, these different
vertical-aware click models have not been evaluated against each other.
However, they all outperform click models that do not consider vertical
results on the SERP.

Mouse Movement Models. In the context of a “ten blue links”
interface, prior work shows a correlation between mouse cursor position
and visual gaze. Interestingly, however, Huang et al. [2012a] show that
the strength of the correlation depends on the user, the search task,
and the time spent on the SERP. Moreover, Huang et al. [2011] also
show that mouse movement patterns can help predict the relevance
of a particular result and can help distinguish between good and bad
abandonment [Huang et al., 2011].2

In the context of aggregated search, Diaz et al. [2013] proposed a
model for predicting mouse cursor transitions between non-overlapping
bounding boxes, or modules, around different SERP components (e.g.,
individual web results, vertical blocks, advertisements, query sugges-
tions, and logos). Here, a transition required the mouse to remain sta-
tionary for a certain period of time in the two modules. In a motivating
analysis, Diaz et al. [2013] show that aggregated SERP configurations
from two commercial search follow Zipf’s law. In other words, few con-
figurations are very frequent and most configurations are very rare.
For this reason, the authors proposed a model for predicting mouse
transitions that can generalize to previously unseen configurations.

The proposed approach uses machine learning to train a model to
predict transitions between modules mi and mj as a function of a set
of features. Features included characteristics of both modules, such as
their size and identity (e.g., web, vertical identity, logo,etc.), as well
as features generated from the module-pair, such as their distance and
whether they contain the same result-type. Training data was generated
from module transitions observed from real users—each transition from
modulemi tomj was considered a positive instance and each absence of
a transition from module mi to mk was considered a negative instance.

A model trained to predict module transitions can be used in differ-

2Good abandonment happens when the user does not click on a result, but is
satisfied by the information presented on the SERP.
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ent ways. For example, given a new SERP, we can predict the transition
probabilities between all pairs of modules on the SERP. Let P denote
the transition matrix predicted by the model. Then, we can predict
the probability of being in particular module on the SERP (denoted as
π(mi)) by taking powers of this transition matrix, π = Pke, using a
large value of k. Finally, assuming a correlation between mouse cur-
sor and eye fixations, π(mi) can be treated as the amount of visual
attention given to module mi within the context of the SERP.

Visual Attention Models. As previously mentioned, the extent
to which mouse position correlates with eye gaze position depends
on different factors of the user, the task, and the time spent on the
SERP [Huang et al., 2012a]. Using mouse movement and eye track-
ing data collected from a controlled study, Navalpakkam et al. [2013]
proposed different models for predicting eye gaze position from mouse
activity. Specifically, the authors focused on two different tasks: pre-
dicting the y-coordinate of eye gaze (a regression task) and predicting
the current module being examined (a multiclass classification task).
For both tasks, the authors included features such the time spent on the
SERP, the current mouse position, the current mouse velocity (mag-
nitude and direction), the total mouse distance so far on the SERP,
and the result-type of the module associated with the current mouse
position. For both predictive tasks, the authors trained a global model
(trained on the combined data from all study participants) and a user-
specific model (trained on the each individual participant’s data). In
both tasks, the user-specific model outperformed the global model.

Liu et al. [2016] developed and evaluated different models for pre-
dicting visual attention given to different elements on the SERP (e.g.,
individual web results, vertical result blocks, etc). Specifically, the au-
thors focused on two different tasks: (1) predicting the percentage of
total fixation durations associated with a particular element (a regres-
sion task), and (2) predicting whether a user will fixate on a particu-
lar element at least once (a binary classification task). Here, the unit
of analysis was the individual page element. In other words, training
and test instances corresponded to page elements within a particular
SERP displayed in the study. The authors experimented with two dif-
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ferent types of features: (1) content salience features (e.g., the element
type, position, size, text-to-area ratio, font size), and (2) visual salience
features inspired from research in the field of visual processing. Visual
salience features considered visual properties of the SERP element such
as its color, intensity, and orientation. Interestingly, the authors did not
consider user interaction features at all. As one might expect, visual
salience features were especially predictive when the SERP included
vertical results with images. Furthermore, visual salience features were
also useful for predicting the amount of visual attention given to indi-
vidual elements within a vertical block (e.g., individual image results
within an image vertical block).

Lagun and Agichtein [2015] proposed an algorithm for predicting
eye fixation position on SERPs and other types of webpages. Broadly
speaking, the algorithm proceeds in three steps. First, the page is seg-
mented into regions of interest (e.g., titles, headings, paragraphs, im-
ages, navigational bars). Then, the model predicts the eye gaze position
relative to each region of interest as a function of two types of features:
(1) interaction features derived from current mouse and scroll position
and movement, and (2) content salience features derived from the re-
gion of interest (e.g., size, element type, font size, text-to-area ratio).
Finally, the different region-specific predictions are combined to pre-
dict the current eye fixation position on the SERP. Results found that
combining interaction and content salience features improves prediction
performance over using each feature type in isolation across different
domains (e.g., aggregated SERPs, as well as news, shopping, and social
network websites).



6
Special Topics in Aggregated Search

6.1 Domain Adaptation for Vertical Selection

Training a vertical selection model requires training data, either in the
form of human-produced vertical relevance judgements or in the form
of vertical clicks and skips from real users in the operational setting.
In the field of machine learning, domain adaptation is the task of using
training data from one or more domains (referred to as the source
domains) to learn a model that can make predictions on another domain
(referred to as the target domain). In the context of aggregated search,
prior research investigated the use of domain adaptation techniques
for the purpose of vertical selection [Arguello et al., 2010]. Specifically,
the goal was to use training data associated with a set of existing
verticals (referred to as the source verticals) to learn a model that can
make vertical selection predictions for a new vertical (referred to as
the target vertical). In this case, the training data associated with each
source vertical corresponded to a set of queries with human-produced
vertical relevance judgements.

Arguello et al. [2010] focused on two model properties for the pur-
pose of domain adaptation: portability and adaptability. A portable
model is one that can make predictions for any target vertical, and an
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adaptable model is one that can be trained to make predictions for a
specific vertical.

Model Portability. As we have seen so far, approaches for verti-
cal selection use machine learning to combine a wide range of features.
Certain features (referred to as portable features) tend to have a consis-
tently positive or negative relationship with vertical relevance irrespec-
tive of the exact vertical being considered. In contrast, other features
(referred to as non-portable features) have an inconsistent relationship
with vertical relevance across different verticals.

Let us consider the difference between portable and non-portable
features with some examples. One type of feature might consider the
similarity between the input query and those queries recently issued di-
rectly to the vertical by users. This is an example of a portable feature
because it is likely to be positively correlated with relevance irrespec-
tive of the vertical being considered. That is, the higher its value, the
more relevant the vertical from which the feature was generated. An-
other type of feature might consider the likelihood that the query is a
navigational query, which is better addressed by displaying web versus
vertical results. This is also an example of a portable feature because
it is likely to be negatively correlated with relevance irrespective of the
vertical in question. On the other hand, consider a feature that de-
scribes whether the query is related to the travel domain. This is an
example of a non-portable feature because it is likely to be positively
predictive for a travel-related vertical, but negatively predictive for a
vertical focused on a different domain.

The trick to learning a portable model is to focus on portable
features. Arguello et al. [2010] experimented with three different ap-
proaches for learning a portable model. One approach is train a model
by combining all the training data from every source vertical. Let S de-
note the set of source verticals and let Qv denote the set of queries with
(positive and negative) relevance labels with respect to source vertical
v ∈ S. In this and the next two approaches, the joint training set is
defined as:

Q? = ∪v∈SQv.

In Chapter 2, we distinguished between query, vertical, and query-
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vertical features. In this case, the value of each vertical and query-
vertical feature depends on the vertical associated with the training
set instance. The basic intuition behind this approach is to learn a
model that focuses on portable features (equally correlated with rel-
evance across verticals) and ignores non-portable features (unequally
correlated with relevance across verticals).

One drawback of this approach is that it may focus on non-portable
features that are predictive for a popular vertical with many positive
instances in the joint training set. For example, a popular travel vertical
may cause the model to focus on a feature that considers whether
the query is travel related, which may not be predictive features for
the target vertical. A second, slightly different, approach is to weight
each training instance inversely proportional to the number of positive
instances for that vertical in the joint training set Q?. Arguello et al.
[2010] refer to this process as vertical balancing.

A third approach to learning a portable model is to train a model
using only the subset of features more likely to be portable, which can
be automatically identified in advance. Arguello et al. [2010] identified
the most portable features by treating each feature as single-evidence
predictor and measuring the harmonic mean of prediction performance
across all source verticals. As one might expect, for example, a feature
that considers the query-likelihood score given the vertical’s query-log
language model performs consistently better for different verticals than
a feature that considers whether the query is travel-related.

Arguello et al. [2010] present an evaluation where both vertical-
balancing and portable feature selection improved vertical selection
performance for the target vertical.

Model Adaptability. Prior work on vertical selection found that,
for some verticals, non-portable features are highly predictive. For ex-
ample, Arguello et al. [2009b] report on a feature ablation analysis
were query-category features were amongst the most highly predictive.
Query-category features are non-portable because different verticals are
likely to focus on different topical domains. Arguello et al. [2010] also
experimented with an approach for exploiting vertical-specific, non-
portable evidence uniquely predictive for the target vertical.
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The proposed approach builds on a domain adaptation approach
referred to as Tree-based Domain Adaptation (TRADA) [Chen et al.,
2011]. The basic idea is to train a model using training data from one
or more source domains, and then to continue the training phase using
a small amount of target-domain training data. Arguello et al. [2010]
proposed a solution that proceeds in four steps: (1) learn a portable
model using source vertical training data, (2) make predictions for a set
of queries with respect to the target vertical, (3) treat the most confi-
dent predictions as true positive and negative target-vertical examples
for training, and (4) use the TRADA approach to re-tune the model’s
parameters given this small amount of target-vertical training data.

The adaptable model outperformed all three portable models de-
scribed above.

6.2 Smoothing Vertical Click Data

A search engine can use click data to improve its ranking function.
Suppose, for example, that a user skips document d1 and clicks on doc-
ument d2. From the system’s perspective, this is evidence that d2 should
have been ranked above d1 for this query. If there are many such cases,
then the system might decide to re-consider how it is combining the
different sources of evidence being used to score documents in response
to a query. Radlinski and Joachims [2005] describe an approach for
training a RankSVM learning-to-rank model using click information.

In the context of aggregated search, vertical clicks are very sparse
because they are heavily skewed towards the top few vertical results
that are displayed in an aggregated search. Seo et al. [2011] proposed a
method for smoothing vertical result clicks by diffusing click informa-
tion from the top-ranked vertical results (displayed on the aggregated
SERP) to lower-ranked results (not displayed on the aggregated SERP)
based on their similarity. In information retrieval, the cluster hypothesis
states that similar documents (in a text-similarity sense) are relevant to
the same information requests [Rijsbergen, 1979]. The approach from
Seo et al. [2011] is motivated by the idea that similar documents should
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have similar click counts for the same query.1
The vertical click-smoothing approach from Seo et al. [2011] pro-

ceeds in two steps. First, given a query where vertical v is displayed on
the SERP and one of its top-tv aggregated results is clicked, it com-
putes the text-based similarity between each clicked result and each
non-clicked result in the top T (where T > tv). Second, the approach
diffuses part of this click to other documents based on their similarity.
Clicks were only diffused to other high quality results. The approach
focused on smoothing vertical clicks for a community question answer-
ing (CQA) vertical, and therefore answer quality was estimated using
the technique from Jeon et al. [2006]. Seo et al. [2011] found that train-
ing a learning-to-rank (LTR) model using diffused click data improved
retrieval performance.

6.3 Composite Retrieval

The goal of composite retrieval is to organize search results into bun-
dles associated with different aspects or sub-topics of the query. For
examples, a travel-related query may return bundles associated with
travel options, accommodations, local events, restaurants, and points
of interest. Several studies have considered composite retrieval within
the context of aggregated search, where the bundles may combine re-
sults from different sources (i.e., web results and results from different
verticals) [Bota et al., 2014, 2015].

Bota et al. [2015] report on a user study where participants were
given general search tasks (e.g., “Write a blog post about living in
India”) and were asked to organize relevant documents from poten-
tially different sources into bundles reflecting different aspects of the
information-seeking task. Participants were not given any guidance
about what bundles to create for each task. However, they were asked
to name their bundles in order to determine whether different partic-
ipants created similar bundles for the same task. Study results found
four major trends. First, at least for the tasks used in this study,

1In a similar way, Diaz [2007] proposed an approach for retrieval performance
prediction that considers the extent to which similar documents obtain a similar
retrieval score.
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there was reasonable agreement between the bundles created by dif-
ferent participants for the same task. Specifically, for 85% of the tasks
used, half of the participants created bundles with at least two com-
mon aspects or sub-topics. Second, there was a tendency to associate
certain documents with multiple bundles. These were referred to as
pivot documents. Results found that most pivot documents were web
documents rather than vertical documents. This lends support to the
current aggregated search paradigm of always displaying web results on
the SERP. Third, about 80% of all bundles had results from more than
one source, suggesting that vertical results were also useful. Finally,
participants were also asked to rate bundles in terms of four criteria
(relevance, diversity, cohesion, and freshness). Results found that rel-
evance, cohesion, and diversity were the most important criteria for
determining the overall quality of a bundle. However, agreement be-
tween participants across these three criteria was fairly low, suggesting
that bundle quality is highly subjective.

Together, these results suggest that certain tasks are likely to be
associated with at least some subset of commonly agreed-upon aspects
or sub-topics that a system could return as bundles of results (e.g.,
“planning a trip”). Moreover, results suggest that users are likely to
gain from seeing bundles that include vertical documents in addition
to web documents.

Bota et al. [2014] proposed several algorithms for constructing bun-
dles using results originating from different sources (i.e., web and ver-
tical results). The proposed algorithms aimed to produce bundles with
four different criteria: (1) the bundles contain documents that are top-
ically relevant to the task (relevance), (2) each bundle represents a
coherent aspect of the task (topical cohesion), (3) different bundles
represent different aspects of the task (topical diversity), and (4) the
bundles contain relevant results from different sources (vertical diver-
sity). Topical cohesion was operationalized using the average similarity
between document-pairs in the same bundle (higher is better), and top-
ical diversity was operationalized using the average similarity between
document-pairs in different bundles (lower is better).

Composite retrieval is an interesting new search paradigm and sev-
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eral open questions remain for future work. First, it is unclear how the
system should present bundles to users and how users interact with
bundled results. For example, are users able to easily understand the
different aspects represented in different bundles? Prior work on au-
tomatically labeling document clusters may be useful for describing
bundles to users [Treeratpituk and Callan, 2006]. Second, once user
behavior with composite retrieval interfaces is better understood, fu-
ture work will likely develop new evaluation methodologies and metrics
for composite retrieval.

6.4 Query Disambiguation and Vertical Selection

The goal of query disambiguation is to automatically identify the differ-
ent aspects or sub-topics associated with an ambiguous, multi-faceted,
or task-oriented query. For example, given the query “iphone 6”, a
system might predict sub-topics such as “iphone 6 sales”, “iphone 6
review”, “iphone 6 features”, and “iphone 6 look and feel”. One in-
teresting approach to vertical selection is to first identify the different
sub-topics associated with the query, and then identify the vertical(s)
that best fit each sub-topic. For example, a system might predict the
following sub-topic/vertical pairs: (“iphone 6 sales”, news), (“iphone
6 review”, web), (“iphone 6 features”, web), and (“iphone 6 look and
feel”, images).

This two-step approach to vertical selection was the focus of the
Query Understanding Task at NTCIR 2016 Yamamoto et al. [2016].
Participating systems were given a set of ambiguous, mutli-faceted,
or task-oriented queries and were asked to produce a ranking of no
mor than 10 sub-topics per query, and for each sub-topic, a ranking of
verticals from a pre-defined set (e.g., web, images, encyclopedia, news,
shopping, and Q&A).

The best-performing group in the NTCIR 2016 Query Understand-
ing Task used the following approach [Nanba et al., 2016]. The first
goal was to produce a set of sub-topics. To this end, the system gath-
ered a set of candidate sub-topics from different sources: noun phrases
appearing top-ranked documents; query suggestions returned from dif-
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ferent query suggestion APIs; and queries from a query-log associated
with the same search session, topical category, or the same clicked doc-
uments as the original query. Then, the system clustered the candi-
date sub-topics into 10 clusters using the top-10 retrieved documents
as each candidate sub-topic’s vector representation. Finally, the sys-
tem selected terms from each clusters as the sub-topic title using term
frequency information.

The second goal was to rank verticals for each subtopic. The system
scored verticals in response to a sub-topic using the following procedure.
First, the authors manually coded a collection of webpages as being as-
sociated with a candidate vertical. Then, they trained a classifier to
associate webpages with a particular vertical using a set of manually
selected cue phrases as features. Finally, the system scored verticals us-
ing the top-500 results returned from this collection of vertical-classified
pages. Each vertical’s score was proportional to the number of top-500
documents associated with the vertical.

This is an interesting approach to aggregated search that might get
more attention in future work. The general idea is to first generate a
more complete representation of the different possible intents associated
with the input query, and to then perform vertical selection for each
intent separately.

6.5 Aggregated Search for Children

Young children and teenagers account for a significant portion of all
search engine users. For example, one report claims that in 2013, 78.5%
of children between the ages of 3-17 had access to a home computer
and that 57.1% regularly used the internet [ChildTrends, 2015].In this
section, we review prior work on aggregated search for young users.
Prior research in this area has focused on two main questions: (1) How
are the search behaviors of children and teenagers different from those
of adults? and (2) How can we tailor aggregated search solutions for
children?

Search Behavior of Children. Duarte Torres et al. [2010] an-
alyzed queries and search sessions from the AOL query-log that had
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clicks on content intended for children 12 years old or younger. Results
suggest that children issue longer queries and more natural language
queries, have a flatter click distribution, and have search sessions where
they issue more queries and click on more documents, possibly because
they have less domain knowledge, less experience identifying relevant
content, or less experience using a search interface [Bilal, 2002]. In a
follow-up analysis, Duarte Torres and Weber [2011b] considered queries
issued to a commercial search engine from users for which age was
known. Results found that children were less likely to use search as-
sistance (e.g., spelling correction), targeted content with a more basic
reading-level, and, targeted more content associated the “games” do-
main. By comparison, teenagers targeted more content related to mu-
sic and adults targeted more content associated with business. Finally,
Duarte Torres et al. [2014] also found that children were more likely to
follow-up engagement with knowledge-related content (e.g., Wikipedia)
by searching, and were also more likely to engagement with multimedia
content.

Aggregated Search Solutions for Children. Duarte Torres
et al. [2013] focused on vertical selection in the children domain. The
authors first constructed a test collection using verticals tailored for
children, focusing mostly on educational material, games, entertain-
ment (e.g., stories and coloring pages) and multimedia (e.g., images,
movies, music, and videos). Also, for the purpose of evaluation, the au-
thors included verticals not tailored for children. The test queries corre-
sponded to AOL query-log queries with clicks on web domains geared
towards children. Relevance judgements were gathered using crowd-
sourced workers, who were asked to judge results based on relevance and
appropriateness for children 7-12 years of age. Inter-annotator agree-
ment was fairly high in terms of Fleiss Kappa (κf = 0.683).

Using this test collection, Duarte Torres et al. [2013] proposed a
variant of the ReDDE algorithm (Equation 2.4) that favors verticals
with age-appropriate content. Recall that ReDDE uses a retrieval from
a centralized sample index (CSI) to estimate the number of query-
related documents in each vertical. Each top-ranked CSI result casts a
number of “votes” in favor of its originating vertical, where the number
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of votes is proportional to the estimated number of documents in the
vertical. In the proposed ReDDE variant, the number of votes is pro-
portional to estimated ratio of age-appropriate to non-age-appropriate
documents in the vertical.

Duarte Torres et al. [2013] estimated the number of age-appropriate
and non-age-appropriate documents in each vertical using the multiple
capture-recapture method for collection size estimation [Shokouhi et al.,
2006b]. This approach estimates a collection’s size by conducting mul-
tiple capture-recapture steps (Equation 2.5). First, it uses query-based
sampling to gather k samples of size T from vertical v. Then, the size
of vertical v is given by:

|v| = T (T − 1)k2

2D ,

where D denotes the accumulated number of duplicates between all
pairs of samples. Duarte Torres et al. [2013] estimated the number of
age-appropriate and non-age-appropriate documents by using two dif-
ferent sets of AOL query-log queries for sampling: one set of queries
with clicks on age-appropriate content and one with clicks on non-
age-appropriate content. Results found that this ReDDE variant out-
performed the original ReDDE algorithm based on its ability to rank
verticals in descending order of relevance.2

6.6 Aggregated Mobile Search

Search from mobile devices is becoming increasingly popular. In the
U.S. alone, a multi-platform survey estimated that in 2014 mobile
search accounted for 29% of all search activity, with 20% conducted
via smartphones and 9% via tablets [Comscore, 2015].

Mobile search poses interesting challenges and opportunities from
the perspective of aggregated search. Prior work has focused on two
main research areas: (1) understanding mobile information needs and
their associated search behaviors, and (2) predicting user satisfaction
using implicit feedback.

2Vertical relevance was measured based on the relevance of the top vertical results
for the query.
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Mobile Information Needs and Good Abandonment. One of
the first studies in mobile search investigated the differences between
abandoned queries issued from mobile devices (e.g., smartphones) ver-
sus PC devices (i.e., laptops and desktops) [Li et al., 2009]. An aban-
doned query is one without any clicks on the search results or a quick
reformulation. The aim of the study was to compare the rate of good
abandonment—cases where the user was able to fulfill the information
need directly from the search results without clicking. The researchers
manually coded different samples of abandoned mobile and PC queries
from different markets (U.S., China, and Japan). Abandoned queries
were labeled in terms of their potential for good abandonment based
on the inferred information need and the search results that were dis-
played to the user. Out of each sample of abandoned queries, the au-
thors reported good abandonment estimates of 54.8% (U.S.), 49.8%
(China) and 32.3% (Japan) for mobile queries, and 31.8% (U.S.), 23.3%
(China), and 19.0% (Japan) for PC queries.

These results suggest that good abandonment is much more com-
mon in mobile versus PC search. The authors discuss two possible
explanations: (1) mobile users tend to restrict their queries to those
that will require less interaction, and (2) mobile information needs are
initiated by contextual factors (e.g., current activity, location, time,
conversations with others) that motivate more “quick answer” types
of searches. This second reason is supported by a prior diary study
that found that 72% of participants’ mobile information needs were
motivated that contextual factors [Sohn et al., 2008].

Furthermore, Li et al. [2009] identified different task categories asso-
ciated with good abandonment, including: search for local businesses,
answers, definitions, images, stock quotes, product information (e.g.,
price), movie times, weather, and language translation. Interestingly,
many of these task types are now being addressed by specialized verti-
cals in the mobile domain.

Predicting User Satisfaction. Prior work in this area has mostly
focused on predicting user satisfaction with vertical results (or other
components) that are typically not clicked (i.e., associated with good
abandonment). Lagun et al. [2014b] report on a user study that fo-
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cused on understanding the differences in mobile scrolling behaviors be-
tween participants presented with relevant versus non-relevant knowl-
edge graph results (custom designed for good abandonment). The study
found several important results. First, using eye-tracking data, they
found that participants’ visual attention focused mostly on the top-
half of the phone display, which is typically associated with one or two
results due to smaller display. This suggests that predicting the amount
of visual attention given to a result may be possible using scrolling data
alone. Second, they found that the amount of visual attention given to
an item may not predict satisfaction or good abandonment. In their
study, participants gave more visual attention to non-relevant versus
relevant knowledge graph displays, possibly because the relevant ones
provided the needed information quickly. Finally, they found that the
amount visual attention given to lower ranked results might help pre-
dict dissatisfaction with higher ranked results. In this case, participants
gave more visual attention to lower-ranked results for non-relevant ver-
sus relevant knowledge graph results.

Kiseleva et al. [2016a] focused on characterizing and predicting good
abandonment involving different components aggregated on a mobile
SERP (knowledge graph displays, web results, image results, and oth-
ers). The authors report on a user study where participants were given
search tasks that could potentially be satisfied without clicking on the
SERP. As might be expected, most instances of good abandonment
were associated with knowledge graph displays, which are designed to
provide answers without the need of clicking. The authors also focused
on predicting queries associated with good (versus bad) abandonment
using features derived from scrolling behavior, attributes of the differ-
ent components on the SERP, and session data (prior to the current
query). Interestingly, features generated from scrolls were found to be
the most predictive. The best classifier was able to predict good aban-
donment with about 60% precision and 80% recall.

As mentioned in Kiseleva et al. [2016a], an important task for future
work is to predict which page element was actually responsible for the
good abandonment. Together, the results from Lagun et al. [2014b]
on modeling visual attention in mobile search, and the results from
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Kiseleva et al. [2016a] on predicting queries with good abandonment
suggest that this certainly possible.



7
Conclusions

The goal of aggregated search is to combine results from different het-
erogeneous search services in a single presentation. Most of the pub-
lished research in aggregated search has focused on the web search do-
main. Commercial search portals such as Google, Bing, and Yahoo! pro-
vide access to a wide range of highly specialized search services known
as verticals. Example verticals include search services that focus on
a particular type of media (image and video) or a particular type of
search task (search for online products or local businesses).

Aggregated search is typically decomposed into two sub-tasks: (1)
predicting which verticals to present in response to a query (vertical
selection) and (2) predicting where to present each selected vertical
on the aggregated search results page (SERP). Vertical selection is
essentially a multiclass classification task. Given a query, the system
must decide which verticals to select and which verticals to suppress.
Vertical presentation is a more complex task, as it requires resolving
contention between the different candidate verticals and deciding how
to compose the final presentation of results.

Aggregated search is related to federated search, which is a more
mature subfield of information retrieval. The goal of federated search
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is to combine results from different collections of textual documents
into a single merged ranking. Aggregated search techniques build upon
decades of federated search research. However, as underscored several
times in this review, aggregated search requires unique solutions. For
example, aggregated search requires techniques that can combine mul-
tiple sources of evidence to make vertical selection and presentation
decisions. Also, aggregated search requires techniques that can exploit
a vertical-specific relation between certain sources of evidence and the
relevance of a particular vertical.

In this survey, we have focused almost entirely on the web search
domain. However, the algorithms, evaluation methodologies, and user
studies covered in this review may have relevance to other information
retrieval domains. At the core, aggregated search is driven by a “divide
and conquer” approach to information retrieval. The basic approach is
to develop specialized solutions for different types of content and/or
different types of search tasks, and to use aggregated search techniques
to provide integrated search across these different systems. As men-
tioned in Chapter 1, other information retrieval tasks that may benefit
from the “divide and conquer” approach afforded by aggregated search
include desktop search, news aggregation, contextual suggestion, and
combining updates from heterogeneous social networks.

Next, we summarize some of the major trends found in prior aggre-
gated search. Then, we conclude with a description of some potential
areas for future work.

Sources of Evidence. The most successful approaches for verti-
cal selection and presentation combine different sources of evidence to
make predictions. Evidence can be derived from the query, the vertical,
and the query-vertical pair. A type of query feature might consider the
general topic of the query, a type of vertical feature might consider the
number of queries recently issued to the vertical by users, and a type
of query-vertical feature might consider the click-through rate for the
vertical in response the same query or similar queries.

In general, pre-retrieval features, which do not require issuing the
full query to the vertical search engine, are more appropriate for vertical
selection. In contrast, post-retrieval features are more appropriate for
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vertical presentation.
Vertical Selection and Presentation. The most successful ap-

proaches for vertical selection and presentation use machine learning
to combine different sources of evidence as input features to a model.
Using machine learning for the purpose of vertical selection and presen-
tation poses two main changes. First, not every feature will be available
for every vertical. For example, verticals that are not clickable will not
have click-through features. Second, certain features will be positively
correlated with relevance for some verticals, and negatively correlated
for others. For example, a feature that describes whether the query is
health-related with be positively correlated with relevance for a health-
related vertical, but negatively correlated for a vertical that focuses on
a different domain.

Approaches for vertical selection tend to use independent binary
classifiers (one per vertical). In this respect, each classifier can then
adopt its own feature representation and focus on the features that
are uniquely predictive for the corresponding vertical. In other words,
each vertical selection model can learn a vertical-specific relationship
between feature values and the vertical’s relevance.

Approaches for vertical presentation are more varied. Some ap-
proaches also use independent vertical-specific classifiers. Other ap-
proaches learn to predict the relative relevance between pairs of verti-
cal and web blocks. Finally, prior work has also investigated learning-
to-rank solutions. In this last case, however, the feature representation
may need to be augmented to allow the model to exploit different types
of evidence for different block-types.

Training a machine learning model requires training data, either de-
rived from human-judgements or implicit feedback. In an operational
setting, the system can use vertical clicks and skips to improve its
performance. However, gathering feedback from the only the current
model’s predictions is suboptimal. For example, the vertical selection
system may learn to correct false positive vertical selection predictions,
but not false negative predictions. Explore/exploit methods are de-
signed to make occasional random predictions in order to gather useful
feedback. The better explore/exploit methods are strategic about when
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to output a random prediction and when to output the current model’s
most confidence prediction.

Evaluation. Vertical selection is essentially a multiclass classifica-
tion task. In this respect, vertical selection evaluation is fairly straight
forward. Given vertical relevance judgements for a set of queries, we
can evaluate a system using metrics such as accuracy, precision, recall,
and f-measure.

End-to-end aggregated search evaluation is a research area in its
own right. In this review, we focused mostly on test collection evalu-
ation and online evaluation. Both methodologies have pros and cons.
Test collections are portable and allow us to conduct multiple rounds
of testing at little extra cost. However, relevance judgements are often
made by assessors outside the context of an actual search. In a sim-
ilar way, online evaluation has the benefit of using real users in real
situations. As such, the system can use information about the user’s
preferences and the user’s current context to make predictions. How-
ever, implicit feedback such as clicks and skips can be weak signals of
user satisfaction.

Studies of Search Behavior. Behavioral studies within aggre-
gated search have focused on two main questions: (1) What do users
want from an aggregated search system? and (2) How do factors of
the user, the system, the search task, and the search context influence
search behaviors and outcomes with aggregated search interfaces?

The current aggregated search paradigm is to construct the aggre-
gated SERP dynamically for each query. In this respect, the system
attempts to display only the relevant verticals and presents the most
relevant verticals in a more salient way. Moreover, results from the
same vertical are presented together in a vertical block. With respect
to the first question (What do users want?), several studies lend to
support to the current paradigm. Studies have shown benefits from in-
cluding vertical results alongside the web results. For example, users
interact more with the vertical results when they are blended into the
web results [Sushmita et al., 2009] and seeing blended vertical results
can raise awareness of the contents in each vertical, which can be useful
for future searches [Bron et al., 2013].
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With respect to the second question, studies have found that differ-
ent factors of the user, the search task, and the interface can influence
search behavior. For example, one study found that users’ perceptual
speed can influence their performance when using an aggregated search
interface [Turpin et al., 2016]. Other studies found that users interact
more with content from different sources when complete more complex
search tasks [Arguello et al., 2012; Jansen et al., 2009]. Finally, studies
have found that results from one source on the SERP (a particular ver-
tical) can influence user engagement with the results from other sources
(the web results) [Arguello and Capra, 2016].

7.1 Future Directions

Next, we discuss some possible directions for future work.
Harnessing Session-based Evidence. Users often conduct mul-

tiple searches as they attempt to satisfy an information need. In the
context of ad-hoc retrieval, session-based evidence, derived from previ-
ous user interactions within the same search session, can help improve
retrieval. In fact, this was the main goal of the TREC Session Track,
which ran from 2010 to 2014. Specifically, the goal was to use session
information such the previous queries, clicks, and dwell-times in order
to improve results for the current query. In the 2014, almost all par-
ticipating systems were able to use session data to improve retrieval
performance for the current query Carterette et al. [2014].

Prior work in aggregated search has not considered session-based
evidence for improving vertical selection and presentation decisions.
None of the features evaluated in prior work derive evidence from the
current search session. For example, we could imagine that clicks on
certain web results may suggest that a particular vertical is relevant.
For example, a click on an online retailer may suggest that the user has
shopping vertical intent. Session-based evidence may improve vertical
selection and presentation performance.

Personalized Aggregated Search. Current aggregated search
systems provide a “one size fits all” solution for users. However, users
may have different search styles, preferences, cognitive abilities, and
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mental models about the system. Prior work on ad-hoc retrieval found
that search experience and perceptual speed (a type of cognitive ability)
had an effect on search effectiveness [Al-Maskari and Sanderson, 2011].
In the context of aggregated search, Turpin et al. [2016] also found
that participants with high perceptual speed rated their experience
with an aggregated search interface as superior than participants with
low perceptual speed.

Future research in aggregated search might need to consider indi-
vidual user characteristics in deciding how to aggregate results. Work
towards this goal requires addressing three main questions. First, we
need to determine which characteristics of a user have the greatest
influence on search behavior and performance with aggregated search
systems. Second, we need to understand how to better present results
to individuals with certain characteristics. Finally, we need to develop
models that can infer these characteristics for real users based on their
interactions with the system.

Wholepage Presentation. Current aggregated search system
make two sets of predictions: predicting which verticals to display and
where to display each selected vertical. Some of the end-to-end systems
covered in this review assume that verticals are presented by simply
displaying the top tv results returned by the vertical in response to
the query. In this respect, the system must simply decide which verti-
cals to display and where to display each selected vertical block. These
layout constraints could be greatly relaxed. For example, the system
could predict not only which verticals to display and where, but also:
(1) which results from a particular vertical to display, (2) how many
results to display, and (3) how they should be displayed on the SERP.
For example, Arguello and Capra [2016] found that when image ver-
tical results were display to the right side of the web results and with
a border and different-colored background, the images results had no
influence on user interaction with other results.

The main challenge in developing an aggregated search framework
with fewer constraints is evaluation. To date, there is no evaluation
metric that can reliably measure wholepage quality

Aggregated Search in New Environments. Information re-
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trieval systems are constantly evolving and exploring new frontiers.
Aggregated search technologies may play an important role in advanc-
ing two areas of future research: (1) dialogue-based search and (2) in-
telligent agents in collaborative environments.

Intelligent personal assistants such as Apple’s Siri, Google Now, and
Microsoft’s Cortana can respond to user’ spoken information requests
using either spoken answers and/or search results. Current systems can
even preserve context across queries. For example, a user can issue the
request “current weather in chapel hill” followed by “how about tomor-
row’?’. The most recently published research in the area has focused on
three main areas: (1) understanding how spoken information requests
differ from textual queries [Guy, 2016], (2) understanding what types
of interactions lead to user satisfaction and incorporating these into
methods of automatic evaluation [Jiang et al., 2015; Kiseleva et al.,
2016b,a], and (3) developing techniques for effectively communicating
search results using a speech-only communication channel [Trippas,
2015].

The ultimate goal in this vein of research is to have a dialogue-based
system that can, not only preserve context, but also ask follow-up ques-
tions to disambiguate the user’s information need and/or to understand
the user’s current context in order to retrieve the most relevant informa-
tion or to communicate the information found in the most appropriate
way. Trippas [2015] argues that a necessary step towards this goal is a
tighter integration between the search system and the conversational
agent.

It seems unlikely that a single system will be able to engage in
human-like dialogue for all different types of search tasks, such as search
for local venues, products, weather, quick answers, and for more ex-
ploratory information-seeking tasks. In this respect, aggregated search
technologies may provide an alternative based on its signature “divide
and conquer” approach. We may be able to develop specialized conver-
sational agents for different task types, domains, and back-end systems,
and combine them using a centralized broker that directs users to the
most relevant conversational agent. At the start of the dialogue and as
it progresses, the system would need to predict which dialogue agent
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may be better able to assist the user.
The second area where aggregated search may play an important

role is on research in intelligent agents in collaborative environments.
Chat applications such as Facebook messenger, Slack, and Skype mes-
senger allow people to communicate and collaborate on shared tasks.
More and more, chat applications provide access to agents, or chat bots,
that users can interact with to perform certain tasks. For example,
Skype provides chat bots that can respond to search for specific types
of content (e.g., news, images, videos, music, memes), summarize web-
pages in response a URL, and provide travel information. Individual
users and groups can request information from a chat bot by explicitly
sending requests to the bot and responding to follow-up questions (if
any). Chat bots that provide search results typically provide a sum-
mary of the search results directly in the chat channel and links for the
user(s) to explore the results in a browser window.

Future research might consider developing search-based chat bots
that intervene in conversations where they can assist by providing rel-
evant information. This is off course, a challenging task. A search bot
would need to intervene at the appropriate time and, possibly, after
having learned about the information need or task from the ongoing
conversation. Prior work points to several different reasons for why
users do not engage with help systems, including the cost of cogni-
tively disengaging from the main task, and the fear of unproductive
help-seeking [Dworman and Rosenbaum, 2004].

Aggregated search techniques may be useful in predicting which
chat bot might be able to help in a particular conversation (if any).
However, several challenges need to be addressed: (1) predicting which
chat bot is relevant (if any), (2) mining the conversation for information
about the current task in order to intervene with some level of prior
knowledge, and (3) intervening at a point in which the users are likely
to engage with the assistance.
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