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Abstract

In information retrieval, federated search is the problem of automatically searching
across multiple distributed collections or resources. It is typically decomposed into two
subsequent steps: deciding which resources to search (resource selection) and deciding
how to combine results from multiple resources into a single presentation (results merg-
ing). Federated search occurs in different environments. This dissertation focuses on an
environment that has not been deeply investigated in prior work.

The growing heterogeneity of digital media and the broad range of user information
needs that occur in today’s world have given rise to a multitude of systems that specialize
on a specific type of search task. Examples include search for news, images, video, local
businesses, items for sale, and even social-media interactions. In the Web search domain,
these specialized systems are called verticals and one important task for the Web search
engine is the prediction and integration of relevant vertical content into the Web search
results. This is known as aggregated web search and is the main focus on this dissertation.

Providing a single-point of access to all these diverse systems requires federated
search solutions that can support result-type and retrieval-algorithm heterogeneity. This type
of heterogeneity violates major assumptions made by state-of-the-art resource selection
and results merging methods.

While existing resource selection methods derive predictive evidence exclusively from
sampled resource content, the approaches proposed in this dissertation draw on ma-
chine learning as a means to easily integrate various different types of evidence. These
include, for example, evidence derived from (sampled) vertical content, vertical query-
traffic, click-through information, and properties of the query string. In order to operate
in a heterogeneous environment, we focus on methods that can learn a vertical-specific
relationship between features and relevance. We also present methods that reduce the
need for human-produced training data.

Existing results merging methods formulate the task as score normalization. In a
more heterogeneous environment, however, combining results into a single presentation
requires satisfying a number of layout constraints. The dissertation proposes a novel
formulation of the task: block ranking. During block-ranking, the objective is to rank
sequences of results that must appear grouped together (vertically or horizontally) in
the final presentation. Based on this formulation, the dissertation proposes and empiri-
cally validates a cost-effective methodology for evaluating aggregated web search results.
Finally, it proposes the use of machine learning methods for the task of block-ranking.
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Introduction
Chapter 1

In the broadest sense, the goal of information retrieval (IR) is to rank items by their
relevance to a user’s information need, expressed using a query. The earliest advance-
ments in the field were in the area of ad-hoc retrieval. Ad-hoc retrieval assumes that the
retrievable items consist of textual documents contained within a single collection and
assumes relevance to be topical relevance, which can be typically modeled using text-
similarity. In more recent years, however, the scope of the field has broadened to address
more specific and nuanced information-seeking tasks. On the Web, these include, for
example, search for news, images, videos, local businesses, blogs, weather information,
on-line discussions, items for sale, digitized books, scientific publications, movie times,
and, more recently, social-media interactions like Twitter or Facebook status updates.

One common finding in empirical IR research is that different information-seeking
tasks require different solutions. In other words, a single monolithic search engine can-
not effectively support the wide range of search tasks afforded by today’s search systems.
Different search tasks are associated with different types of media (e.g., images, video,
news, blog feeds), which may require different representations to facilitate search. Dif-
ferent search tasks are associated with different definitions of relevance and may there-
fore require different retrieval algorithms. For example, recency is important for news
search [28], geographical proximity is important for local business search [1], and au-
thority is important in micro-blog search [109]. Finally, different search objectives may
benefit from different ways of presenting results. For example, news results may need
to present their publication date, local results may need to be displayed geographically
in a map, and shopping results may need to display their selling price. As a result,
search systems today are more specialized and diverse than ever before. This gives rise
to a new challenge: how do we provide users with integrated access to all these diverse
search services within a single search interface?

In the Web search domain, specialized search services are referred to as vertical search
services or verticals. Verticals are typically developed and maintained by the same search
company, but address a specific information-seeking task. Verticals common to the major
commercial search providers (i.e., Bing1, Google2, Yahoo!3), include, for example, news,
images, video, local, blogs, finance, shopping, weather, movies, and sports. There are currently
two ways that users can access vertical content. If the vertical has direct search capa-
bilities and the user is aware of them, the query can be issued directly to the vertical.

1http://www.bing.com
2http://www.google.com
3http://www.yahoo.com
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In other cases, however, the user may not know that a vertical is relevant or may want
results from multiple verticals at once. For these reasons, one important step for com-
mercial search providers has become the prediction and integration of relevant vertical
content into the Web search results, as shown in Figure 1.1. In the research community,
this is referred to as aggregated web search [74]. The goal of aggregated web search is to
provide integrated access to multiple search services (including Web search) within a
single search interface.

web

video

news

images

web

web

Figure 1.1: Given the query “first man in space”, an aggregated web search system
determines that the video, news, and images verticals are relevant and incorporates their
top results into the Web results as shown.

In information retrieval, federated search (also known as distributed information retrieval)
is the task of automatically searching across multiple distributed collections. It has been
an active area of IR research for over 20 years. In the research literature, federated search
is often formulated as three separate, but interrelated subtasks: (1) gathering information
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about each collection’s contents (resource representation), (2) deciding which collections
to search given a query (resource selection), and (3) merging results from the selected
collections into a single ranking (results merging) [15]. Resource representation happens
off-line and its main objective is to inform resource selection (i.e., to help predict which
resources have relevant content without issuing the query to the resource). Resource
selection and results merging happen every time a query is issued to the federated search
system.

Aggregated web search can be viewed as a federated search problem, with similar
subtasks. It is often impractical, if not impossible, to issue the query to every available
vertical search service. Therefore, the first sub-task, vertical selection, is to predict which
few verticals (if any) are relevant to the query. Vertical selection is analogous to resource
selection. Once a set of verticals have been selected, the second sub-task, vertical results
presentation, is to predict where in the Web results to present the vertical results. Vertical
results presentation is analogous to results merging. As we discuss in more detail later,
there are some important differences. For example, in aggregated web search, results
from the same vertical must be presented together in the final results (e.g., video, news,
and images in Figure 1.1). However, similar to results merging, the objective in vertical
results presentation is to combine results from potentially multiple search services into
a single presentation of results.

The main focus of the dissertation is on new methods for vertical selection and verti-
cal results presentation. While aggregated web search can be viewed as a type of feder-
ated search task, it is associated with unique challenges and opportunities that have not
been deeply investigated in prior federated search research. To motivate our research
agenda, we describe these at a high level in the next section.

1.1 Unique Properties of Aggregated Web Search

A vertical search service is designed to satisfy a specific type of information need (e.g.,
image search, product search, job search). For this reason, different verticals often re-
trieve different types of results (e.g., images, product descriptions, job listings) and use
significantly different retrieval algorithms. We refer to these two properties of aggregated
web search as result-type and retrieval-algorithm heterogeneity. Prior federated search re-
search investigated environments where collections focus on different topics [50, 94, 113],
have a skewed size distribution [90, 94, 95, 96, 104], have a skewed relevant document
distribution [90, 94, 95, 96, 104], and vary in terms of search engine effectiveness [96].
However, result-type and retrieval-algorithm heterogeneity have been ignored. Assump-
tions about document type and retrieval algorithm heterogeneity affect resource selection
and results merging.

Prior federated search research often distinguishes between a cooperative and an un-
cooperative environment. In an uncooperative environment, resources are assumed to
provide the system no more than the same functionality they provide their human users:
a search interface. Partly for this reason, state-of-the-art resource selection methods,
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designed for an uncooperative environment, derive evidence exclusively from sampled
collection documents, obtained (off-line) by issuing queries to the resource and down-
loading results. In contrast, aggregated web search occurs in at least a semi-cooperative
environment. We assume that the system and its target verticals are operated by the same
search company or its business partners. In this environment, the system may have ac-
cess to sources of evidence beyond collection documents. For example, for verticals
with direct search capabilities, alternative sources of evidence include vertical-specific
query-traffic data, click-through data, and query-reformulation data. This type of evi-
dence conveys how users interact directly with the vertical search engine and may be
helpful in predicting vertical relevance. A vertical selection system should be capable of
incorporating these various sources of evidence into selection decisions.

In addition to deriving evidence exclusively from (sampled) resource content, exist-
ing methods apply the same scoring function to every resource in order to decide which
to select. In other words, existing methods assume that predictive evidence is similarly
predictive across resources. The ReDDE algorithm [94], for example, uses the predicted
relevance of samples from different resources in order to estimate the relevant document
distribution across resources. Implicitly, ReDDE assumes a consistent relationship be-
tween the number of relevant documents in the resource and its relevance: if collection
A has twice as many relevant documents than B, than A is twice as relevant as B. This
is not necessarily true in aggregated web search. A weather vertical that retrieves a sin-
gle relevant result may be more relevant than a news vertical that retrieves ten relevant
results. This suggests that aggregated web search requires methods that can learn a
vertical-specific relationship between predictive evidence and vertical relevance, even if
we focus exclusively on content-based evidence.

Some verticals focus on specific topics (e.g., health, auto, travel) or types of media (e.g.,
images, video). For this reason, it is sometimes possible to detect vertical intent from the
query string alone, for example, based on the query topic (e.g., “swine flu” → health),
based on named entity types appearing in the query (e.g., “bmw reviews” → auto), or
based on query keywords (e.g., “obama inauguration pics” → images). This type of ev-
idence is not inherently associated with a vertical. We refer to this type of evidence as
resource agnostic evidence. Useful correlations between resource-agnostic evidence and re-
source relevance must be learned using some form of supervision (e.g., by learning a
model using training data). Existing resource selection methods do not provide mech-
anisms for easily learning predictive relationships between resource-agnostic evidence
and resource relevance. This point also resonates with the previous one. We may ben-
efit from methods that are capable of learning a vertical-specific predictive relationship
between agnostic evidence and vertical relevance. We can imagine, for example, that
different verticals will focus on different topics and be associated with different query
keywords.

In some federated search environments, resource selection can be formulated as re-
source ranking. During resource ranking, the objective is not to make a binary selection
decision for every available resource, but rather to prioritize resources for selection. Re-
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source ranking is an appropriate formulation of the task when two assumptions hold
true: when at least one resource must be selected in order to retrieve documents for the
user and when an effective merged retrieval can be produced by always selecting some
fixed number k < n of resources from the top ranks, where n is the number of available
resources. In aggregated web search, these assumptions do not hold true. Given n can-
didate verticals, it is possible for the user to not want to see any vertical results (i.e., they
may just want to see Web results). This may happen, for example, when the query is a
navigational query. Therefore, in aggregated web search, the task cannot be formulated
as vertical ranking. It may be that the best choice for the system is to entirely suppress
even the most confident vertical.

The aggregated web search environment is highly dynamic. Changes to the envi-
ronment can originate from a change in the set of candidate verticals, a change in the
contents of a particular vertical, and a change in the interests of the user population. A
news vertical is an example of a dynamic vertical search service. Solutions that assume
a static environment may not be appropriate for a dynamic environment. A federated
search solution well-suited for a dynamic environment should be robust to changes in
the environment and, in cases when necessary, it should be possible to learn a new model
without extensive human effort.

So far, we have focused on vertical selection. Aggregated web search is also unique
in terms of merging, the task of combining results from those resources (or verticals)
selected into a single presentation of results. In some federated search environments,
results merging is free from layout constraints. That is, documents from different re-
sources can be interleaved freely in the merged ranking. In the absence of constraints,
results merging is often formulated as score normalization—converting scores from dif-
ferent resources so that they are directly comparable and can be used to infer a merged
ranking. In aggregated web search, however, results merging must satisfy a number of
layout constraints. For example, results from the same vertical must appear grouped
together (vertically or horizontally) within the Web search results page (see Figure 1.1).
This constraint is partly due to the fact that results from different verticals are presented
differently. For example, news results display their publication date, images and video
results are displayed as thumbnail images, and local results are displayed geographically
in a map. Given such layout constraints, the merging task cannot be formulated solely
as score normalization. Vertical results presentation requires new solutions.

To summarize, aggregated web search exemplifies a federated search environment
that has not been deeply investigated in prior work. In terms of vertical selection, the task
of predicting which verticals are relevant, aggregated web search requires approaches
that:

• do not assume result-type and retrieval-algorithm homogeneity;

• can integrate various types of evidence;

• can learn a vertical-specific relationship between predictive evidence and vertical
relevance;

5



• can predict when no vertical is relevant; and

• can be (re-)trained without extensive human effort.

In terms of vertical results presentation, the task of predicting where to present the verti-
cals results, aggregated web search requires approaches that can aggregate cross-vertical
content while satisfying a number of layout constraints.

1.2 The Goal and Contribution of this Dissertation

Federated search has been an active area of information retrieval research for close
to two decades. Most of this work, however, was conducted under the assumption
that resources return similar types of (text-rich) documents (result-type homogeneity) and
use similar retrieval algorithms (retrieval-algorithm homogeneity). These assumptions are
deeply embedded in state-of-the-art methods for resource selection and results merging.

Resource Selection In terms of resource selection, existing approaches can be divided
into two general classes.4 So-called large document models treat each resource as a sin-
gle, monolithic “large document” and select resources based on a retrieval from a large
document index [14, 98, 113]. These methods adapt well-studied text-based document
ranking functions to ranking resources. On the other hand, so-called small document mod-
els predict resource relevance as a function of sample relevance [90, 94, 95, 96, 104]. In
the most general sense, these small document methods proceed as follows. First, sam-
ples from every resource are combined within a centralize sample index. Then, given a
query, a retrieval from this index is used to produce a scoring of samples. Finally, each
collection is scored based on some function of the predicted relevance of its samples.
Small document models differ in how they go from a scoring of samples to a scoring of
resources. However, at a high level, they all follow this sequence of steps.

From this high-level description, we can see that both large and small document
models assume result-type homogeneity. That is, they assume that content from differ-
ent resources can be combined in a single index—either a large document index or a
centralized sample index. Furthermore, both large and small document models assume
retrieval-algorithm homogeneity. That is, they assume that a single (text-based) retrieval al-
gorithm (internal to the federated search system) can be used to predict relevance across
resources.

Neither of these assumptions are true in an aggregated web search environment.
While some vertical search services are associated with text-rich documents (e.g., blogs,
news), others are associated with text-impoverished documents (e.g., images, video), and
others with no documents at all (e.g., calculator, language translation). Thus, it may not
be possible to combine cross-vertical samples within a single index. Furthermore, even
if cross-resource content could be combined within a single index, because they address

4These methods are reviewed in more detail in Section 2.3.
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different types of information needs, different verticals predict relevance differently. For
example, as previously mentioned, recency is important when searching for news [28],
geographical proximity is important when searching for local businesses [1], and the au-
thor’s connectivity in the network is important when searching for Twitter updates [109].
These various definitions of relevance cannot be modeled by a single retrieval algorithm.

Additionally, content-based methods have another potential limitation: they do not
provide ways to easily incorporate other types of evidence. Partly because the envi-
ronment is not completely uncooperative, in aggregated web search we have access to
multiple sources of non-content-based evidence that might be useful for selection. This
includes information derived from vertical query-traffic, from historical click-through
data, and from properties of the query string (e.g., whether the query is about a particu-
lar topic or contains a particular keyword).

To address these limitations, this dissertation takes a new approach to resource selec-
tion. We cast resource selection as a supervised machine-learned classification problem.
By design, our approach differs from existing resource selection methods in three re-
spects. First, it incorporates multiple sources of evidence as input features. Second, it
uses training data (e.g., a set of queries with vertical-relevance judgements) to learn a
predictive relationship between features and vertical relevance. Third, we learn a dif-
ferent model for each vertical. Therefore, we allow the system the freedom to learn a
vertical-spectic relationship between features and vertical relevance. We demonstrate in
Chapter 3 that this approach outperforms existing methods and that feature-integration
is a major contributor to its success. No single type of feature is solely responsible for its
performance.

While a supervised machine learning approach to resource selection has many ad-
vantages, one limitation is that it requires training data, for example, in the form of a
set of queries with relevance judgements for a set of verticals. In practice, the aggre-
gated web search environment is dynamic. A new vertical can be introduced to the set
of candidate verticals, content within a vertical can change, and the interests of the user
population can shift. Prior work showed that even a change in resource content degrades
performance for an already-tuned resource selector [93]. Human annotation is costly in
terms of time and resources. An annotation effort may make sense as a one-time invest-
ment. However, it may not be feasible to annotate a new set of queries every time the
environment undergoes a significant change. Therefore, in Chapter 4, we propose mod-
els that attempt to make maximal use of already-available training data. In particular, we
address the scenario where we have a set of existing verticals (associated with training
data) and we are given a new vertical (associated with no training data). We call the
existing verticals the source verticals and the new vertical the target vertical. Our goal is
to learn a predictive model for the target vertical using only source-vertical training data.

In machine learning, the field of domain adaptation is concerned with algorithms that
generalize from one domain to another using little or no training data in the new do-
main. This dissertation presents the first exploration of domain adaptation applied to
resource selection. We investigate vertical selection models that exhibit two properties:
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portability—-the ability of a model to be trained once and then applied effectively to any
arbitrary vertical, including one with no training data—and adaptability—the ability of a
model to adjust its parameters to a specific vertical. We present portable models that can
be trained on one set of verticals and applied to another. Also, we present an approach
that adapts a portable model to a specific target vertical using no target-vertical training
data.

We show that features can be divided into two classes: portable features, those that
are correlated with relevance (in the same direction) across verticals and non-portable
features, those that are correlated with relevance for a specific vertical, but not across
verticals. We show that learning an effective portable model (one that make predictions
with respect to any vertical) requires focusing on the most portable features. We present
a way of identifying these portable features automatically. Furthermore, we show that,
given target-vertical training data, the most predictive features are the non-portable ones.
In other words, the features that help the most are precisely those that do not generalize
across verticals. We demonstrate, however, that non-portable features can be harnessed
using target-vertical predictions from a portable model.

As previously mentioned, most federated search research was conducted under the
assumption that resources contain similar types of documents and use similar algorithms
to retrieve content. To test the generality of a machine-learning approach to resource se-
lection, in Chapter 7 we focus precisely on this type of federated search environment.
While existing resource selection methods are expected to perform well in this environ-
ment, we demonstrate that a machine learning approach is more robust. It performs
either at the same level or significantly better across a number of experimental condi-
tions.

Among one of the research questions investigated in Chapter 7 is the effect of re-
source representation quality on resource selection performance across methods. Exist-
ing content-based methods make use of resource samples to predict resource relevance.
Therefore, we might expect these methods to perform comparatively well when given
access to high-quality representations. That is, when sample sets are large (relative to
the resource) for those resources with many relevant documents. We investigate the im-
portance of evidence-integration across various experimental conditions. For example,
when given access to high-quality representations, does a machine learning approach
learn to focus on content-based evidence? Likewise, when given access to impoverished
representations, does it learn to focus on other sources of evidence (e.g., evidence derived
from historical click-through data)?

Finally, we investigate whether a machine learning approach can be trained without
human judgements of any kind. Our zero judgement training approach automatically
generates training data using retrievals that merge content from all available resources.
Our basic assumption is that, on average, a retrieval that merges content from every
resource will be superior to one that merges content from only a few. Thus, we train
a machine learning model to select those few resources whose merged ranking most
closely approximates one that merges content from all.
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Results Merging In terms of results merging, existing methods were developed under
the assumption that an appropriate presentation of results is an unconstrained interleav-
ing of results from different resources. For this reason, existing methods cast the task as
score normalization—-normalizing retrieval scores from different resources so that they
are directly comparable and can be used to produce a single ranking.

In aggregated web search, results merging or vertical results presentation is the task
of deciding where in the Web results to present the vertical results and it is subject
to a number of layout constraints. Most importantly, results from the same vertical, if
presented, must appear grouped together (either horizontally or vertically) in the final
presentation. Therefore, the task cannot be merely formulated as score normalization.

We propose a novel formulation of the problem. Given a set of layout constraints,
which we define explicitly in Chapter 5, we cast vertical results presentation as block
ranking. A result block is defined as a sequence of Web or vertical results that must
appear grouped together in the final presentation.

Based on this formulation, we propose a methodology for evaluating a particular
presentation of results (i.e., a particular ranking of blocks). At a high-level, our approach
proceeds as follows. First, given a query and a set of blocks, we collect (redundant)
human preference judgements on block-pairs. Then, we use these judgements to con-
struct a “gold standard” or reference presentation. This reference presentation is essen-
tially a ranking of blocks that attempts to be consistent with preferences expressed on
block-pairs. Finally, we propose that any alternative presentation for the query can be
evaluated using a rank-based metric to measure its distance or similarity to the reference
presentation.

Compared to evaluation methodologies adopted in prior work, our approach has
several advantages. First, given a query, it requires a relatively few number of human
judgements in order to evaluate any possible presentation of results. This means that it
can be used to construct an evaluation testbed (a set of queries with block-pair preference
judgements). In information retrieval, evaluation testbeds are important because they
facilitate the direct comparison between alternative approaches. Second, our approach
does not require an operational system with users.5 Finally, our approach is grounded on
user preference behavior. Chapter 5 presents a user study that empirically validates the
metric. We show that when assessors agree that one presentation is better than another,
the metric agrees with the stated preference.

An evaluation metric that can automatically score alternative presentations for a
query is not only essential for comparing systems, it is also essential for model building—
for training a system to produce high-quality output. In Chapter 6, we propose ma-
chine learning methods that rank blocks in response to a query. In information retrieval,
learning-to-rank methods are the state-of-the-art in document retrieval. These meth-
ods learn to rank individual documents based on features derived from the query (e.g.,
whether it contains a domain name [56]), the document (e.g., its PageRank [12]), and

5In an operational environment, algorithms can be tested based on implicit user feedback (clicks and
skips) [28, 78].
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the query-document pair (e.g., its BM25 score [80]). This dissertation presents the first
investigation of learning-to-rank methods for the purpose of ranking blocks of results
from different search services.

There are three novel components to this work. First, in terms of features, how do
we represent a sequence of documents as a single unit of retrieval? In other words,
how do we aggregate document evidence and query-document evidence across a mul-
tiple documents (i.e., those that compose a particular block)? Second, different verticals
retrieve different types of results, each associated with a unique set of meta-data. For
example, news results have publication date, local results have a location, shopping results
have a product name. How do we rank blocks that are associated with different feature
representations? Finally, even if a feature is common to multiple verticals, it may have
a vertical-specific predictive relationship with relevance. For example, the number of re-
trieved results may be predictive evidence for news, but not for weather, which retrieves
at most a single result. The query-term “weather” may be positive evidence for weather,
but negative evidence for local. The presence of a city name in the query may be positive
evidence for local, but negative evidence for finance. Thus, block-ranking may require
methods that can exploit a vertical-specific relationship between features and relevance.
Learning-to-rank methods rank documents by adopting a consistent feature representa-
tion and learning a feature-to-relevance relationship that is uniform across documents.
Chapter 6 presents approaches that learn to rank different types of elements (i.e., blocks
from different verticals), where each type is associated with a unique set of features and,
possibly, a unique feature-to-relevance relationship.

1.2.1 Summary of Contributions

The dissertation makes the the following contributions to the field of information re-
trieval.

1. An evaluation of existing resource selection methods on the task of vertical se-
lection. We show that existing methods are not well-suited for an aggregated web
search environment.

2. A machine-learning approach to resource selection capable of integrating multi-
ple sources of evidence. We show that a machine-learning approach outperforms
existing methods in two different environment: in an aggregated web search envi-
ronment and in a more traditional federated search environment.

3. An understanding of the contribution of feature-integration in resource selec-
tion. We investigate the effectiveness of various different types of evidence: content-
based evidence (derived from resource content), query-log evidence (derived from
resource-specific query-traffic), click-through evidence (derived from previously
seen clicks on resource content), and query-string evidence (derived from proper-
ties of the query). We demonstrate that no single feature type is exclusively re-
sponsible for performance. Furthermore, we demonstrate the importance of differ-
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ent types of features under different experimental conditions (e.g., given different
levels of resource-representation quality).

4. The first investigation of domain adaptation applied to resource selection. We
contribute a set of machine learning models that can generalize across verticals,
as well as adapt their parameters to a specific vertical that is associated with no
training data.

5. A new formulation of the vertical results presentation task. We formulate the
task as block-ranking.

6. A new methodology for evaluating aggregated web search results. Our method-
ology includes an interface for collecting block relevance judgements in a quick
and inexpensive manner and a way of using these judgements to conduct off-line
metric-based evaluation.

7. An evaluation of machine-learning approaches to vertical results presentation.
These methods, viewed broadly, address the task of ordering different types of
items, which have an inconsistent feature representation and a non-uniform (item-
type-specific) relationship between features and the item’s target rank.

1.3 Impact on Other Applications

Most of the dissertation focuses on aggregated web search, which, as previously men-
tioned, is characterized with two important properties: different resources retrieve differ-
ent types of results (result-type heterogeneity) and different resources use different retrieval
algorithms (retrieval-algorithm heterogeneity). While we focus on aggregated web search,
these two types of heterogeneity occur in other federated search environments. Thus,
the solutions presented in the thesis may be applicable to other federated search tasks.

Library search, for example, must support single-point access to various types of
media, such as books, encyclopedic entries, archived news and magazine articles, film,
and conference proceedings. Likewise, desktop search must support single-point access
to various file-types, such as documents, spreadsheets, presentations, images, email,
schedule information, and applications. Kim and Croft [60] approached the task of target
file-type prediction in desktop search as a type of resource selection problem.

Mobile search is another environment where aggregation takes place. Currently,
commercial mobile search providers support many of the same vertical search services
familiar to Web search users.6 One important difference with mobile search, however,
is the availability of rich information about the user’s current context. Contextual in-
formation includes, for example, the time of day, the user’s location, and whether the
user is stationary or moving. Additionally, historical data can provide clues about the
user’s activity. For example, are they likely to be at home, at work, or in an unfamiliar

6For a demonstration, see http://mobile.yahoo.com/search.
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location? Aggregated mobile search may benefit from methods that can easily integrate
a wide range of contextual evidence.

The search scenarios mentioned above are all situations where the user issues a query.
Aggregation also occurs in situations where there is no explicitly stated information
need. On-line portals such as Yahoo!7 and AOL8 as well as on-line newspapers such
as the New York Times9 provide visitors with access to a wide-range of content, for
example, videos, images, blogs, international news, local news, movie news, real-state
news, financial news, job listings, classifieds, personals, and even advertisements. Each
type of content can be viewed as a type of vertical. An important task for the system,
then, is deciding which type of content to display and where to display it. In the absence of
a user query, we can imagine harnessing various types of user-interest data, for example,
from bursts in the production of a particular type of content, from the user’s preferences
(if the user is a returning user), from queries issued to the portal’s search engine (if one
exists), from previous user interactions (clicks and skips), or from trending topics on
blogs or on Twitter10.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows. Chapter 2 surveys prior work
in federated search, including resource representation (Section 2.2), resource selection
(Section 2.3), and results merging (Section 2.4). Chapters 3-6 focus on aggregated web
search, where the goal is to incorporate relevant vertical results into Web search results.
Chapter 3 evaluates a machine learning approach to vertical selection, the task of pre-
dicting which verticals to search for a given query. To address the limitation of requiring
training data, Chapter 4 focuses on domain adaptation for vertical selection, where the
task is to learn a predictive model for a new vertical using only existing-vertical training
data. Chapters 5 and 6 focus on vertical results presentation, the task of predicting where
to present results from different verticals. Chapter 5 describes an evaluation methodol-
ogy for vertical results presentation and Chapter 6 focuses on machine learning methods
that predict how to present results. To test the generality of our vertical selection ap-
proach (Chapter 3), in Chapter 7 we focus on resource selection in a more traditional
federated search environment, where resources retrieve similar types of documents and
use similar retrieval algorithms. Finally, Chapter 8 concludes the dissertation by sum-
marizing the major results and contributions and highlighting potential areas for future
work.

7http://www.yahoo.com
8http://www.aol.com
9http://www.nytimes.com

10http://www.twitter.com
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Prior Research in Federated Search
Chapter 2

Federated search, or distributed information retrieval, is the problem of automatically search-
ing across multiple distributed collections or resources. Aggregated web search—the
detection and integration of relevant vertical content into the Web search results—can be
viewed as one type of federated search task. The goal of this chapter is to survey prior
research in federated search. Throughout the rest of this dissertation, we use algorithms
described in this chapter in two ways: to generate features for our models and to serve
as baselines for comparison.

Most prior federated search research partitions the problem into three separate, but
interrelated, tasks. Resource representation is the task of gathering information about the
contents of each resource. Resource selection is the task of deciding which resources to
search for a given query. Results merging is the task of combining results from different
resources—those selected—into a single document ranking. It is often impractical (if not
impossible) to issue the query to every available resource. Therefore, the goal of resource
selection is to determine which few resources are most likely to have relevant content.
Resource representation and selection go hand-in-hand. Ultimately, the goal of resource
representation is to inform resource selection. Resource representation happens off-line,
while resource selection and results merging happen every time a query is issued to the
system.

In the following sections, we review prior work in representation (Section 2.2), selec-
tion (Section 2.3), and merging (Section 2.4). We focus on approaches intended for an
uncooperative environment.

2.1 Cooperative vs. Uncooperative Federated Search

Prior research in federated search often distinguishes between a cooperative and an un-
cooperative environment. In a cooperative environment, resources provide the system
with all the information needed to perform federated search accurately and efficiently.
A cooperative environment may occur, for example, when the system and its target re-
sources are operated by the same search company. In an uncooperative environment,
resources provide the system no more than the functionality they provide their human
users: a search interface. An uncooperative environment may occur, for example, when
the system searches across external digital libraries that cannot be crawled and centrally
indexed

In a cooperative environment, federated search can be done using a cooperative fed-
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erated search protocol such as STARTS [41]. The STARTS protocol standardizes how re-
sources should publish content descriptions, defines a unified query language to retrieve
documents from resources, and specifies result set statistics to be provided alongside
search results to facilitate results merging. Cooperative protocols such as STARTS have
the advantage that resource descriptions are complete and accurate. However, they have
a few drawbacks. First, they require coordination between resource providers. Second,
they assume that there exists a single description template that can effectively summa-
rize the contents of every resource. Such a template may become overly complex as
resources specialize on a wider range of content and media (e.g., news, blogs, images,
video, items for sale). Third, because representation is not handled locally by the system,
every resource is responsible for providing the system with complete and accurate con-
tent descriptions. In some cases, we may prefer a configuration in which the federated
search system is exclusively responsible for representation. Perhaps for these reasons,
most federated search research after Gravano et al.’s work on the STARTS protocol as-
sumes an uncooperative environment.

2.2 Resource Representation

Resource representation has a dual objective: to gather information about the contents
of each resource and to represent resource content in a way that informs selection. The
manner in which resource content is represented (e.g., term-frequency information [98])
depends on the resource selection algorithm (e.g., language-model-based selection [98]).

Regardless of how the content is represented, in an uncooperative environment, re-
source statistics (e.g., term-frequency counts) must be collected by issuing queries to the
resource and analyzing their results. This process is referred to as resource sampling. The
end goal of resource sampling is to produce a sample set that is highly representative
of unsampled, unseen documents within the collection. In general, resource sampling
iterates over the following steps: a query is issued to the collection, a few documents are
downloaded, the resource description is updated, and the process iterates. Callan and
Connell’s query-based sampling (QBS) approach derives single-term queries for sampling
from the emerging resource description, which takes the form of term-frequencies for the
set of documents downloaded so far [16]. Callan and Connell compared federated search
retrievals using complete vs. partial descriptions (acquired using QBS) and concluded
that they are probably indistinguishable to a human.

The research questions associated with resource sampling include: (1) how much to
sample, (2) what to sample, (3) when to re-sample, and (4) how to make optimal use of
sampled documents for representation (an ultimately selection).

2.2.1 How much to sample

Callan and Connell [16] show that effective resource descriptions, suitable for resource
selection, can be produced by sampling as few as 300 documents per collection. Although
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their results were obtained on testbeds with relatively small collections (with fewer than
50,000 documents), sampling about 300 documents per collection has become standard
practice, even on testbeds with larger collections [24, 76, 91, 92, 94, 95, 96, 104]. To some
extent, this was done to make results comparable with prior work. In fact, Shokouhi et
al. show that federated search results, based on the final merged retrieval, improve when
uniformly sampling about 1,000 documents per resource [92].

An alternative to uniformly sampling the same number of documents per resource is
adaptive sampling [20, 92]. Shokouhi et al. [92] sample from each resource until the rate of
previously unseen terms drops below threshold. They show that adaptive sampling out-
performs uniformly sampling 300 documents per resource. However, during adapting
sampling, every sample set consisted of more than 300 samples. Therefore, while adap-
tive sampling outperformed 300 documents per resource, it is unclear from this study
whether it outperforms larger samples of equal size.

Caverlee et al. [20] propose adaptive sampling in two phases. In the first phase, an
equal number of documents is sampled from each collection. In the second phase, the
remaining sampling budget is reallocated by sampling more from collections predicted
to have a weaker intermediate representation. Two budget-reallocation approaches out-
performed uniformly sampling 300 documents: sampling proportional to the estimated
number of documents in the collection and sampling proportional to the estimated vo-
cabulary size of the collection. As opposed to Shokouhi et al. [92], Caverlee’s experiments
on adaptive sampling were conducted with a fixed budget of n × 300 total samples,
where n is the number of collections.

To summarize, given a relatively small sampling budget (e.g., n× 300 total samples),
adaptive sampling outperforms uniform sampling. It is unclear, however, whether its
performance improvement diminishes with a larger sampling budget.

2.2.2 What to sample

Besides deciding how much to sample, another question is what to sample, which in
an uncooperative setting is instantiated as how to select queries for sampling. The tra-
ditional QBS approach is to derive sampling queries from the ongoing representation.
The risk, however, is that this does not guarantee that the sampled documents will be
typical of those requested by users at test time. Shokouhi et al. [92] show that probing
collections using high-frequency query-log queries can produce more effective represen-
tations. Their hypothesis was that query-log queries can help bias the sample towards
documents likely to be requested at test time and that this leads to more effective rep-
resentations. Their results suggest this to be true. However, the same set of query-log
queries was used to sample from every collection. This makes their results slightly incon-
clusive. It may be that the single set of query-log probe queries used in the experiment
was particularly effective. A better evaluation would have used multiple sets of query-
log queries and reported variance in performance.
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2.2.3 When to re-sample

Ensuring that sampled documents are representative of unsampled documents in the re-
source is difficult when resources are dynamic—when documents are periodically added
to and removed from the resource. This may occur for example in a news collection,
where new content is produced daily. Shokouhi et al. [93] investigate re-sampling strate-
gies in environments where the system has no prior knowledge of a resource’s update
schedule. Several heuristics were explored. Re-sampling according to collection size (i.e.,
re-sampling larger collections more frequently) outperformed re-sampling according to
level of query traffic (i.e., re-sampling higher query-traffic collections more frequently).
Re-sampling outperformed sampling just once, showing that representations can become
stale if collections change.

2.2.4 Combining collection representations.

The final research question is how to make optimal use of sampled documents. A risk
of deriving content summaries from document samples is not representing meaningful
content in the collection (e.g., missing important vocabulary terms). Ipeirotis and Gra-
vano [50] address this problem by combining content summaries (in their case, term
frequency information) from semantically-related collections. Their approach proceeds
in two steps. First, each collection is assigned to a node in a topic hierarchy. A collection’s
topical affinity is determined by issuing topically-focused queries to the collection and
observing their hit counts. Second, each collection’s language model (used in Ipeirotis
and Gravano’s resource selection approach) is smoothed with those assigned to related
nodes in the hierarchy. We revisit this approach in Section 2.3.

2.3 Resource Selection

As previously mentioned, it is often impractical (if not impossible) to send the query to
every resource. Therefore, the goal of resource selection is to decide which few resources
are most likely to have relevant content. More formally, the goal is to decide which k < n
collections to select for a given query.

2.3.1 Problem Formulation and Evaluation

Most prior research assumes that k—the number of collections to select—is given. For
this reason, resource selection is often cast as a resource ranking problem. If k is given,
the system is only required to produce a ranking of n collections, from which the top k
are selected and evaluated.

Given this formulation of the problem, resource selection is often evaluated based on
the system’s ranking of resources. The most common metric is Rk, which evaluates a
ranking of n collections up to some rank k. The assumption behind Rk is that the best a
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system can do is to rank resources based on their number of true relevant documents (in
descending order).

For a given query q and value k, let,

Rk,q =
∑k

i=1 |Ei,q ∩D+
q |

∑k
i=1 |Bi,q ∩D+

q |
.

Here, Ei,q denotes the ith resource in the algorithmic ranking, Bi,q denotes the ith resource
in a relevant-document-based ranking, and D+

q denotes the set of all document relevant
to q. Rk is the average of Rk,q across queries. Rk ranges between 0 and 1 and is easy
to interpret—it corresponds to the (average) relevant-document-recall from the top k
collections, normalized by the best possible recall given k.

Resource selection is only the first step in a two-step process: selection and merging.
An evaluation based on Rk has the advantage that it isolates results merging performance
from resource selection evaluation. However, precisely because of this, it is difficult to
determine how values in Rk correlate with the quality of the end-to-end system output:
the merged results. Selecting resources based on their number of relevant documents
may not always be the best strategy. For instance, even if a resource has many relevant
documents, its search engine may not retrieve them. And, even if it retrieves them, the
merging algorithm may not rank them high. That is, the merging algorithm may handle
documents from some collections better than others. Previous experiments show that
maximizing Rk does not necessarily maximize the quality of the final merged results [90].
For this reason, the more recent trend is to hold the merging algorithm constant and
to evaluate resource selection based on the final merged results, borrowing evaluation
metrics from document retrieval (e.g., P@10 of the merged results for a given value
k < n).

2.3.2 Modeling Query-Collection Similarity

Some methods rank collections by comparing the text in the query with the text in the
entire collection, using metrics adapted from document retrieval. These methods model
the collection as a single unit of retrieval and make no distinction between documents
in the collection. For this reason, they are sometimes referred to as “large document
models”. CORI [14] adapts INQUERY’s inference net document ranking approach to
rank collections. Collection Ci is scored according to the query likelihood, P(q|Ci), where
the likelihood of query term w ∈ q is given by,

CORIw(Ci) = b + (1− b)× d fw,i

d fw,i + 50 + 150× cwi
avg_cw

×
log

(
|C|+0.5

c fw

)

log(|C|+ 1.0)
,

where d fw,i is the document frequency of query term w in Ci, c fw is the number of
collections containing query term w, |C| is the number of target collections, cwi is the
number of terms in Ci, avg_cw is the average number of words per collection, and b is
the default belief.
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Xu and Croft [113] and Si et al. [98] adapt approaches from language model based
retrieval. Xu and Croft [113] rank collections based on the Kullback-Leibler divergence
between the query and collection language model,

KLq(Ci) = ∑
w∈q

P(w|q) log
(

P(w|q)
P(w|Ci)

)
,

where P(w|q) and P(w|Ci) are the probabilities of query term w in the query and col-
lection language models, respectively. Si et al. [98] rank collections based on the query
generation probability given a collection’s language model,

P(q|Ci) = ∏
w∈q

λP(w|Ci) + (1− λ)P(w|G),

where P(w|Ci) is linearly smoothed using the probability of query term w in a global
language model, P(w|G).

Large document models have the advantage of being straight-forward adaptations of
well-studied document ranking techniques. However, because they do not distinguish
between documents in the collection, the collection language model is dominated by the
larger documents. This is a potential disadvantage if we care about relevance at the
document level. Also, they compare the text in the query with the text in the entire col-
lection, making no distinction between documents that are related and unrelated to the
query. Because of this, large document models favor collections with a high proportion
of relevant-to-non-relevant documents. They may favor a small topically focused collec-
tion (related to the query), when a larger more topically diverse collection contains more
relevant documents.

An alternative to modeling a collection as a single, query-independent language
model is to focus only on those documents that are most similar to the query. Seo and
Croft [86] score collections using the similarity between the query and the collection’s
most similar m documents. More specifically, their approach scores collection Ci using
the geometric average query likelihood from Ci’s top m documents,

GAVGq(Ci) =

(

∏
d∈top m from Ci

P(q|d)

) 1
m

.

Seo and Croft applied this approach to the task of blog ranking, where they treat a blog
as a collection of documents: its blog posts. Although they assume a complete view of
the blog/collection, in an uncooperative federated search environment we can imagine
applying this method using sampled documents. In the blog ranking task, the GAVG
method outperformed a method that uses a global (query-independent) representation
of the collection, fundamentally similar to the large document models presented above.

In blog ranking, users are primarily interested in blogs that are consistently relevant
to the query across its blog posts. In this sense, topically-diverse blogs should be penal-
ized irrespective of the query. In their results, Seo and Croft show that a large document
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model, which uses a global representation of the blog, can be effectively used to penal-
ize diversity in a blog. Above we claimed that large document approaches model the
proportion of relevant-to-non-relevant documents in the collection. This result from Seo
and Croft [86] supports our claim that large document models may disfavor a topically
diverse collection, even if it has many relevant documents.

In the GAVG scoring function, parameter m is query- and collection-independent.
However, the number of relevant documents in a collection may be greater than or less
than m. In the next section, we introduce methods that address this limitation by directly
modeling the relevant document distribution across collections.

2.3.3 Modeling the Relevant Document Distribution

GlOSS [40] scores a collection based on its expected number of relevant documents, as
follows,

GlOSSq(Ci) = |Ci|× φ(q, Ci)

where φ(q, Ci) denotes the query-collection similarity.
While GlOSS estimates the number of relevant documents in a collection, it does so

using the entire collection’s language model. Essentially, it assumes that the collection’s
language is evenly distributed across documents. vGlOSS [42], a vector-space extension
of GlOSS, more explicitly addresses the fact that different documents cover different
topics. vGlOSS scores collections proportional to the number of documents exceeding a
query-document similarity threshold,

vGLOSSq(Ci) = ∑
d∈Ci

I(φ(q, d) > τ)× φ(q, d),

where I is the indicator function, φ(q, d) is the query-document similarity, and τ is a
parameter. The ideal vGLOSS algorithm requires collections to publish their document
term vectors in order to compute φ(q, d).

ReDDE [94] follows the same principle as vGlOSS. It prioritizes collections by their
expected number of relevant documents. However, it differs from vGlOSS in two re-
spects. First, it treats all predicted relevant documents equally, that is,

ReDDEq(Ci) ≈ ∑
d∈Ci

I(φ(q, d) > τ).

Second, it does not require collections to publish their document term vectors. It ac-
complishes this by using a centralized sample index, an index that combines samples from
every collection.

ReDDE proceeds as follows. First, it conducts a retrieval from the centralized sample
index. Given this retrieval, it uses a rank-based cut-off to predict a set of relevant sampled
documents, all considered equally relevant. Finally, it assumes that each (predicted)
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relevant sample represents some number of unseen relevant documents in the collection
from which it originates.

ReDDE is described in detail because it is used in methods proposed in this thesis.
ReDDE scores collection Ci according to,

ReDDEq(Ci) = SF i × ∑
d∈Si

P(rel|d, q) (2.1)

where P(rel|d, q) is the probability that document d is relevant to q and SF i is the scale
factor of collection Ci, defined by,

scale factor(Ci) = SF i =
|Ci|
|Si|

. (2.2)

The scale factor quantifies the difference between the size of the original collection, |Ci|,
and its sample set size, |Si|. ReDDE models P(rel|d, q) as a binary relevant/non-relevant
variable based on document d’s projected rank in an unobserved full-dataset retrieval,
R̂q,full(d). Document d’s projected full-dataset rank is estimated as the sum of scale fac-
tors associated with samples ranked above d in the retrieval from the centralized sample
index,

R̂q,full(d) =
Rq,S (d)−1

∑
j=1

|C|

∑
i=1
I(dj ∈ Ci)× SF i.

P(rel|d, q) is modeled according to,

P(rel|d, q) =

{
1 if R̂q,full(d) <

(
τ × |Cfull|

)

0 otherwise,

where |Cfull| = ∑Ci∈C |Ci| and τ is a parameter.
Between ReDDE and CORI, prior work shows that ReDDE is more robust. It performs

either at the same level or significantly better than CORI across testbeds.

2.3.4 Modeling the Document Score Distribution

A federated retrieval (one that selects and merges results from k < n collections) can be
viewed as a substitute for a full-dataset retrieval (one that searches a single-index which
combines all n collections). In fact, if we assume full-dataset retrieval to be effective
on average, then we can formulate the resource selection task as that of selecting the
collections whose merged ranking more closely approximates a full-dataset ranking. For
example, we may want to score each resource based on its contribution to the top ranks
of a full-dataset ranking. This is the underlying assumption made by the next set of
algorithms: CRCS [90], SUSHI [104], and UUM [95].

Shokouhi’s Central Rank-based Collection Selection (CRCS) [90] method is similar to
ReDDE. The only difference is that while ReDDE models sample relevance using a binary
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relevant/non-relevant function, CRCS uses a real value. Two functions are proposed: one
decays relevance linearly, CRCS(l), and one decays relevance exponentially, CRCS(e), as
a function of rank. One disadvantage of ReDDE is the importance of parameter τ—all
sampled documents ranked above this threshold are considered equally relevant. CRCS
makes more fine-grained judgments about document relevance. Given a retrieval from
the centralized sample index, each sample’s contribution to its collection’s is proportional
to its rank.

To model the full-dataset ranking, CRCS assumes that for each sample, with a par-
ticular relevance score, there are scale factor number of document in its collection with
exactly the same score. Essentially, this imposes a limit on how well a full-dataset re-
trieval can be approximated. This is because the (unseen) documents represented by a
sampled document must appear adjacent in the unobserved full-dataset retrieval. More
fine grained approximations of a full-dataset retrieval can be made by estimating each
collection’s full-dataset score curve. A collection’s full-dataset score curve is one that ex-
presses (estimated) full-dataset score as a function of (estimated) full-dataset rank.

Si and Callan’s Unified Utility Maximization (UUM) method [95] proceeds in two
phases: a training phase, which happens off-line, and a test phrase, which happens at
query time. During the training phrase, the objective is to learn a logistic model that
expresses a document’s probability of relevance as a function of its centralized sample
index score. This is accomplished using a small set of training queries (e.g., 50) with rel-
evance judgements on documents, which are scattered across collections. Each training
query is issued to every collection and each collection’s top documents are downloaded
and scored according to the centralized sample index statistics. After doing this for ev-
ery training query, a logistic model is fit to predict relevance as a function of centralized
sample index score.

During the test phase, the objective is to estimate, for each collection, a probability of
relevance curve using all of its (mostly unseen) documents. Let Ri(r) denote collection
Ci’s probability of relevance curve, where r ∈ [1, |Ci|]. Ri(r) returns the probability of
relevance of the rth most relevant document from Ci. Given a probability of relevance
curve from every collection, collections can be prioritized according to different criteria.
For example, they can be prioritize by their total document relevance,

|Ci |

∑
r=1

= Ri(r),

or the relevance of their top N documents, to maximize P@N,

N

∑
r=1

= Ri(r).

UUM approximates each collection’s probability of relevance curve Ri as follows.
First, the query is issued to the centralized sample index. From this ranking, the algo-
rithm extracts a sub-ranking corresponding to those documents sampled from Ci. Then,
UUM assumes that between every two sampled documents adjacent in this sub-ranking
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there are SF i documents in Ci whose retrieval score degrades linearly. Given this as-
sumption, a full-dataset score curve can be constructed by linearly interpolating the
scores from each of Ci’s samples, assuming SF i unseen documents between each point.
Finally, UUM translates this full-dataset score curve into a probability of relevance curve
using the logistic model learned in the training phase.

Like UUM, Thomas and Shokouhi’s SUSHI approach [104] prioritizes collections
based on their contribution to an approximated full-dataset retrieval. SUSHI differs
from UUM in two respects. First, it does not translate centralized sample index scores
to probabilities of relevance. Instead, it uses the centralized sample index scores directly.
Second, it does not construct a collection’s full-dataset score curve by linearly interpolat-
ing points. Instead, it uses curve fitting. Like UUM, SUSHI first issues the query to the
centralized sample index. Next, it extracts the sub-ranking corresponding to Ci’s sam-
ples and scales this sub-ranking by assuming SF i unseen documents between adjacent
points. Next, it approximates the score curve of all (mostly unseen) documents from Ci
by fitting a curve to the observed points. SUSHI fits a linear, exponential, and logarith-
mic function and chooses the one which fits best according to the R2 metric. SUSHI then
interleaves the points from the different collection-specific score curves to approximate
a full-dataset retrieval. To maximize P@N, resource selection is done by prioritizing
collections by their contribution to the top N full-dataset retrieval results.

In terms of performance, both SUSHI and UUM outperform ReDDE on testbeds
where relevant documents are evenly distributed across collections. The gap narrows
on testbeds where the collection size distribution is skewed and the larger collections
contain more relevant documents. SUSHI and UUM have not been directly compared in
prior work.

2.3.5 Combining Collection Representations

Many of the approaches discussed so far derive evidence from sampled documents rather
than the full collection. A significant risk with sampling is misrepresenting the collection
content, particularly if the collection is large relative to the sample set. We discuss two
methods that aim to minimize the negative effect of incomplete content descriptions by
combining content descriptions from semantically-related collections.

Ipeirotis and Gravano [50] propose the following approach. First, collections are
assigned to nodes in a topic hierarchy, similar to the Open Directory Project (ODP)
hierarchy.1 This is accomplished by issuing topically-focused queries to each collection
and observing their hit counts. Then, each category node is treated as a large pseudo-
collection, represented by combining the representations of those collections assigned to
it directly (assigned to the same node) or indirectly (assigned to a more general node). In
general, the manner in which the representations of related collections are combined will
depend on the resource selection method. Specifically, Ipeirotis and Gravano use a large
document model. Therefore, pseudo-collections were represented by summing the term

1http://www.dmoz.org
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counts from those collections assigned to it. At test time, the selection process traverses
down the hierarchy, at each step selecting a pseudo-collection using a non-hierarchical
resource selection method (e.g., CORI [14]). The search trickles down the hierarchy until
selecting a pseudo-collection with k collections or less.

In later work, Ipeirotis and Gravano [51] combine collection descriptions using a
smoothing technique known as shrinkage. Similar to the method above, collections are
assigned to nodes in a topic hierarchy and the term statistics from collections assigned to
the same node are combined to form node-specific language models. Then, a collection’s
language model is smoothed by linearly interpolating its language model with that of
its related categories, from its parent up to the root node (a language model of the
full vocabulary). The mixing coefficients for a given node in the tree are found using
Expectation-Maximization. At test time, collections are selected using a non-hierarchical
“large document” resource selection algorithm, using each collection’s “shrunk” content
description.

2.3.6 Modeling Search Engine Effectiveness

So far, we have discussed methods that rank collections based on their content. Content-
based methods, however, ignore the fact that even if a resource has relevant content,
its search engine may not retrieve it. The following methods address this limitation by
considering the search engine’s expected effectiveness in resource selection decisions.

To our knowledge, the first method to consider retrieval effectiveness in federated
search was proposed by Voorhees et al. [106]. This method has a training and test phase.
During training, the system issues every training query to every resource and observes
the number of relevant documents retrieved by each. Then, given a previously unseen
(test) query q, the system ranks resources based on their average number of retrieved
relevant documents for the set of training queries most similar to q. The test query’s
nearest-neighbor (training) queries are obtained using the cosine similarity in the query-
term space. Computing the query-query similarity based on query-term overlap risks
not finding enough training queries similar to the test query. A second approach uses
query clustering. For each search engine, all training queries are clustered using as
query similarity metric the overlap in the top documents retrieved. Notice that query-
clusters could have also been collection independent. In this case, however, they were
collection dependent.2 Given a collection-dependent clustering, each cluster is assigned
an effectiveness score based on the average number of relevant documents retrieved by
queries assigned to it. Finally, at test time, given a previously unseen query, resources
are prioritized by the effectiveness of the query cluster most similar to it. Clusters are
represented by their term centroid. Both approaches implicitly model search engine
effectiveness by focusing on documents retrieved from the collection.

Si and Callan propose the Returned Utility Maximization (RUM) model [96], an ex-
tension of UUM that models search engine effectiveness. RUM estimates a search en-

2This choice was not evaluated empirically.
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gine’s effectiveness by comparing its retrievals with those produced with a presumably
effective ranking algorithm on a subset of its documents. RUM proceeds as follows.
First, a set of J training queries is used to build mapping functions specific to collection
Ci of the form,

φij : RCi ,qj(d) → RS ,qj(d),

Mapping function φij is constructed by issuing training query qj to collection Ci (pro-
ducing ranking RCi ,qj ), downloading the top documents, and scoring these using a sup-
posedly effective retrieval algorithm according to the centralized sample index statistics
(producing ranking RS ,qj ). From these two rankings, mapping function, φij, maps ranks
in Ci’s (possibly-ineffective) retrieval to ranks in the (assumed to be) effective retrieval.

Recall that UUM constructs, for every collection Ci, a probability of relevance curve,
Ri(r), where r ∈ [1, |Ci|]. Function Ri(r) specifies a document’s estimated probability of
relevance as a function of its rank in a retrieval of collection Ci. RUM models retrieval
effectiveness by injecting the mapping functions, φij, learned in the training phrase, into
the collection selection criterion. For example, if selecting collections by their total num-
ber of relevant documents, instead of maximizing,

|Ci |

∑
r=1

= Ri(r),

RUM maximizes,

|Ci |

∑
r=1

=
1
J

J

∑
j=1

Ri(φij(r)).

If selecting collections by their expected number of top N relevant documents, instead of
maximizing,

N

∑
r=1

= Ri(r),

RUM maximizes,

N

∑
r=1

=
1
J

J

∑
j=1

Ri(φij(r)).

Injecting the mapping functions into the collection selection criterion has the effect that
documents from collections with an ineffective search engine will tend to have lower
probabilities of relevance and therefore lower ranks in the approximated full-dataset
retrieval.

At test time, RUM combines a collection’s J mapping functions with equal weight. In
other words, while each mapping function is specific to a query, RUM’s application of
these J mapping functions is query-independent. In this respect, Voorhees et al. [106] goes
one step further by considering the similarity between the test query and the training
queries.
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2.3.7 Query Classification

Query classification is the task of assigning queries to one or more categories, and is
done, for example, when processing different query classes using customized retrieval
algorithms or representations [57]. If we consider target collections as query categories,
we may view resource selection in federated search as a type of query classification
problem. The major difference is that in resource selection each target “category” is
associated with a document collection that can be used to inform selection.

Because queries are terse, query classification methods often generate evidence from
sources other than the query string. Among these resources are query-logs [6], query
click-through data [108], and documents associated with target categories [57, 88, 89].3

In spite of the similarity between query classification and resource selection, the most
successful query classification approaches differ from most resource selection methods
in one respect—they tend to combine different types of evidence. As we have seen, most
resource selection methods score collections using a single ranking function and derive
evidence exclusively from collection documents.

Bietzel et al. [6] classify queries into semantic categories using a large (unlabeled)
query-log and a technique known as selectional preference (SP). According to SP, the query
“interest rates” belongs to target category finance because the terms “interest” and “rates”
co-occur with terms known to be finance-related. Bietzel et al. combine a SP-based clas-
sifier with two supervised classifiers: a rote classifier and a bag-of-words text classifier.
A combination approach outperforms all three base classifiers.

Wen et al. [108] introduce several query-similarity metrics. Although they focus on
query clustering, their similarity metrics could be used in any memory-based approach
to classification, such as K-Nearest Neighbor (KNN). They explored query similarity
based on the query string, degree of click overlap, and the average pair-wise text sim-
ilarity between clicked documents. Their most effective similarity metric, evaluated on
clustering, was a combination of these three sources of evidence.

Kang and Kim [57] categorize queries by type of information need: informational
vs. known-item. To inform classification, they harvested documents likely to be relevant
to each query type. Web documents were assigned to either a “known-item query”
collection or an “informational query” collection based on URL length—short URLs tend
to be website entry pages which tend to satisfy known-item queries. Kang and Kim focus
on two types of evidence: hit counts derived from these two collections and features
derived from the query string. A linear combination of all features outperformed all
single-evidence baselines.

Shen et al. [89] also use a meta-classification approach, and, like Kang and Kim [57],
use corpus-based evidence. Each target category was automatically mapped (based on
title overlap) to a set of “intermediate” categories (e.g., ODP categories), each associated
with a set of documents. The end result is a corpus of documents associated with each
target category. These category-specific collections were used to produce three base clas-

3Approaches in this last category use techniques similar to those used in resource selection.
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sifiers. The first classifier resembles ReDDE [94]. The query is issued to an index of all
category-specific collections combined and the classifier predicts the category most fre-
quently represented in the top-ranked documents. The second method uses a category’s
related documents as training data for a multi-class bag-of-words text classifier that is
applied to the query string to make a category prediction. The third classifier makes
predictions based on the query likelihood given the category language model, derived
from its associated documents. In this respect, it resembles the large document model
presented in Si et al. [98], with one major difference: intermediate categories are not
mapped to a single target category. Instead, this method derives a “soft” intermediate-
to-target category mapping using the similarity between associated documents. Again,
their best-performing approach was a combination of these three classifiers.

In contrast to these approaches, Li et al. classify queries into query intent categories
product and jobs and propose a technique that derives evidence exclusively from the query
string [67]. Instead of enriching the query representation using external resources, they
increase the amount of training data using a query click graph. Query labels are prop-
agated to unlabeled queries with clicks on similar documents. Their semi-supervised
approach outperformed a baseline trained only on the labeled “seed” queries. Focusing
on query string features is efficient. Feature enrichment requires, for example, issuing
the query to a collection of category-representative documents. However, query string
features have a potential shortcoming. If the language associated with a particular cate-
gory shifts significantly, the model may need to be retrained. This may not be the case
when using external evidence such as the number of times the query appears in a set of
category-related documents. A trained model may be able to maintain its performance
as long as external resources change in order to reflect the concept drift.

2.3.8 Machine Learned Resource Selection

Prior to the work presented in this dissertation, Xu and Li [112] are the only ones to cast
resource ranking as a machine learning problem. Collections are represented as feature
vectors, a combination of query-independent static features (i.e., the size of the collection,
level of query traffic) and query-dependent dynamic features (i.e., the query hit count
in the collection, the query hit count in anchor text linking to a collection document).
Two machine learning approaches were evaluated: combining collection-specific binary
classifiers (i.e., ranking collections by classifier’s confidence value of a positive predic-
tion) and a rank-learning approach. Rank-learning outperformed classification and both
machine learning methods outperformed a CORI baseline.

Although this is a result in favor of machine learned resource selection, the work
has some limitations. First, their results cannot be easily compared with previous work.
Algorithms were evaluated by their ability to prioritize collections using a five-point rel-
evance scale. Most prior resource selection work is evaluated either based on a strict
ordering of resources using Rk or based on the quality of the merged document rank-
ing. Second, both machine learned methods and CORI used different types of evidence.
Therefore, it is unclear whether the machine learned methods are inherently superior
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to CORI or used evidence better-suited for this particular testbed. A better comparison
would have used CORI as one type of dynamic feature.

The work conducted for this dissertation (particularly that presented in Chapter 7)
influenced other researchers to consider casting resource selection as a supervised classi-
fication task. Hong et al. [48] also train logistic regression models, as we do. Their work
differs from ours in several respects. First, a set of binary resource-relevance labels were
generated by observing the number of relevant documents (judged manually) retrieved
from each resource for a set of training queries. Secondly, they limited their features
only to existing content-based resource selection methods (e.g., CORI [14], GAVG [86]).
Finally, and more importantly, they propose methods that exploit the relatedness be-
tween different resources. The idea is to favor a resource for selection if an “indepen-
dent” model assigns a high prediction probability to those resources that are the most
similar. Several (query-independent and query-dependent) resource-similarity measures
were evaluated. The best resource-similarity measure was found to be query-dependent.

2.4 Results Merging

Results merging is the task of integrating results from different resources—those selected—
into a single merged ranking. Even when resources adopt a similar retrieval algorithm,
they often use different representations (e.g., stemming, stopword removal) and have
different corpus statistics (e.g., idf values). For these reasons, resource-specific retrieval
scores (for the same query) may not be directly comparable across resources. To address
this problem, the goal of results merging is to perform score normalization. That is,
to transform each retrieved document’s resource-specific score (not comparable across
resources) into a resource-general score (comparable across resources). Results from dif-
ferent resources can then be ranked based on their normalized scores. We review two
widely-used score-normalization techniques.

CORI-merge [14] assigns each retrieved document a collection-general score that is a
function of its collection-specific score and its collection’s resource selection score. CORI-
merge scores document d, originating from Ci, according to,

SCORI(d) =
Ŝi(d) + 0.4Ŝi(d)Ŝcoll(Ci)

1.4
,

where Ŝi(d) is document d’s collection specific score (scaled to zero min and unit max)
and Ŝcoll(Ci) is collection Ci’s resource selection score (scaled to zero min and unit max).

CORI-marge applies the same normalization function to all collections and all queries.
In contrast, Si and Callan’s semi-supervised learning (SSL) approach [97] learns a different
transformation model for each query-collection combination. Supposed we had access
to a centralized index of all collection content. A retrieval from this centralized index
would give us a resource-general score for every document in every resource. While we
may not have access to a centralized index of all content, we may have access to a central-
ize sample index that combines samples from every resource. SSL proceeds as follows.
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First, it issues the query to every selected resource and to the centralized sample index.
Then, for each selected resource, it uses linear regression to learn a transformation be-
tween a result’s resource-specific score and it’s centralized sample index score. To learn
this transformation, it uses as training data pairs of scores associated with documents
that are both retrieved from the resource and present in the centralized sample index.
In the absence of retrieved documents that are also in the centralized sample index, it
downloads a few results and scores them using statistics from the centralized sample
index.

2.5 Summary

Several trends are noticeable from surveying prior research in federated search. In terms
of prior resource selection work, we can draw the following conclusions.

• Most resource selection methods score collections using a single function with rel-
atively few parameters that are tuned manually on a few training queries (e.g.,
50).

• In most prior work, resource selection is formulated as a resource ranking problem.
That is, given a set of n collections and a query q, the algorithm selects k ≤ n
collections from which to retrieve documents. The objective is to produce the best
retrieval possible for a given value k. In theory, the quality of the merged results
may not always improve with greater values of k. No prior work addresses the
problem of selecting, for a given query, the optimal k value.

• No single resource selection method outperforms the rest across all testbeds. This
may be in part because some methods can be tuned particularly well to a testbed
with certain properties. For example, if the evaluation is based on Rk, ReDDE can
be tuned particularly well to an environment where the collection size is skewed
and most of the relevant documents are in the larger collections.

• Most resource selection methods derive evidence exclusively from collection doc-
uments, for example, by comparing the text in the query with all the text in a
collection (e.g., CORI [14]) or by estimating the number of relevant documents in
a collection using samples (e.g., ReDDE [94]). Other types non-content-based evi-
dence, derived, for example, from queries previous issued to a collection or from
the topic of the query, have been ignored.

• There has been a divide between resource selection and query classification work.
While most resource selection methods focus on a single source of evidence (mostly
collection samples), the most successful query classification approaches combine
sources of evidence. Evidence-integration approaches have not been applied to the
task of resource selection.

In terms of prior results merging work, we can draw the following conclusions.

28



• Existing approaches to results merging assume that results from different collec-
tions can be interleaved freely in an unconstrained fashion. For this reason, the
task is often formulated as score normalization.

• To make scores from different resources comparable, the state of the art approach,
SSL [97], assumes that samples from different resources can be combined in a cen-
tralize sample index and that each resource’s retrieval algorithm can be modeled
internally within the system using a single scoring function.
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Vertical Selection
Chapter 3

In addition to web search, commercial search providers maintain many different search
services customized for a particular type of information need. These specialized search
services (referred to as verticals) include, for example, search for news, images, video,
local businesses, movie times, items for sale, and weather forecast information, to name
a few. There are two ways that users can access vertical content. In some cases, if the user
wants results from a particular vertical, the query can be issued directly to the vertical
search engine. In other cases, however, a user may not know that a vertical is relevant or
may want results from multiple verticals at once. For these reasons, an important task for
commercial search provider is the detection and integration of relevant vertical content
in response to a web search query. This task is referred to as aggregated web search.

Aggregated web search can be viewed as a type of federated search, reviewed exten-
sively in Chapter 2. Like federated search, it can also be decomposed into two separate
tasks. It is often impractical, if not impossible, to issue the query to every vertical in
order to decide which (if any) to present to the user. Therefore, the first task, vertical
selection, is to predict (using only pre-retrieval evidence) which verticals are likely to be
relevant. The second task, vertical results presentation, is to predict where in the Web re-
sults to present or embed the vertical results. In this chapter, we focus on the first task:
vertical selection.

Vertical selection is related to the task to resource selection in federated search (Sec-
tion 2.3). Existing solutions to resource selection divide into two classes. So-called large
document models (Section 2.3.2) treat resources as large documents and adapt well-
studied, text-based document retrieval algorithms to predict resource relevance [14, 98,
113]. On the other hand, small document models (Sections 2.3.3 and 2.3.4) first conduct
a retrieval from an index that combines sampled documents from every resource, and
then predict resource relevance based on sample relevance [90, 94, 95, 96, 104].

While vertical selection can be viewed as a type of resource selection, the aggregated
web search environment violates two of the major assumptions made by state-of-the-art
resource selection methods. Both large- and small-document models were designed for
environments where resources retrieve similar types of (text-rich) documents and use
a similar retrieval algorithm, which can be approximated internally by the federated
search system. In other words, existing resource selection methods assume result-type
and retrieval-algorithm homogeneity across resources. Neither of these assumptions are

1This work was conducted during an internship in Yahoo! Montreal and was published in SIGIR 2009
with co-authors Fernando Diaz, Jamie Callan, and Jean-François Crespo [3].
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true in an aggregated web search environment. First, different verticals retrieve items
with different levels of text-richness (e.g., news, images). Second, because they are care-
fully tuned to satisfy a unique type of information need, different verticals use different
retrieval algorithms. This suggests that need for a different approach to vertical selection.

Furthermore, existing resource selection methods have a second potential limitation:
they derive evidence exclusively from collection content (usually sampled) and do not
provide a means to easily incorporate other types of non-content-based evidence. Partly
because the environment is not completely uncooperative, in an aggregated web search
environment the system may have access to other sources of evidence. Some verticals,
for example, are associated with a vertical-specific search interface through which users
can issue queries directly to the vertical. Therefore, vertical query-traffic is another po-
tentially useful source of evidence. Some verticals focus on a specific topic (e.g., health,
auto, travel) or type of media (e.g., images, video). Thus, it may be possible to detect ver-
tical relevance from the query string alone, for example, based on the query topic (e.g.,
“swine flu” → health) or based on the presence of a particular named entity type (e.g.,
“bmw reviews” → auto) or query-term (e.g., “obama pictures” → images).

To address these potential limitations, we cast vertical selection as a machine learning
problem. That is, we draw on machine learning as a way to combine multiple sources
of evidence as input features and learn a predictive relationship between features and
vertical relevance using training data. In particular, we exploit three different types of
features. Vertical corpus features derive evidence from (sampled) vertical content. Vertical
query-log features derive evidence from vertical-specific query traffic. Finally, query features
derive evidence from the query string. Vertical corpus and query-log features enrich the
query representation beyond the query string and focus on two potentially complemen-
tary sources of evidence: corpus features relate to content production (i.e., content in the
vertical) and query-log features relate to content demand (i.e., content sought by users).

Another assumption of existing resource selection methods is that evidence is sim-
ilarly predictive of relevance across all resources. In this chapter, as in the rest of the
dissertation, we relax this assumption. We propose a classification framework that com-
bines vertical-specific binary classifiers, each trained independently on its own training
data (its own set of queries with human relevance judgements with respect to one verti-
cal). Thus, the classification-framework is allowed the freedom to learn a vertical-specific
relationship between features and vertical relevance. Consider our query features, men-
tioned above. Some of these features exploit, for example, the topical category of the
query (determined automatically using a query classifier)—if the query is health-related,
the health vertical is relevant. Because verticals focus on different topics, exploiting this
type of evidence requires learning a vertical-specific relationship between query topic
and vertical relevance.

Our objectives in this chapter are to investigate the importance of evidence-integration
in vertical selection and to compare our machine-learning, evidence-integration approach
with state-of-the-art resource selection methods, which, by design focus on a single type
of evidence.
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3.1 Formal Task Definition

Let V denote the set of all candidate verticals and Q denote the set of all queries. We
assume that each query q ∈ Q is associated with a set of true relevant verticals Vq ∈ V . In
aggregated web search, it is possible for no vertical to be relevant to query q. In this case,
the optimal choice for the vertical selector is to predict no relevant vertical and simply
show the web results. This may occur, for example, when the query is a navigational
query. We denote the absence of any true relevant vertical by Vq = ∅.

In this chapter, we address the task of single vertical selection. Given q, the objective
is to predict a single relevant vertical, ṽq ∈ Vq, if one exists, and to predict no relevant
vertical, ṽq = ∅, otherwise.

In general, it is possible for query q to be associated with multiple true relevant verti-
cals. In other words, it is possible for |Vq| > 1. In this sense, we have simplified the task.
However, as described in Section 3.4, only about 30% of our evaluation queries were as-
sociated with more than one relevant vertical. The remaining 70% were associated with
either a single relevant vertical or none.

3.2 Classification Framework

Our classification-based framework consists of V + 1 independent binary classifiers: one
for each vertical v ∈ V and one to predict that no vertical is relevant. Each binary
classifier is trained independently (i.e., using potentially different training data) to make
a binary prediction with respect to its class (i.e., its vertical or the no relevant vertical class).
We train logistic regression models using the Liblinear Toolkit [35].1 We chose logistic
regression based on its accuracy and short training time on other large-scale classification
tasks [68] and because logistic regression can be used to output prediction probabilities,
which we use as describe below.

In order to make a single prediction per query (either a single relevant vertical or
that no vertical is relevant) we combine our independent binary classifiers as follows.
Let Pv(y = 1|q) denote the probability of a positive prediction from vertical v’s classifier
and let P∅(y = 1|q) denote the probability of a positive prediction from the no relevant
vertical classifier. If the most confident positive prediction is from the no relevant vertical
classifier, then we predict no relevant vertical. Otherwise, we predict the most confident
vertical prediction if it exceeds a predefined threshold τ. In other words, in the absence
of a confident vertical relevance prediction, we default to predicting no relevant vertical.
Parameter τ is tuned on validation data.

3.3 Features

We exploit three different types of features. Corpus features derive evidence from sam-
pled vertical documents or from external documents associated heuristically with each

1Available at http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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vertical. The idea is to use the predicted relevance of vertical documents to help predict
the relevance of the vertical. Query-log features derive evidence from vertical-specific
query-traffic. These features exploit the similarity between the query and those issued
to the vertical directly by users, which describe the types of information needs satisfied
by the vertical. Query features derive evidence from the query-string. As opposed to
corpus features and query-log features, the value of a query feature is independent of
the vertical under consideration. These features, exploit, for example, the query topic or
the presence of a particular named entity type.

3.3.1 Corpus Features

Corpus features help predict vertical relevance based on the (predicted) relevance of
documents associated with the vertical. We investigate two methods for associating
documents with a vertical. One option is to sample results directly from the vertical.
In federated search, resource sampling is often used for resource-representation [16]—
a resource is represented by a sample of documents intended to be typical of unseen
documents within the resource.

Generating corpus features from vertical-sampled documents has one potential lim-
itation. At the core, corpus features derive evidence of vertical relevance from sample
relevance. However, most methods for predicting sample relevance are text-based (i.e.,
they focus on the query-sample text-similarity). This is a problem for verticals that re-
trieve text-impoverished items (e.g. images, video, maps). For this reason, in addition
to deriving corpus-features from documents sampled directly from the vertical, we also
derive corpus features from text-rich documents that are external to the vertical, but
associated with the vertical using manual heuristics.

In the next two sections, we describe our two methods for producing corpora in-
tended to represent the contents of each vertical. First, we describe our method for
sampling vertical documents. Then, we describe our method for associating external
documents with a vertical. Each method produces a set of vertical-representative cor-
pora, which are then used to produce our corpus features.

Direct Vertical Sampling

As discussed in Section 2.2, query-based sampling is a method for gathering a representa-
tive set of samples from every resource, which are then used to inform resource selection.
The idea is to iteratively issue queries to the resource and download documents. In the
original query-based sampling algorithm, each query used for sampling is derived from
those documents downloaded in previous iterations [16]. Shokouhi et al. [93] showed
that sampling using popular query-log queries biases the sample towards documents
more likely to be requested by users and can improve resource selection accuracy. We
follow a similar approach, with one major difference. While Shokouhi et al. used the
same set of web search queries to sample from every collection, we use different sets of
queries, each produced from the vertical’s own query-log.
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We use the following sampling method. First, we issue each of the 1,000 most fre-
quent (non-stopword) query-log unigrams as a query and downloaded the top 100 doc-
uments for each. Then, we uniformly sample at most 25,000 documents from the union
of these sets. Sample sets of 25,000 documents are much larger than those used in prior
federated research [24, 76, 91, 92, 94, 95, 96, 104]. However, some of our verticals are also
much larger than resources investigated in prior work. For example, the news vertical
contained approximately 15.4M documents. Furthermore, one reason prior work used
sample sets of about 300 documents was because in an uncooperative environment the
system may have a limit on the number of queries it can issue to the resource. In an
aggregated web search environment, however, we do not have this restriction.

Sampling using vertical query-log terms has two potential advantages. First, it decou-
ples sampling queries from sampled documents. This may be beneficial when samples
are text-impoverished. Second, it biases the sample towards documents most likely to
be requested by users. This may be beneficial when the vertical is large and most of its
content is rarely requested, either because it is outdated, of low quality, or not of general
interest. We denote the set of documents sampled directly from vertical v by Svertical

v .

Associating External Documents with Verticals

To associate external documents with each vertical, we adopt an approach similar to
that of Shen et al. [88, 89]. That is, we make use of a body of documents that has been
annotated with category information: Wikipedia.2 Each Wikipedia article is associated
with a set of Wikipedia categories. Using the terminology from Shen et al. [88, 89], our
objective is to associate each vertical with a set of intermediate (Wikipedia) categories.
By doing this, each document associated with a vertical’s set of intermediate (Wikipedia)
categories is associated with the vertical. We associated intermediate (Wikipedia) cate-
gories with verticals using hand-crafted regular expressions. For example, a collection
of documents associated with the autos vertical was harvested from all articles assigned
a Wikipedia category containing any of the terms “automobile”, “car”, and “vehicle”.

We cannot claim that our regular expressions produce an optimal Wikipedia-article-
to-vertical mapping. However, deriving evidence from vertical-related Wikipedia articles
may have some advantages. Wikipedia articles are rich in text, have a consistent format,
and are usually semantically coherent and on topic. We denote the set of Wikipedia
articles mapped to vertical v by Swiki

v .
Above, we describe our two methods for constructing vertical-representative corpora.

Next, we describe our corpus features. We generated two types of corpus features:
ReDDE.top features and retrieval effectiveness features.

ReDDE.top Features

The ReDDE algorithm, described in detail in Section 2.3, is a well-studied resource selec-
tion method. Given a query, ReDDE scores each resource based on its predicted number

2http://www.wikipedia.org
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of relevant documents. To do this, it first conducts a retrieval from a centralized sam-
ple index, which contains a mix of documents sampled from every resource. Given this
retrieval, it then uses a rank-based threshold τ to predict a set of relevant samples. Fi-
nally, it assumes that each predicted relevant sample represents some number of unseen
relevant documents in its originating resource.

ReDDE can be viewed as a voting algorithm—each predicted relevant sample con-
tributes a fixed number of votes in favor of its resource. The exact number of votes
is based on the resource’s scale factor, which measures the difference between the re-
source size and the resource’s sample set size. A potential limitation of ReDDE is the
importance of parameter τ. Every sample ranked above τ is considered equally relevant
and, therefore, contributes an equal number of votes. For this reason, we used a slight
variation of ReDDE, which we refer to as ReDDE.top.

Like ReDDE, ReDDE.top first conducts a retrieval from a centralized sample index.
Then, it scores vertical v according to,

ReDDE.top∗q(v) =
|v|
|S∗v |

× ∑
d∈R100

I(d ∈ S∗v )P(q|d),

where P(q|d) is document d’s retrieval score given query q, |v| is the number of docu-
ments in vertical v and S∗v denotes either Svertical

v (the set of documents sampled directly
from v) or Swiki

v (the set of Wikipedia documents mapped to v). The major difference
between ReDDE.top and ReDDE is that in ReDDE.top the number of votes that sample
d contributes to its resource score is proportional to P(q|d).

We used two distinct sets of ReDDE.top features: one set derived from vertical-
sampled documents and one set derived from Wikipedia articles (mapped to each vertical
heuristically). Each set was normalized separately, such that ∑v∈V ReDDE.topvertical

q (v) =
1 and ∑v∈V ReDDE.topwiki

q (v) = 1.

Retrieval Effectiveness Features

ReDDE.top has one potential disadvantage: it uses a single retrieval to score samples
from different verticals. In this environment, however, verticals focus on documents with
varying degrees of text-richness (e.g., news, images, video). Therefore, retrieval scores may
not be directly comparable across vertical samples. For example, the retrieval algorithm
may be biased towards samples from text-rich verticals. To minimize this type of bias,
it is necessary to estimate the relevance of sampled content without directly comparing
retrieval scores across collections.

Our solution is to index collection samples separately and then to use a retrieval
effectiveness measure as proxy for the number of relevant samples in the sample set.
Retrieval effectiveness prediction is the task of automatically detecting when a retrieval
returns relevant content, for example, based on observable properties of the top-ranked
documents. Our assumption is that a high retrieval effectiveness score means that the
collection (in our case, the set of vertical-representative documents) has relevant content.
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We used a retrieval effectiveness measure known as Clarity [25], which uses the
Kullback-Leibler divergence to compare the language of the top ranked documents with
that of the collection,

Clarityq(C) = ∑
w

P(w|q) log
(

P(w|q)
P(w|C)

)
,

where P(w|q) and P(w|C) are the query and collection language models, respectively.
The query language model was estimated using the top 100 documents, R100, according
to,

P(w|q) = 1
Z ∑d∈R100

P(w|d)P(q|d),

where P(q|d) is the query likelihood score given document d, and Z = ∑d∈R100
P(q|d).

Clarity’s assumption is that in an effective retrieval the top ranked documents will use
language that is distinguished from topic-general language derived from the entire index.
As with ReDDE.top features, we generate two sets of Clarity features: one set derived
from vertical-sampled documents and one set derived from Wikipedia articles associated
with a vertical. Each set was normalized separately, such that ∑v∈V Clarityvertical

q (v) = 1
and ∑v∈V Claritywiki

q (v) = 1.

3.3.2 Query-Log Features

Query-log features derive evidence from vertical-specific query traffic. That is, they
consider the similarity between the query and those previously issued directly to the
vertical by users. The assumption is that queries issued directly to the vertical describe
the types of information needs the vertical satisfies.

Query Likelihood

Query-likelihood features consider the query-generation probability given a language
model derived from the vertical’s query-log. Let θ

qlog
v denote a language-model derived

from vertical v’s query-log. We generate one query-likelihood features per vertical, as
follows,

QLq(v) =
1
Z P(q|θqlog

v )),

where P(q|θqlog
v ) = ∏w∈q P(w|θqlog

v ) and Z = ∑v∈V P(q|θqlog
v ).

Vertical query-log language models were constructed using a year’s worth of vertical
query-traffic. Additionally, to inform classification in the no relevant vertical class, we
collected a month’s worth of queries issued to the Web search engine. We assume that
most Web search queries do not seek vertical content. We used a month’s worth of
Web queries (rather than year’s worth) because Web search has more query traffic than
vertical search. The CMU-Cambridge Language Modeling Toolkit was used to build a
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unigram language model from each query-log.3 Each language model’s vocabulary was
defined by its most frequent 20, 000 unigrams and we used Witten-Bell smoothing [110].

Query likelihood features were evaluated under two conditions: allowing and dis-
allowing zero probabilities from out of vocabulary (OOV) terms. In the first condition,
a single OOV query term results in a zero probability from the vertical. In the second
condition, P(OOV|θqlog

v ) was estimated proportional to the frequency of terms not in
vertical v’s top 20, 000 query-log terms.

Soft.ReDDE Features

Soft.ReDDE features are related to ReDDE.top features (the set of ReDDE.top features
that uses external documents mapped heuristically to each vertical). Like ReDDE.top fea-
tures, Soft.ReDDE features also use external (Wikipedia) documents. However, different
from ReDDE.top features, which use a binary Wikipedia-article-to-vertical assignment,
Soft.ReDDE uses a soft assignment. In other words, every Wikipedia article has some
degree of membership to every vertical. The degree of membership is based on the simi-
larity between the Wikipedia article’s language model and the vertical’s language model,
derived from its query-traffic. Compared to ReDDE.top features, Soft.ReDDE features
have two potential benefits. First, every Wikipedia article contributes, more or less, de-
pending on its correlation, to a vertical’s score. Second, Soft.ReDDE features do not use a
manual mapping between an article and a vertical, which may misrepresent the vertical.

Soft.ReDDE features were generated as follows. Let θd denote the language model of
Wikipedia article d and θ

qlog
v denote vertical v’s query-log language model. We computed

the degree of membership φ between article d and vertical v using the Bhattacharyya
correlation [7],

B(θd, θ
qlog
v ) = ∑

w

√
P(w|θd)P(w|θqlog

v ),

normalizing across verticals,

φ(d, v) =
B(θd, .θqlog

v )

∑v′∈V B(θd, θ
qlog
v′ )

.

Given query q, we generate one Soft.ReDDE feature per vertical using a retrieval from
an index of the entire English Wikipedia. The Soft.ReDDE feature value for vertical v is
given by,

Soft.ReDDEq(v) =
1
Z ∑

d∈R100

φ(d, v)P(q|d),

where Z = ∑d∈R100
P(q|d). We normalize Soft.ReDDE features across verticals such that

∑v∈V Soft.ReDDEq(v) = 1.

3http://svr-www.eng.cam.ac.uk/ prc14/toolkit.html
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3.3.3 Query Features

Query features are generated from the query and are independent of the vertical under
consideration. We generated three types of query features. Rule-based vertical intent
features exploit a correlation between certain key words and the relevance of particular
vertical (e.g. “obama inauguration pics”). Geographic features correspond to various
different geographic entity types possibly appearing in the query. Category features are
motivated by the fact that some verticals (e.g., health, travel) are topically focused. Thus,
knowing the topic of the query may help in vertical selection.

Rule-based Intent Features

Rule-based intent features are based on a set of 45 classes aimed to characterize query
intent (e.g., local phone, product, person, weather, movies, driving direction, music artist). Some
of these 45 features map conceptually one-to-one to a target vertical (e.g., movies →
movies, autos → autos). Others map many-to-one (e.g., {sports players, sports} → sports,
{product review, product} → shopping). Others do not map directly to a vertical, but may
provide (positive or negative) evidence in favor of a vertical (e.g., patent, events, weather).
Each of these boolean features is associated with a set of manual rules based on regular
expressions and dictionary lookups. A query may be associated with multiple classes,
each triggered if at least one rule in its inventory matches the query.

Geographic Features

Geographic features were produced using a rule-based geographic annotation tool that
outputs a probability vector for a set of geographic entities appearing in the query. We
focused on the following 17 geographic features: airport, colloquial (i.e., location infor-
mation associated with a named entity, such as “North Shore Bank”), continent, country,
county, estate, historical county, historical state, historical town, island, land feature, point of
interest (e.g, Eiffel Tower), sports team, suburb, supername (i.e., a region name, such as
Middle East), town, and zip code. We used the probability of each entity being present
in the query as a feature. Geographic features are intended to inform classification into
verticals whose queries often mention a location name, such as local, travel, and maps.

Query Category Features

As previously mentioned, some verticals, such as health, autos, and travel, are topically
focused. For such verticals, a potentially useful source of evidence is the topic of the
query (e.g., if the query is about fitness, then the health vertical is relevant).

One way to classify queries into topics is to directly apply a trained topic classifier to
the query string. However, queries are terse. Therefore, instead of classifying the query
directly, we predict query categories based on the query’s association with topically-
classified documents. This approach is common in prior query classification work [88,
89]. We used a large document collection where each document is classified into a set

38



of categories. Documents in this collection were classified using a proprietary maximum
entropy classifier from Yahoo!.

Given a retrieval from this collection, the query is classified based on the categories
assigned to the top 100 documents. We divide categories into two disjoint sets: general
categories (e.g., recreation, science, health) and specific categories (e.g., recreation/sports,
recreation/travel, health/nutrition). Every document in the collection is associated with a
vector of confidence values P(yj|d). We set the value of category feature yj to be the sum
of its confidence values in the top 100 documents,

CATq(yj) = ∑
d∈R100

P(yj|d),

We focused on 14 general category features and 42 specific category features, for a total
of 56 query category features.

3.3.4 Summary of Features

In summary, the total number of features is as follows. Let n denote the number of can-
didate verticals. In the experiments below, n = 18. We focused on two types of vertical
corpus features: ReDDE.top and Clarity. Each contributes 2n features: n using vertical
samples and n using Wikipedia articles that were heuristically mapped to each vertical.
We focused on two types of vertical query-log features: Soft.REDDE and the query-
likelihood given the vertical’s query-log language model. Each contributes n features
(one per vertical). Finally, we focused on three types of query features: rule-based intent,
geographic, and category features. Because they are vertical-independent, these are not
a function of n. We focused on 45 rule-based intent features, 17 geographic features, and
56 query-category features.

In the ideal case, the total number of features would be 226 (i.e., 6n + 45 + 17 + 56 =
226). For practical reasons, however, we used fewer features than in the ideal case. The
autos, maps, sports, and tv verticals did not have query-logs available. Query-logs were
used directly and indirectly to derive different types of features. Query likelihood fea-
tures use vertical query-logs directly. ReDDE.top features (using vertical-sampled doc-
uments) rely on vertical query-logs indirectly because vertical query-log queries were
used for sampling. Soft.ReDDE features use vertical query-logs to estimate the vertical
language model. These feature types did not have a feature associated with the autos,
maps, sports, and tv verticals. Also, for practical reasons, some verticals were not asso-
ciated with Wikipedia articles. The directory vertical and the “no relevant vertical” class
are too broad to be characterized by a set of Wikipedia categories while the maps vertical
intersects semantically with local and travel. The actual total number of features was 190.

3.4 Methods and Materials

Our goal is to test the effectiveness of our supervised classification-based framework
on the task of single vertical selection—predicting a single relevant vertical if one exists,
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vertical retrievable items
autos car reviews, product descriptions

directory web page directory nodes
finance financial data and corporate information
games hosted online games
health health-related articles

images online images
jobs job listings

local business listings
maps maps and directions

movies movie show times
music musician profiles
news news articles

reference encyclopedic entries
shopping product reviews and listings

sports sports articles, scores, and statistics
travel travel and accommodation reviews and listings

tv television listings
video online videos

Table 3.1: Vertical descriptions.

or predicting that no vertical is relevant. In this section, we describe our experimental
methodology: our verticals, evaluation data, evaluation metric, and baseline methods
used for comparison.

3.4.1 Verticals

We focused on 18 verticals, described in Table 4.1. Each vertical corresponds to a Yahoo!
property.4 Some of these verticals, for example, news, images, and local, are currently
integrated into Yahoo! Web search results. Others, for example, health, tv, and games,
exist only as Yahoo! properties. Users can access the vertical directly, and in most cases,
search within the vertical. However, content from these vertical, is not currently surfaced
in response to Web search queries.

These verticals differ across several meaningful dimensions: number of documents,
level of text-richness (e.g., news, images), topic (e.g., health, finance, sports), and level of
vertical query-traffic.

3.4.2 Queries

Our evaluation data consisted of 25, 195 unique, randomly sampled queries issued to
the Yahoo! Web search engine. Given a query, human editors were instructed to assign
verticals to one of four relevance grades (‘most relevant’, ‘highly relevant’, ‘relevant’,

4As previously noted, these experiments were conducted during an internship at Yahoo! Labs Montreal.
We are thankful to Yahoo! for providing these resources.
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‘not relevant’) based on their best guess of the user’s vertical intent. For the purpose of
this study, we collapsed ‘most relevant’, ‘highly relevant’, and ‘relevant’ into one class:
‘relevant’.

The vertical distribution across queries is described in Table 3.2. As previously men-
tioned, only 30% of all queries were assigned more than one true relevant vertical. The
remaining 70% were assigned a single relevant vertical or none. 26% were assigned no
relevant vertical. Of those assigned multiple true relevant verticals (30%), many were
ambigous to an assessor attempting to guess the user’s intent. For example, the query
“hairspray” was assigned verticals movies, video, and shopping (“hairspray” is a movie, a
broadway play, and a hair product).

maps 1.1%
jobs 1.5%

movies 2.3%
games 2.6%

finance 2.6%
tv 2.7%

autos 3.0%
video 3.1%
sports 3.3%
health 4.3%

directory 4.4%
music 4.6%
news 5.1%

images 6.0%
travel 8.7%

reference 15.4%
local 19.1%

shopping 20.3%
none 26.3%

Table 3.2: Percentage of queries for which the vertical (or no vertical) was labeled relevant.
Percentages do not sum to one because some queries were assigned multiple relevant verticals.

3.4.3 Evaluation Metric

We evaluated single vertical selection in terms of single vertical precision, given by,

P =
1
|Q|



 ∑
q∈Q|Vq -=∅

I(ṽq ∈ Vq) + ∑
q∈Q|Vq=∅

I(ṽq = ∅)



 , (3.1)

where I is the indicator function. Single vertical precision is the percentage of queries for
which the model makes a correct prediction. The first summation determines the number
of queries for which a single vertical is correctly predicted. The second summation
determines the number of queries for which no relevant vertical is correctly predicted.
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In addition to single vertical precision, we also report coverage (% cov), defined as the
percentage of queries for which a (single) vertical is predicted (correctly or incorrectly).
Statistical significance was tested using a 2-tailed paired t-test (paired on queries).

3.4.4 Implementation Details

All features were scaled to zero minimum and unit maximum. Features associated one-
to-one with a vertical (Clarity, ReDDE.top, query-log likelihood and Soft.ReDDE) were
normalized across verticals before scaling. Supervised training/testing was done via
10-fold cross validation. Threshold parameter τ was tuned for each training fold on a
held-out set of 500 queries. Given a query, the classification framework predicts a single
vertical if the most confident vertical prediction exceeds parameter τ and the confidence
from the no relevant vertical classifier.

3.4.5 Single-evidence Baselines

To evaluate the effectiveness of our classification framework, we compare its performance
with eight different baselines. We refer to these as single-evidence baseline because, like
most resource selection methods, each focuses on a single type of evidence, for example,
the predicted relevance of sampled vertical content or the similarity between the query
and the vertical’s query-traffic.

Our eight single-evidence baselines were the following: all four combinations of Clar-
ity and ReDDE.top using vertical-sampled and Wikipedia-sampled documents, the query
likelihood given the vertical’s query-log language model (both, allowing and disallow-
ing zero probabilities), Soft.ReDDE, and an approach that always predicts “no relevant
vertical”. One of these baselines, ReDDE.top, is a slight variation of ReDDE, which has
produced strong results in various different federated search evaluations [90, 94, 104].

With the exception of the no relevant vertical predictor, given a query, all these base-
lines produce a score for each vertical. The higher the score the more relevant the ver-
tical. Each was adapted for single-vertical selection as follows. First, scores were mass-
normalized across verticals. Then, we predict the single vertical with the highest score if
its score exceeds threshold τ. Threshold parameter τ was tuned on validation data.

3.5 Experimental Results

In this section, we compare the performance of our classification framework with our
eight single-evidence baselines. Results, in terms of single vertical precision P , are pre-
sented in Table 3.3.

Several results are worth noting. First, the no.rel approach obtained P = 0.263 be-
cause 26.3% of queries had no true relevant vertical.

Both Clarity using vertical- and Wikipedia-sampled documents performed signifi-
cantly worse than no.rel. This suggests that Clarity scores for a given query may not
be directly comparable across collections with different corpus statistics. In prior work,
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P % cov
clarity.vertical 0.254 3.4%

clarity.wiki 0.256! 2.7%
no.rel 0.263" 0.0%

redde.top.wiki 0.293" 54.4%
QL 0.312" 61.9%

soft.redde 0.324" 43.6%
redde.top.vertical 0.336" 45.7%

QL (zero probs) 0.368" 51.0%
classification 0.583" 64.3%

Table 3.3: Single Vertical Precision (P). Approaches are listed in ascending order of P . A
significant improvement over all worse-performing approaches is indicated with a ! at the p <
0.05 level and a " at the p < 0.005 level.

Clarity was used to compare retrievals from different queries on the same collection,
but not retrievals from the same query on different collections. Further experiments are
needed to determine whether Clarity can be adapted for purpose of vertical selection, or
resource selection in general.

ReDDE.top with vertical samples outperformed ReDDE.top with Wikipedia samples,
in spite of more verticals having a Wikipedia-sampled collection than a vertical-sampled
collection. We examined the types of classification errors made by both methods. Both
approaches performed comparably with respect to the “no relevant vertical" class. How-
ever, redde.top.wiki more often predicted a wrong vertical, that is, a vertical not in the true
relevant set Vq. Precision on queries for which a vertical was predicted was 0.382 for
redde.top.vertical and 0.284 for redde.top.wiki. This suggests that our heuristic mapping of
Wikipedia categories to verticals may have misrepresented one or more vertical.

The query likelihood given the vertical’s query-log language model was the best
single-evidence predictor. This method performed better when allowing than when dis-
allowing zero probabilities. This may have been due to the non-uniformity of P(OOV)
estimates across vertical language models. Each vertical’s P(OOV) estimate was based
on the frequency of terms not in its top 20,000, which is expected to be greater for verti-
cals with a more open vocabulary. A vertical’s P(OOV) estimate affects the probability
estimates of within vocabulary terms through discounting. Different P(OOV) estimates
across verticals may have made the query likelihood given by different vertical language
models less comparable.

Finally, The classification approach outperformed all single-feature baselines by a
large margin—a 58% improvement over the best single-evidence predictor, QL. This con-
firms our expectation that vertical selection can be cast as a machine learning problem.
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3.6 Discussion

3.6.1 Feature Ablation Study

Compared to our single-evidence baselines, the classification approach has two main ad-
vantages: access to training data and the ability to integrate multiple types of features.
In this section, we present a feature-type ablation study with a dual purpose: to explore
the contribution of different feature types and to confirm that the classification approach
benefits from integrating multiple sources of evidence. In other words, we wish to con-
firm that the classifier is not just benefiting from a single source of evidence and lots of
training data.

Additionally, we conducted a feature ablation study to compare the contribution of
corpus features derived from vertical-sampled documents and corpus features derived
from Wikipedia articles associated with a vertical.

Table 3.4 shows the percent change in precision associated with each feature type.
Keep in mind that features were not evaluated in isolation. Therefore, a non-significant
performance drop in P does not necessarily mean that the feature captures no useful
evidence, as features may be correlated.

feature type analysis

feature variation P % diff % cov
all features 0.583 64.30%
no query-likelihood 0.583 0.03% 64.36%
no rule-based intent 0.583 -0.03% 64.30%
no clarity 0.582 -0.10% 63.68%
no geographical 0.577# -1.01% 65.30%
no (general) category 0.572# -1.84% 63.91%
no redde.top 0.568# -2.60% 60.27%
no soft.redde 0.567# -2.67% 62.47%
no (specific) category 0.552# -5.33% 64.19%

vertical/wikipedia-based feature type analysis

feature variation P % diff % cov
no vertical 0.577# -3.1% 62.06%
no wikipedia 0.574# -3.5% 62.67%

Table 3.4: Feature type ablation study. A # denotes a significant improvement (p < 0.005) over
our classifier using all features

In terms of feature types, omitting query-likelihood, rule-based intent, and Clarity
features did not produce a significant drop in performance. It is possible that query-
likelihood features, the best single-evidence predictor, did not contribute significantly
because they are correlated with Soft.ReDDE features, which did contribute significantly
and, like query-likelihood features, also derive evidence from the vertical query-log.

44



Recall that rule-based features are binary and each feature attempts to match a set of
regular expressions and dictionary terms to the query. It turned out that there were
only 4, 367 (18%) queries with at least one non-zero rule-based intent feature. This may
have been why they did not contribute significantly to performance. As previously men-
tioned, Clarity scores for the same query and different collections may not be directly
comparable.

The largest contribution to performance came from query-category features (i.e.,
the specific categories), which characterize the topic of the query. Interestingly, query-
category features are not derived from the vertical (i.e., they are not derived from vertical
samples or from the vertical query-log). Our classifier learns to associate these features
with each vertical from training data. The contribution of the specific query-category
features was significantly greater than that of general query-category features. This was
because our general categories were too coarse to discriminate between our verticals.
For example, the general category recreation conflates recreation/sports, recreation/auto, and
recreation/travel, which map conceptually to different verticals. The second and third
most helpful features were Soft.ReDDE and ReDDE.top features, respectively. This anal-
ysis confirms that different sources of evidence contribute significantly to performance.

To evaluate the usefulness of evidence derived directly from the vertical, we omitted
ReDDE.top and Clarity features using vertical-sampled documents. Likewise, to evalu-
ate the usefulness of evidence derived from surrogate corpora (in our case, Wikipedia),
we omitted ReDDE.top and Clarity features using Wikipedia-sampled documents. Re-
moving either set of features produced a significant drop in P . Vertical- and Wikipedia-
sampled documents were sampled using different techniques and have a different sam-
ple set size distribution. Thus, we cannot (and did not intend to) directly compare one
against the other. However, this result confirms that external documents (associated
with a vertical heuristically) can provide evidence complementary to evidence derived
directly from the vertical.

3.6.2 Per Vertical Performance

In this section, we look at per-vertical performance. The objective is to determine which
verticals are easier than others. Table 3.5 shows precision for each vertical (using all
features). Here, given vertical v, per-vertical precision is defined by,

Pv =
1

|Qv| ∑
q∈Q

I
(
ṽq = v) ∧ (q ∈ Qv)

)
,

where Qv is the subset of queries in Q with v ∈ Vq.
As previously noted, some verticals lacked query-logs (!) and/or a Wikipedia-sampled

surrogate corpus (∗). Verticals autos, sports, and tv performed well in spite of lacking fea-
tures derived from query-logs. Verticals video, news, and reference performed poorly in
spite of having all resources. Therefore, the difference in performance across verticals
cannot be attributed only to missing features.
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vertical P
travel 0.842

health 0.788
music 0.772
games 0.771
autos! 0.730

sports! 0.726
tv! 0.716

movies 0.688
finance 0.655

local 0.619
jobs 0.570

shopping 0.563
images 0.483

video 0.459
news 0.456

reference 0.348
maps!,∗ 0.000

directory∗ 0.000

Table 3.5: Per vertical precision (P). Verticals without a query-log are marked with !. Verticals
without a Wikipedia-sampled surrogate corpus are marked with ∗.

The system performed best on verticals that focus on a coherent topic with identifi-
able vocabulary (i.e., travel, health, games, music). The vocabulary associated with these
verticals may have been the least confusable with that of other verticals. Performance for
these topically-coherent verticals was higher than for shopping, reference, and no relevant
vertical, which had more positive examples for training. This result is consistent with the
fact that query-categories features, which characterize the topic of the query, were found
to be the most predictive, as previously shown in Table 3.4.

Performance was the worst on the verticals images, video, news, reference, maps, and
directory, possibly for several different reasons. The maps vertical had the fewest positive
instances for training, was feature-impoverished, and probably confusable with local and
travel. Verticals images and video focus on a type of media rather than a specific genre.
Queries related to reference and directory characterize broad encyclopedic information
needs. The news vertical tends to be highly dynamic and may require features that
characterize whether the query occurs as part of a burst in content demand.

3.7 Related Work in Vertical Selection

We cast vertical selection as a supervised machine learning problem and integrate diverse
types of evidence as input features. Other researchers proposed similar solutions to
similar problems. Some of this work precedes the work presented in this chapter (e.g.,
news-vertical prediction [28, 63]). Other work was done after (e.g., vertical selection in
the presence of user feedback [29])
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The SIGIR 2008 Workshop on Aggregated Search [74] was one of the first forums to
discuss aggregated web search as a new and interesting research area. The work pre-
sented in the workshop focused a wide-range of problems, including search results sum-
marization and visualization, especially in environments with rich meta-data. Of those
papers that focused on aggregating content form different search engines [75, 107], none
of them addressed the task of vertical selection, but rather assume that every vertical is
presented for every query (in the same position).

Both König et al. [63] and Diaz [28] focused on approaches to vertical selection for
the news vertical, a particularly challenging vertical due its dynamic nature—a query’s
newsworthiness is likely to change with time. Both formulate the task as predicting
whether a user will click on news results and both assume a fixed presentation strategy:
to present news results above the Web results or not at all. König et al. [63] made use of
query-features (e.g., whether the query contains a URL) and corpus features (e.g., the hit
counts from various news- and non-news-related corpora). Additionally, Diaz [28] made
use of query-traffic features (e.g., the number of times the query was recently issued to
the Web and news search engines).

The probability that a user will click on news results can be estimated in two ways:
(1) using a model that considers various contextual features (e.g., corpus and query-
log statistics) and (2) using user-interaction data from previous impressions of the query
(e.g., observed clicks and skips from previous system decisions). In addition to an off-line
model, Diaz [28] introduced an approach that combines both estimation methods. The
model automatically relies more heavily on user-interaction data as it becomes available
for the query. Moreover, it can pro-actively display news results more frequently for
queries with little user-interaction data. In subsequent work, Diaz extended the multiple-
vertical framework presented in this chapter to consider user-interaction data [29].

Song et al. [99] focused on the task of searchable website recommendation, where the goal
is to display (alongside the Web search results) a short ranking of third-party searchable
websites (e.g., ebay, flickr, amazon, imdb). Searchable websites can be viewed as verti-
cals. Song et al. [99] combined various features derived from user-interaction data, for
example, the similarity between the query and those associated with clicks on search-
able website results and the average dwell time on searches from a particular website.
Interestingly, searchable website recommendation occurs in a type of uncooperative envi-
ronment; third party search engines do not typically divulge user-interaction data. Song
et al. [99] collected user-interaction data using an opt-in plug-in distributed with a major
commercial browser. This work shows that a feature-integration approach capable of
combining various types of user-interaction features can be useful in an uncooperative
setting, where interactions can be logged at the client rather than the server side.

Similar to our approach, the work discussed so far enriches the query representation
using various types of contextual features (e.g., different user interactions and different
statistics derived from collection content and query-traffic). Li et al. [67] take the opposite
approach, using only the terms in the query as features. Their method, however, is
to vastly expand the training set by propagating labels to unlabeled queries using a
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click-graph. The assumption is that queries with a similar click pattern are relevant
to the same verticals. Evaluation was conducted separately for two verticals: jobs and
shopping. Deriving evidence exclusively from the query-string has the advantage that
feature generation is fast. The main issue, however, is that performance may degrade
as the environment changes in terms of content and user interest. One advantage of
focusing on evidence beyond the query-string is that a model may be able to maintain
performance as long as the resources used for feature generation (e.g., query-logs and
corpora) are updated frequently to reflect changes in the environment.

The field of sponsored search is concerned with the placement of advertisements (ads)
in response to a Web search query and typically assumes a fixed location for presenting
the set of most relevant ads (e.g., above the Web results). As advocated in Broder et
al. [13], part of the task is to decide when to completely suppress ads. The assumption
is that displaying marginally relevant or non-relevant ads “trains” users to ignore ads in
the future. The task of predicting whether to display or suppress the set of most relevant
ads can be viewed as a type of vertical selection with one vertical: ads.

Similar to our approach, Broder et al. [13] cast the problem as a supervised classifica-
tion task. Different types of features were investigated and, consistent with our results,
no single type of feature was exclusively responsible for performance. As might be ex-
pected, many of the features that were effective consider the text-similarity between the
query and the set of candidate ads. More interestingly, however, other features that were
effective consider the text-similarity between the set of ads themselves. This shows that
“vertical” relevance can be a function of the coherence between the (top) vertical results.
Our Clarity feature, which in our case was ineffective, attempts to harness this type of
evidence, though we applied it to sampled and surrogate content rather than the actual
vertical results. This suggests that directly comparing Clarity scores from different verti-
cals might have been the problem. Broder’s classification, evidence-integration approach
outperformed a single-evidence baseline that predicts whether to display ads based on
their retrieval score.

In more recent work, Guo et al. [44, 45] considered the task of predicting whether
the user will click on ads during the remainder of the search session. This work is the
first to consider features from previous retrievals within the session, which include low-
level user interactions such as mouse movements, temporal delays, and scrolls. Within-
session low-level interactions were found to improve performance. We do not make use
of session-level features in this dissertation. Investigating their effectiveness for vertical
selection and vertical results presentation is an important direction for future work.

3.8 Summary

We evaluated a classification-based approach to vertical selection. The proposed classifi-
cation approach outperformed all single-evidence baselines, which included adaptations
of existing methods for resource selection [94] and retrieval effectiveness prediction [25].

More importantly, we demonstrated the importance of feature-integration for the task
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of vertical selection. A set of feature ablation studies confirmed that removing different
types of features results in a significant drop in performance. Therefore, one important
advantage of the classification-based approach is its ability to easily integrated evidence
as input features. In other words, the classifier did not merely capitalize on a single
source of evidence and lots of training data.

In term of corpus evidence, features derived from vertical samples as well as ex-
ternal surrogate corpora contributed significantly to performance. In terms of query-
traffic evidence, access to vertical query-logs helped. Not only was the query-likelihood
given the vertical’s query-log language model the best single-evidence predictor, but
query-logs were used (directly and indirectly) in generating various other features. For
Soft.ReDDE, vertical query-logs were used to associate external documents to verticals.
For ReDDE.top, they were used to sample from the vertical. Both of these features sig-
nificantly improved performance.

In terms of cross-vertical results, performance was the best for topically coherent
verticals (e.g., travel, health, games, music, autos, etc.) Good performance across these
vertical was at least partly attributed to our query-category features, which characterize
the topical distribution of the query. Interestingly, this is precisely the type of evidence
that requires some form of human supervision in order to learn a predictive relation
between the query category and the relevance of a particular vertical. In our case, our
models learned to associate categories to verticals from training queries. Performance
was poor on verticals that are not topically focused (e.g., reference), are text-impoverished
(e.g., images) and dynamic (e.g., news).
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Domain Adaptation for Vertical
Selection

Chapter 4

While a supervised approach to vertical selection outperforms state-of-the-art resource
selection methods, one of its main drawbacks is that it requires extensive training data
(e.g., a set of queries with relevance labels with respect to a vertical). Human annotation
is resource intensive in terms of time and money. An annotation effort may be sensible
as a one-time investment. However, in practice, the aggregated search environment is
dynamic. Verticals can be added to or removed from the set of candidate verticals.
Content can be added to or removed from an existing vertical. The interests of the
user population may drift, effectively changing the vertical content most likely to be
requested by users. It may not be feasible to annotate a fresh new set of queries every
time the environment undergoes a significant change. Advancing a machine learning
approach to vertical selection, therefore, requires methods that maximize the system’s
return on editorial investment. As the environment changes, how can we make maximal
use of annotations we already have in order to maintain performance? In this chapter,
we focus on the case where a new vertical is introduced to the set of candidate verticals
(the first type of change suggested above). How can we use training data collected for
a set of existing verticals to learn a predictive model for a new vertical (associated with
no training data)? Although we focus on the introduction of a new vertical, the methods
described in this chapter may also be effective in learning new models to account for
changes in vertical content and/or user interest.

We explore the following scenario. We assume a set of existing verticals (referred
to as the source verticals) for which we have collected training data (a set of queries
with vertical-relevance judgements). Then, we assume that we are given a new vertical
(referred to as the target vertical), associated with no training data. Our objective is to
learn a predictive model for the target vertical using only source-vertical training data.

Our approach to the problem focuses on two model properties: portability and adapt-
ability. A portable model is one that can be trained once and then effectively applied to
any vertical, including the new vertical (associated with no training data). An adaptable
model is one that can be tailored to a specific vertical, including the new vertical. If a
model is adaptable, its parameters can be automatically adjusted to suit the new vertical
at no additional editorial cost. We present models that exhibit these two properties and
evaluate their performance across a set of 11 target verticals. Our end goal is to show

1This work was conducted during a second internship in Yahoo! Montreal and was published in SIGIR
2010 with co-authors Jean-François Paiement and Fernando Diaz [4].
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that a machine learning approach to vertical selection can capitalize on human labels
collected for one set of existing verticals to learn a model for a new one.

4.1 Formal Task Definition

In this set of experiments, we consider the relevance of vertical v with respect to query
q independent of any other vertical. Let yv(q) denote a function that outputs the true
relevance of v with respect to q. In the general vertical selection setting, the goal is
to learn a function fv that approximates yv. Here, we focus on the following scenario.
Suppose we have a set of existing source verticals S with a set of labeled queries QS =
∪s∈SQs, where Qs denotes the set of queries with relevance labels with respect to source
vertical s. Then, suppose we are given a new target vertical t with no labeled data. Our
objective is to learn a function ft that approximates yt using only source-vertical training
data QS . The quality of an approximation will be measured using some metric that
compares the predicted and true query labels. We use notation,

µ( ft, yt,Qt)

to refer to the evaluation of function ft on query set Qt, which has relevance labels with
respect to t. This metric µ can be classification-based (e.g. accuracy) or rank-based (e.g.
average precision).

4.2 Related Work

The task of using existing-vertical training data to learn a predictive model for a new
vertical can be viewed as a type of domain adaptation. In machine learning, domain
adaptation is the task of using training data from one or more source domains to learn
a predictive model for a target domain. The domain adaptation problem arises when
the source and target data originate from different distributions. Suppose, for exam-
ple, we want to learn a classifier to distinguish between positive and negative restaurant
reviews (i.e., the target domain), but only have training data in the movie domain (i.e.,
the source domain). A model trained on movies may not generalize to restaurants, for
various reasons. It may be, for example, that the prior class distribution (i.e., positive
and negative) is different across domains. It may also be that the predictive relationship
between features and the target class is different. The term “unpredictable” may signal
a positive review in the movie domain, but a negative review in the restaurant domain.
Domain adaptation algorithms solve this problem in various ways and have been ap-
plied to classification tasks such as sentiment analysis [10], named-entity tagging [43],
and document ranking [39]. No prior work, however, has applied domain adaptation to
vertical selection.

Different approaches to domain adaptation assume different amounts of training data
in the target domain. In our case, we assume none. However, while we focus on this
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extreme case, one could imagine collecting a small amount of (possibly noisy) target-
vertical training data using implicit feedback or active learning. Thus, we review domain
adaptation approaches that consider various amounts of target-domain training data.

As mentioned above, a potential challenge in domain adaptation is that the class
distribution may be different across domains. An easy solution is to re-weight (or
over/under-sample) source-domain instances such that the class distribution resembles
the target-domain class distribution [69]. This, of course, assumes that the target-domain
class distribution can estimated reliably. Also, it assumes that the predictive relationship
between features and the target class is consistent across domains. It is only the class
distribution that is different.

Domain adaptation is more difficult when features have an inconsistent predictive
relationship with the target class. One line of work performs instance-weighting (or
instance filtering) to down-weight (or remove) “misleading” source-domain training in-
stances. Jiang and Zhai [55] do this by training a model on whatever little target-domain
data is available and removing those source-domain instances that are misclassified by
this model. Gao et al. [39] propose a similar solution that does not require any target-
domain training data. Their approach is to train a classifier to predict whether an in-
stance originates from the source or target domain. Then, they keep only those source-
domain training instances that are misclassified (or nearly misclassified) as being from
the target domain. The idea is to favor source-domain training instances that are confus-
able with the target-domain instances.

An alternative to instance-weighting is feature weighting (or feature selection). The
objective is to focus only on those features that are similarly predictive across the source
and target domains. Saptal and Sarawagi [83] cast this as a constrained optimization
problem. A model is trained to, not only maximize the likelihood of the source-domain
training data, but also to select those features which minimize the distance between
the source and target distributions. The distance function is the difference between the
(source and target) mean values across features.

The work discussed so far assumes a single source domain. Jiang [54] proposes an
approach that uses training data from multiple source domains. First, a generalizable sub-
set of features is identified based on their predictiveness across source domains. Then, a
model that focuses heavily on these features is used to produce predictions on the target
domain. Finally, a target-domain classifier with access to all features is trained using
these predictions as pseudo-training examples. This work is very similar to the work
presented in this chapter. The major difference is that we use a learning algorithm that
can model complex feature interactions. This learning algorithm is used both to produce
the target-vertical pseudo-labels and the final target-vertical predictions.

Feature selection can be viewed as a type of feature representation change. An al-
ternative to feature selection is feature augmentation (increasing the feature space). The
goal, however, is the same: to find a representation that behaves similarly across do-
mains. Daumé III [26] augments the feature space by making three copies of each feature:
a source-domain, target-domain, and domain-agnostic copy. Then, a model is learned by

52



pooling together the source and target training data. Effectively, this allows the model
to weight each copy differently, depending on the feature’s correlation with the target
class across domains. For example, if a feature is only predictive in the target domain,
the model can assign a high (positive/negative) weight to its target-specific copy and a
near-zero weight to its other two copies. If a feature behaves similarly across domains,
the model can assign a high (positive/negative) weight to its domain-agnostic copy.

Blitzer et al. [9] propose a feature augmentation method that does not require target-
domain training data. Their structural correspondence learning approach is based on the
distinction between pivot and non-pivot features. A pivot feature is one that occurs fre-
quently across domains and has a similar predictive relationship with the target class
(e.g., the term “bad" in movie and restaurant reviews). A non-pivot feature is one that
occurs more frequently in one domain and may have a different predictive relationship
with the target class (e.g., the term “unpredictable” in movie and restaurant reviews).
The aim of structural correspondence learning is to identify the correspondence between
non-pivot features across domains. The assumption is that correspondences between
non-pivot features are encoded in the weights assigned to each when training linear
classifiers to predict the value of each pivot feature using non-pivot features.

A different approach to domain adaptation is to train a model on the source domain
and then to only fine-tune its parameters using the available target-domain training data.
Chen et al. [21] propose a simple approach that uses the Gradient Boosted Decision
Trees (GBDT) learning algorithm. GBDT uses a boosting framework to combine weak
learners (i.e., decision trees) to produce a more complex model. During each GBDT
training iteration, a new decision tree is trained on the residuals of the current model’s
predictions. Their approach to domain adaptation is to first train a model on the source
domain and then to simply continue the training process on target-domain training data.
One advantage of this approach is that the feature representation across domains can
be different (even completely disjoint). Our approach to domain adaptation uses this
algorithm, but during adaptation, we continue the GBDT training process using target-
domain pseudo-training data.

If we assume a small amount of target-vertical training data, our problem is also
related to multi-task learning or transfer learning. The multi-task learning problem arises
when the data is associated with multiple output variables, as in the case of multi-class
classification. Rather than learn each class independently, the aim of multi-task learn-
ing is to share information across predictive tasks. The assumption is that overall per-
formance for any particular class can be improved by exploiting correlations between
classes. In our case, it may be possible to improve performance for the target vertical by
exploiting correlations with other verticals associated more training data.

There is a large body of prior work on multi-task learning. Thus, our goal is to
provide only a brief overview. Early work used neural networks with multiple inputs
(i.e., features) and multiple outputs (i.e., predictions for each task) [19, 105]. Using a
single neural network, predictive relationships between tasks can be modeled within
the network’s hidden layer(s) and learned using back-propagation. Shrinkage methods
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combine predictions for different classes that are learned independently [11]. Combi-
nation coefficients can be learned using cross-validation. Regularization-based methods
exploit associations between target classes during training. The assumption is that mod-
els learned for similar tasks should have similar model parameters [33]. Hierarchical
Bayesian approaches, like neural net approaches, model relations between tasks using
shared latent variables [117].

While multi-task learning approaches may be useful for our task, there are two
caveats. First, they require at least some amount of target-vertical training data. The
methods proposed in this chapter require none. Second, at least some multi-task learn-
ing approaches (e.g., neural-network methods [19]) assume a common dataset with labels
for every class. In aggregated web search, verticals labeled during different time periods
will likely be associated with different queries. The methods proposed in this chapter
can handle source verticals with different (even completely disjoint) training sets.

4.3 Vertical Adaptation Approaches

In this chapter, as in Chapter 3, we cast vertical selection as a classification task. In other
words, we train models (using only source-vertical training data) to predict the relevance
of the new target vertical as a function of a set of features, described later in Section 4.4.

Several different models are proposed. In Section 4.3.2, we propose several portable
models. A model is portable if, once trained, can be effectively applied to any vertical,
including one without training data. Then, in Section 4.3.3, we propose models that are
adaptable. A model is adaptable if it can be fine-tuned to a specific vertical, including
one without training data. All proposed methods use the same base learning algorithm:
Gradient Boosted Decision Trees (GBDT) [38]. We adopted GBDT because it is able to
model complex feature interactions and has been effective in other tasks such as text
categorization [61] and rank-learning [119]. Next, we provide a general description of
GBDT and then describe our portable and adaptable models.

4.3.1 Gradient Boosted Decision Trees

The main component of a GBDT model is a regression tree. A regression tree is a simple
binary tree. Each internal node corresponds to a feature and a splitting condition which
partitions the data. Each terminal node corresponds to a response value, the predicted
output value. GBDT combines regression trees in a boosting framework to form a more
complex model. During training, each additional regression tree is trained on the resid-
uals of the current prediction. In our case, we chose to minimize logistic loss, which
has demonstrated effective performance for vertical selection in prior work [2, 3, 28, 29].
That is, the model maximizes,

µlog( fv, yv,Q) = − ∑
q∈Q

"log( fv(φv(q))× yv(q)) (4.1)
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where φv(q) denotes a feature generating function and "log is the logistic loss function,

"log(z) = log(1 + exp(−z)) (4.2)

Note that feature generator φv(q) is a function of v because at least some features are
derived from the vertical under consideration. That is, their value depends on v.

4.3.2 Learning a Portable Model

A portable model is one that can make accurate relevance predictions with respect to any
vertical. Once trained, a portable model can be used as a black-box predictor—given
a query and an arbitrary vertical, it can predict whether the vertical is relevant to the
query. On the other hand, a model is non-portable if it can make relevance predictions
with respect to a specific vertical, but not a different one.

Let us examine the distinction between a portable and non-portable vertical selection
model with an example. Consider a single-evidence model that predicts a vertical rel-
evant based on the number of times the query was previously issued to the vertical by
users. This model would likely be portable because this type of evidence—the frequency
of the query in the vertical’s query-traffic—is likely to be positively correlated with rel-
evance across verticals. The higher the value the more relevant the vertical irrespective of
the vertical. On the other hand, consider a single-evidence model that predicts a vertical
relevant if the query is classified as related to the travel domain. This would be a non-
portable model because this type of evidence is likely to be predictive for a travel vertical,
but not one that focuses on a different domain.

Our goal is to use only source-vertical training data to learn a portable model and
then to apply the portable model to the new target vertical.

The Basic Portable Model

The objective of learning a portable model (denoted by f!) is to learn a generic (vertical-
agnostic) relationship between features and vertical relevance. One way to do this is to
train a model to maximize the average performance across source verticals. The assump-
tion is that if f! performs consistently well across S , then f! will perform well on the
target t, even if not trained on any target-vertical training examples.

More formally, we will define the portability of f! using a metric that quantifies
performance for a vertical s ∈ S and a function that averages performance across verticals
in S . For example, the portability, π, which uses the arithmetic mean of the logistic loss
metric is defined by,

π
avg
log ( f!, yS ,QS ) =

1
|S| ∑

s∈S
µlog( f!, ys,Qs). (4.3)

Qs is the set of training queries for source s and QS is the set of those sets. Similarly, ys

provides labels for vertical s and yS is the set of these functions. We refer to the model

55



which optimizes π
avg
log as the basic model. Notice that,

π
avg
log ( f!, yS ,QS ) = − 1

|S| ∑
s∈S

∑
q∈Qs

"log( f!(φs(q))× ys(q))

As a result, the solution which maximizes π
avg
log is equivalent to the solution which mini-

mizes the logistic loss across all feature-vector/relevance-label pairs from all source ver-
ticals. In other words, to train a basic portable model, we can simply perform standard
GBDT training on a pooling of each source vertical’s training set.

As previously mentioned, feature generator φv is vertical-specific because at least
some features are generated from the vertical under consideration. During portable-
model training, we pool together each source vertical’s training set. It should be noted
that while the value of a particular feature may depend on the vertical, the semantics of
each feature are consistent across verticals. In other words, all feature vectors are iden-
tically indexed and have the same length. So, for example, if feature φv(q)i corresponds
to the number of times the query was issued by users directly to v, then φv′(q)i refers to
the number of times the query was issued to v′.

In the next two sections, we describe two possible limitations of this basic portable
model and suggest potential improvements.

Vertical Balancing

The set of positive instances within the basic model’s training set will correspond to
the union of relevant query-vertical pairs from all source verticals. For this reason, we
expect the portable model to focus on vertical-agnostic evidence (consistently correlated
of the positive class) and ignore vertical-specific evidence (inconsistently correlated of
the positive class). The assumption is that by focusing on evidence that is not conflicting
with the positive class, the basic model will be effective on the target (even in the absence
of target training data).

One challenge, however, is that the positive instances within the basic model’s train-
ing pool will be skewed towards the most popular verticals (those that tend to be relevant
often). This may be problematic because the vertical that contributes the greatest num-
ber of positive examples may be reliably predicted relevant based on vertical-specific
evidence, unlikely to be predictive of the target. To compensate for this, we consider a
weighted average of metrics across verticals. Specifically,

π
wavg
log ( f!, yS ,QS ) =

1
Z ∑

s∈S
wsµlog( f!, ys,Qs) (4.4)

where Z = ∑s∈S ws. We use the simple heuristic of weighting a vertical with the inverse
of its prior,

ws =
1
ps
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where ps is the prior probability of observing a query with relevant vertical s. This value
is approximated with the training data,

ps ≈
∑q∈Qs ys(q)

|Qs|
The goal is to make training instances from minority verticals more influential and those
from majority verticals less.

It is easy to see that Equation 4.4 is a generalization of Equation 4.3. Because we use
logistic loss, this technique reduces to training with an instance weighted logistic loss
where the instances are weighted by ws, the weight of the vertical,

π
wavg
log ( f!, yS ,QS ) = − 1

Z ∑
s∈S

∑
q∈Qs

ws"log( f!(φs(q))× ys(q))

As with the basic model, we can use standard GBDT training to optimize for this metric.

Feature Weighting

An alternative to optimizing for a portable model is to find portable features and to train
a model using only those. A portable feature is defined as a feature which is highly
correlated with relevance (in the same direction) across all verticals. Recall that, across
verticals, all features are identically indexed. Let φi be a predictor based only on the value
of feature i. In previous work, the effectiveness of features across verticals was shown
to be very dependent on the vertical being considered. In order to address the expected
instability of feature predictiveness across verticals, we adopt a harmonic average for our
aggregation method.

πhavg(φi, yS ,QS ) =
|S|

∑s∈S
1

µ(φi
s,ys,Qs)

(4.5)

Additionally, features, on their own, are not scaled to the label range, making the use
of logistic loss difficult. Instead of constructing a mapping from a feature value to the
appropriate range, we adopt a rank-based metric. Let ρ f (Q) be the ranking of Q by f .
We use average precision as our rank-based metric,

µAP( f , y,Q) =
|Q|

∑
r=1

y(ρ f (Q)r)× Pr(y, ρ f (Q)) (4.6)

where ρ f (Q)k denotes the query at rank k and Pk is the precision at rank k,

Pk(y, ρ) =
1
k

k

∑
r=1

y(ρk)

In other words, for each feature, we rank queries by feature value and compute the
harmonic mean average precision across verticals.1 Having computed the portability of

1Because we do not know whether the feature value has a positive or negative relationship with the
label, we compute π

havg
AP ( f , yS ,QS ) using ρ induced in both directions and use the max.
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each feature, we build a portable model by restricting our training to the most portable
features.

The most portable features were selected by inspecting the distribution of portability
values. Because portability values are in the unit range, we model our data with the Beta
distribution. We fit the Beta distribution using the method of moments and then select
features whose portability is in the top quartile of this distribution.

4.3.3 Adapting a Model to the Target Vertical

Above, we focus on ways of improving the portability of a model by influencing the
model to ignore evidence that is vertical-specific. The argument is that a model that
focuses heavily on vertical-specific evidence will not generalize well to a new target
vertical.

Given access to target-vertical training data, Chapter 3 reveals two meaningful trends.
First, given a wide-range of input features, most features contribute significantly to per-
formance. The analysis presented in Section 3.6.1 demonstrates no single feature type
is exclusively responsible for effective vertical prediction. Second, the features that con-
tributed the most to performance, which characterize the topic of the query, are vertical-
specific (assuming that verticals focus on different topics). Based on these observations,
while ignoring vertical-specific evidence seems necessary to improve a model’s portabil-
ity, a model customized to a particular vertical is likely to benefit from it.

In the context of adaptation for web search, Chen et al. [21] propose several ways
to adapt an already-tuned GBDT model given data in a new domain. Their approach,
Tree-based Domain Adaptation (TRADA), essentially consists of continuing the GBDT
training process on labeled data from the target domain. More specifically, a set of new
regression trees are appended to the existing model while minimizing a loss function
(logistic loss, in our case) on the target data.

In our case, the challenge of using TRADA to adapt a model to a specific target is
that we lack target-vertical training data. In the context of semi-supervised learning,
self-training or bootstrapping [115] is the process of re-training a model using previous
model predictions on unlabeled data. We combine self-training and model adaptation in
the following way. First, we use a portable model to label a set of queries with respect
to the target vertical. Then, we use TRADA to adapt the portable model to its own
target-vertical predictions.

Tree adaptation provides a method for adjusting the modeling of all features. Just
as we can select portable features for a portable model, we can select vertical-specific,
non-portable features while adapting a model to a specific target vertical. That is, the
base model may focus on portable features while the additional trees—added in the
context of pseudo-training data—may focus on non-portable features. In this case, we use
the same feature portability measure (Equation 4.5) but select the least portable features
for tree augmentation. Pseudo-labels for the target vertical were produced using the
portable model’s prediction confidence value with respect to the target vertical. We used
the simple heuristic of considering the top N% most confident positive predictions as
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positive examples and the botton (100− N)% predictions as negative examples.

4.4 Features

We generated a number of features which we believe are correlated with vertical rele-
vance and are generalizable across queries. Our features can be viewed as belonging to
the following two classes.

1. Query features are specific to the query and are independent of the vertical under
consideration. These include, for example, whether the query relates to the travel
domain or whether the query contains the term “news”.

2. Query-vertical features are specific to the query-vertical pair (i.e., they are generated
from the vertical). These include, for example, the similarity between the query
and those previously issued directly to the vertical by users.2

4.4.1 Query Features

Query features are generated from the query and are independent of the vertical. These
features are described more completely in Section 3.3.3. Rule-based intent features in-
clude regular expressions and dictionary look-ups likely to correlate with vertical intent
(e.g., does query contain the term “news”?). Geographic features correspond to the out-
put of a geographic named-entity tagger (e.g., does the query contain a city name?). Cat-
egorical features correspond to the output of a query-domain categorization algorithm
(e.g., is the query related to the travel domain?). The total number of query features was
118.

4.4.2 Query-Vertical Features

Query-vertical features are query- and vertical-dependent. In other words, their value
depends on the query and the vertical under consideration. We generated five query-
vertical features.

ReDDE.top, described in Section 3.3.1, scores the vertical based on its predicted num-
ber of relevant documents for a given query. To do this, it uses a retrieval from a central-
ized sample index, which combines documents sampled from each vertical. Soft.ReDDE,
also described in Section 3.3.1, is a variant of ReDDE.top, but uses a soft document-
to-vertical assignment (possibly using an external collection) to compute the vertical’s
score. We used an external collection: the English Wikipedia. We included two different
Soft.ReDDE features. These differ in the computation of the Wikipedia-article-to-vertical
assignment, which is based on the similarity between the Wikipedia article and verti-
cal language model. One version of Soft.ReDDE derived the vertical language model

2One could also imagine having query-independent vertical features, for example, whether the vertical is
experiencing a sudden increase in query traffic. We did not make use of vertical features in this work.

59



from vertical samples and a second version derived the vertical language model from
the vertical’s query-log. In addition to ReDDE.top and Soft.ReDDE, we used a third
resource selection algorithm: GAVG (for geometric average), described in Section 2.3.
Like ReDDE.top, GAVG also uses a centralized sample index, but scores the vertical
based on the geometric average score from its top m samples. Finally, we use the query
likelihood given a language model constructed from the vertical’s query-log. In total,
this corresponds to 5 query-vertical features: ReDDE.top, two Soft.ReDDE features, one
GAVG feature, and one query-log feature. Each feature type was mass normalized across
verticals.

4.5 Methods and Materials

The objective is to predict the relevance of a new target vertical for a given query. For this
reason, we evaluate on a per-vertical basis. Given a set of verticals V with query-vertical
relevance labels, each vertical was artificially treated as the new target vertical and all
remaining verticals as the source verticals. That is, for each t ∈ V , we set S = V − t.

Given a set of queries with vertical-relevance judgements, evaluation numbers were
averaged across 10 cross-validation test folds, using the remaining 90% of data for train-
ing. GBDTs require tuning several parameters: the number of trees, the maximum num-
ber of nodes per tree, and the shrinkage factor (see Friedman [38] for details). These
were tuned using a grid search and 10-fold cross-validation on each training fold. In all
cases, cross-validation folds were split randomly. Significance is tested using a 2-tailed
unpaired t-test.

TRADA was self-trained using predictions made on the test set. More specifically,
at each cross-validation step, a basic model was tuned on the training fold (90% of all
queries) and applied to the test fold (10% of all queries). Then, a TRADA model was
pseudo-trained using predictions on the test fold. In other words, for a given vertical, we
trained 10 basic and 10 TRADA models. Rather than tune pseudo-training parameter N,
we present results for N = 2.5, 5, 10%.

4.5.1 Verticals

We focused on 11 verticals, described in Table 4.1. These 11 verticals are a subset of
the 18 verticals used in Chapter 3. For practical reasons, some verticals in Chapter 3
had missing features (e.g., not every vertical had a vertical-specific search interface from
which to derive query-log features). To facilitate a more fair comparison of performance
across (target) verticals, in this chapter we focus on those 11 verticals which did not
have missing features. These verticals differ across different dimensions: size, domain,
document type, and level of query traffic.
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Table 4.1: Vertical descriptions.
vertical retrievable items
finance financial data and corporate information
games hosted online games
health health-related articles

images online images
jobs job listings

local business listings
movies movie show times

music musician profiles
news news articles
travel travel and accommodation reviews and listings
video online videos

4.5.2 Queries

Our evaluation data consisted of the same set of 25, 195 randomly sampled Web queries
used in Chapter 3. Given a query, human editors were instructed to assign verticals to
one of four relevance grades (‘most relevant’, ‘highly relevant’, ‘relevant’, ‘not relevant’)
based on their best guess of the user’s vertical intent. It is possible for a query to have
multiple verticals tied for a particular relevance grade. For about 25% of queries all
verticals were labeled ‘not relevant’. These are queries for which a user would prefer to
see only Web search results.

4.5.3 Evaluation Metrics

We are interested in the accuracy of a model’s target-vertical predictions. Given a set
of predictions for a target vertical, precision and recall can be computed by setting a
threshold on the prediction confidence value. Rather than report a single precision-
recall operating point, we evaluate using ranking metrics. These metrics are computed
from a ranking of test queries by descending order of prediction confidence value, the
probability that the target vertical is relevant to the query.

We adopt two rank-based metrics: average precision (AP) and normalized discounted
cumulative gain (NDCG). In computing AP, the labels ‘most relevant’, ‘highly relevant’,
and ‘relevant’ were collapsed into a single grade: ‘relevant’. We then compute average
precision according to Equation 4.6.

NDCG differs from AP in two respects. First, it differentiates between relevance
grades. Second, given a target vertical, t, it favors a model that is more confident
on queries for which t is more relevant. Put differently, compared to AP, it punishes
high-confidence errors more severely than low-confidence errors. Following Järvelin and
Kekäläinen [52], NDCG for a target vertical t, evaluated over queries Qt, is computed as,

µNDCG( f , yt,Qt) =
1
Z

|Qt|

∑
r=1

2yt(ρ f (Qt)r) − 1
log(max(r, 2))

(4.7)
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Table 4.2: Target-trained (“cheating") results: AP and NDCG.
vertical AP NDCG
finance 0.556 0.861
games 0.741 0.919
health 0.800 0.945

hotjobs 0.532 0.814
images 0.513 0.855

local 0.684 0.926
movies 0.575 0.851

music 0.791 0.934
news 0.339 0.748
travel 0.797 0.947
video 0.290 0.701

where y maps the relevance grade to a scalar (‘most relevant’: 3, ‘highly relevant’: 2,
‘relevant’: 1, ‘not relevant’: 0). The normalizer Z is the DCG of an optimal ranking of
queries with respect to the relevance.

Recall that our objective is to achieve the best performance possible without target-
vertical training data. A major motivation is to alleviate the need for a model trained
on target vertical data. Therefore, it is useful to measure our performance as a fraction
of the performance achievable by a model with access to target training data. We show
AP and NDCG results given human-annotated target-vertical training data in Table 4.2. A
target-specific model (using all available features) was trained and tested for each ver-
tical using 10-fold cross-validation. As in all results, we present performance averaged
across test folds. Given our objective, this can be considered a “cheating" experiment.
However, these numbers present a kind of upper bound for our methods. Our goal is
to approximate these numbers using no target-vertical training data. For this reason, all
results beyond this section are normalized by these numbers (i.e., results are reported as
percentage of target-trained performance). Also, this normalization facilitates an under-
standing for the cost-benefit of labeling the new vertical given source-vertical labels and
our proposed methods.

4.5.4 Unsupervised Baselines

Section 4.4.2 describes several query-vertical features that are used as input signals to
our models. Prior work shows that each of these can be used as an unsupervised single-
evidence vertical predictor [2, 3]. In other words, these methods can make target vertical
predictions without any (source- or target-vertical) training data. Therefore, to justify
the added complexity of our models, we compared against these unsupervised single-
evidence approaches. We present results for the unsupervised baseline that performed
best in this evaluation: Soft.ReDDE [3]. Soft.ReDDE (the version for which the vertical
language model was estimated using vertical samples) performed equal to or better than
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the next best single-evidence method for all but 3/11 verticals based on both AP and
NDCG.

4.6 Experimental Results

We present portability results in Table 4.3. We report performance for our three portable
models, each trained using data from every vertical except the target. Each basic model
uses all features and weights all instances equally. Each basic+VB model uses all features
and performs instance weighting to balance the positive instances from different verti-
cals. Finally each basic+FW model uses only the most portable features and weights all
instances equally.

Across both metrics, both vertical balancing (basic+VB) and feature weighting (ba-
sic+FW) improve the performance of the basic model (basic). Performance across verti-
cals was either statistically indistinguishable or better. Compared to each other, feature
weighting (basic+FW) significantly improved the basic model across more verticals (8/11
for both metrics). Compared to Soft.ReDDE, the only method that did noticeably better
was the basic model with feature weighting (basic+FW). Performance was significantly
better for 4 verticals based on AP and 5 based on NDCG. Performance was significantly
worse for one vertical based on AP and none based on NDCG.

We present adaptability results in Table 4.4. TRADA adapts a basic model using its
own target-vertical predictions as pseudo-training data. Given its superior performance,
we used the unbalanced basic model with only the most portable features (basic+FW).
We refer to this as the base model. TRADA was tested under two conditions. In the first
condition, TRADA is given access to all features for adaptation. In the second condition,
it is given access to only the non-portable features (precisely those purposely ignored in
order to improve the portability of the base model).

Table 4.4 presents several meaningful results. First, TRADA does poorly when the
adapted model is given access to all features (columns 4-6). In contrast, when given
access to only the non-portable features (TRADA+FW), results improve (columns 7-9).

TRADA+FW performs either equal to or better than the base model in all but one
case for AP and in all cases for NDCG. Similarly, across metrics, TRADA+FW signif-
icantly outperforms Soft.ReDDE across most verticals for all values of N. It performs
significantly worse than Soft.ReDDE in three cases in terms of AP and none in terms of
NDCG. Overall, we view this as a positive result in favor of adaptability. TRADA suc-
ceeds at adapting a portable model to a specific target vertical at no additional editorial
cost.

4.7 Discussion

In the previous section, we demonstrated that the performance improvement for both
portable and adaptive models requires measuring individual feature portability. In order
to investigate precisely which features were being selected, we plot the value of π

havg
AP
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basic basic+VB basic+FW
vertical Soft.ReDDE (all feats.) (all feats.) (only portable feats.)
finance 0.446 0.209# 0.199# 0.392!

games 0.720 0.636 0.724 0.683
health 0.823 0.797 0.793 0.839

jobs 0.155 0.193 0.226" 0.321"!

images 0.283 0.365" 0.404" 0.390"

local 0.696 0.543# 0.614#! 0.628#!

movies 0.477 0.294# 0.388#! 0.478!

music 0.757 0.673# 0.700# 0.780!

news 0.559 0.293# 0.434#! 0.548!

travel 0.487 0.571" 0.618"! 0.639"!

video 0.525 0.449 0.539 0.691"!

avg 0.539 0.457 0.513 0.581

(a) AP

basic basic+VB basic+FW
vertical Soft.ReDDE (all feats.) (all feats.) (only portable feats.)
finance 0.776 0.663# 0.651# 0.775!

games 0.910 0.884 0.918 0.903
health 0.953 0.950 0.946 0.960

jobs 0.563 0.583 0.607 0.671"!

images 0.712 0.745 0.776" 0.768"

local 0.905 0.875# 0.897! 0.910!

movies 0.775 0.685# 0.745 0.798!

music 0.937 0.922 0.922 0.957"!

news 0.852 0.703# 0.781#! 0.875!

travel 0.846 0.881" 0.908"! 0.911"!

video 0.817 0.816 0.828 0.902"!

avg 0.822 0.792 0.816 0.857

(b) NDCG

Table 4.3: Portability results: normalized AP and NDCG. A "(#) denotes significantly
better(worse) performance compared to Soft.ReDDE. A !($) denotes significantly bet-
ter(worse) performance compared to the unbalanced basic model with all features. Sig-
nificance was tested at the p < 0.05 level.

in Figure 4.1. As it turns out, the same five features were consistently chosen as the
most portable for all target verticals (i.e., for all sets of source verticals). Interestingly,
these correspond to our five query-vertical features (Section 4.4.2). Conversely, those
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trada trada+FW
basic+FW (all features) (only non-portable)

vertical Soft.ReDDE (only portable) (N=2.5%) (N=5%) (N=10%) (N=2.5%) (N=5%) (N=10%)
finance 0.446 0.392 0.364 0.328# 0.226#$ 0.476 0.407 0.339#

games 0.720 0.683 0.735 0.660 0.491#$ 0.819"! 0.817"! 0.787!

health 0.823 0.839 0.814 0.813 0.592#$ 0.907"! 0.868" 0.818
jobs 0.155 0.321" 0.360" 0.384" 0.345" 0.390" 0.348" 0.323"

images 0.283 0.390" 0.320$ 0.370" 0.405" 0.410" 0.499"! 0.523"!

local 0.696 0.628# 0.523#$ 0.601# 0.609# 0.562#$ 0.614# 0.663
movies 0.477 0.478 0.493 0.462 0.411$ 0.640"! 0.587"! 0.578"!

music 0.757 0.780 0.751 0.778 0.760 0.868"! 0.866"! 0.838"!

news 0.559 0.548 0.509 0.556 0.523 0.607 0.665"! 0.615
travel 0.487 0.639" 0.531$ 0.573"$ 0.597" 0.744"! 0.709"! 0.710"!

video 0.525 0.691" 0.633 0.648 0.586 0.735" 0.722" 0.688"

avg 0.539 0.581 0.548 0.561 0.504 0.651 0.646 0.626

(a) AP

trada trada+FW
basic+FW (all features) (only non-portable)

vertical Soft.ReDDE (only portable) (N=2.5%) (N=5%) (N=10%) (N=2.5%) (N=5%) (N=10%)
finance 0.776 0.775 0.760 0.718 0.632#$ 0.826 0.765 0.734
games 0.910 0.903 0.920 0.885 0.778#$ 0.947"! 0.951"! 0.938!

health 0.953 0.960 0.947 0.939 0.827#$ 0.974" 0.960 0.953
jobs 0.563 0.671" 0.720" 0.736" 0.710" 0.747" 0.698" 0.676"

images 0.712 0.768" 0.745 0.775" 0.790" 0.801" 0.850"! 0.869"!

local 0.905 0.910 0.885#$ 0.907 0.898 0.901 0.911 0.930"!

movies 0.775 0.798 0.808 0.790 0.732$ 0.856" 0.842" 0.840"

music 0.937 0.957" 0.939 0.939 0.931 0.977"! 0.974"! 0.965"

news 0.852 0.875 0.850 0.868 0.828 0.898 0.908 0.879
travel 0.846 0.911" 0.875$ 0.890" 0.889" 0.944"! 0.933"! 0.926"

video 0.817 0.902" 0.869 0.865 0.827 0.930" 0.896" 0.880
avg 0.822 0.857 0.847 0.847 0.804 0.891 0.881 0.872

(b) NDCG

Table 4.4: Trada results: normalized AP and NDCG. A "(#) denotes significantly bet-
ter (worse) performance compared to Soft.Redde. A !($) denotes a significantly bet-
ter(worse) performance compared to the base model. Significance was tested at the
p < 0.05 level.

features that were the least portable were consistently our remaining query features
(Section 4.4.1). In hindsight, this observation makes sense. Our query-vertical features
included several existing resource selection methods: GAVG [86], ReDDE.top [3], and
Soft.ReDDE [4]. These methods, by design, score resources using a single metric that
is expected to be positively correlated with resource relevance irrespective of the resource.
This result places two-decade’s worth of unsupervised resource selection approaches
under a new light. Existing resource selection methods are portable and can therefore be
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Figure 4.1: Feature portability values (πhmap) for all features across sets of source ver-
ticals. Features ordered randomly along x-axis. The features that were consistently the
most portable were query-vertical features. As shown, many of these correspond to
existing unsupervised resource selection methods used in prior work.

used to harness non-portable (vertical-specific) evidence (e.g., the topic of the query). In
other words, existing methods play an important role in adapting a portable model to a
new vertical at not additional editorial cost.

Vertical balancing significantly improved the basic model only across 4/11 verticals
based on AP and 3/11 based on NDCG. Recall that we introduced balancing in order
to discourage examples from source verticals with high priors dominating the training
set. However, this does not address cases where several sources have the same non-
portable features correlated with relevance. For example, video and images tend to be
relevant to queries that mention a celebrity name; travel and local tend to be relevant
to queries that mention a geographic entity; and finance and jobs tend to be relevant
to queries that contain a company name. Even though vertical balancing addresses a
single vertical’s dominance in the training set, it does not address a small coalition of
related verticals causing the model to focus on non-portable features. We believe that a
more robust averaging technique—for example, the harmonic average used for feature
portability—may result in superior performance in the presence of similarly predictive
source verticals.

In the previous section, TRADA improved considerably when given access to only the
non-portable features for adaptation. We believe this is due to the following. TRADA
was pseudo-trained using predictions from the base model (basic+FW). This was our best
portable model and was given access to only the most portable features. When TRADA is
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given access to all features (including the most portable ones), the adapted model tends
to focus on the portable features (and ignore the non-portable ones) in order to better fit
the original base-model predictions. On the other hand, when TRADA is given access
to only most portable features for adaptation, then it must focus on the non-portable,
vertical-specific ones. As it turns out, when given access to target-vertical training data,
the non-portable, vertical-specific features are highly effective for predicting the target
vertical. In Table 4.5, we compare the performance of two target-trained models: one that
is given access to all features (portable and non-portable) and one that is given access to
only the most portable ones.3 Performance across all verticals deteriorates substantially
when a target-trained model is not given access to the most non-portable features. When
given access to only the non-portable features for adaption, TRADA is forced to focus
on these highly effective vertical-specific features. This mechanism can be seen as a
sort of regularization ensuring that both portable and non-portable features are used for
prediction.

all features:
portable and

vertical non-portable only portable
finance 0.556 0.360#

games 0.741 0.623#

health 0.800 0.690#

hotjobs 0.532 0.271#

images 0.513 0.282#

local 0.684 0.605#

movies 0.575 0.325#

music 0.791 0.660#

news 0.339 0.232#

travel 0.797 0.608#

video 0.290 0.246#

(a) AP

all features:
portable and

vertical non-portable only portable
finance 0.861 0.758#

games 0.919 0.877#

health 0.945 0.917#

hotjobs 0.814 0.673#

images 0.855 0.711#

local 0.926 0.906#

movies 0.851 0.719#

music 0.934 0.903#

news 0.748 0.677#

travel 0.947 0.894#

video 0.701 0.658

(b) NDCG

Table 4.5: Target-trained results. Given access to target-vertical training data, a model
that uses all features (portable + non-portable) performs significantly better than one that
is given access to only the non-portable ones. A # denotes a significant degradation in
performance at the P < 0.05 level.

With respect to pseudo-training data parameter N, we observe that the optimal value
of N seems to be vertical-dependent. There may be two reasons for this. First, the
base model performance (column 5 in Table 4.3) is also vertical-dependent. Given a fixed
value of N across verticals, pseudo-labels from some verticals may be noisier than others.

3This is a “cheating” experiment, as we assume no target-vertical training data. However, we do this for
the purpose of error analysis.
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Second, the optimal value of N for a given vertical may correlate with the vertical’s prior.
That is, it may depend on the number of queries for which the vertical is truly relevant.

4.8 Summary

Maximizing the return on editorial investment is an important aspect of any system
requiring training data. We presented an ensemble of approaches which significantly
improve prediction of a new target vertical using only source-vertical training data. Our
results demonstrate that model portability, the ability of a model to generalize across dif-
ferent target verticals, requires careful attention to feature portability, the ability of a feature
to correlate with vertical relevance across different target verticals. We found that those
features which seemed to be the most portable—and hence most important for a portable
model—were query-vertical features as opposed those that are independent of the can-
didate vertical. Conversely, when we tried to adapt a model for a specific target, the
least portable features appeared to be those most important for the adapted model to
consider.

Furthermore, we showed that a portable solution can be used to build a target-specific
one at no additional editorial cost. Our best approach adapted a portable model using
its own target-vertical predictions. This approach consistently outperformed both the
base model and a competitive alternative which does not require adaptation. Results
also showed that, given available resources, human-annotation on the new target vertical
remains the best alternative.

This work could be extended in several directions. In terms of portability, vertical
balancing may be improved by modeling the similarity (in terms of predictive evidence)
between source verticals. In terms of adaptability, further improvements may be achieved
by modeling the similarity between each source vertical and the target vertical. In the
absence of target-vertical training data, we may be able to measure this source-to-target
similarity using query-traffic data.
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Vertical Results Presentation:
Evaluation Methodology

Chapter 5

Aggregated web search is a two-part task. Up to this point, we have focused on vertical
selection—deciding which verticals are relevant to the query. In this and the next chapter
we focus on vertical results presentation—deciding where in the Web results to present the
vertical results. Together, these two sub-tasks combine to produce the end-to-end system
output: the final presentation of results. An example presentation for the query “pitts-
burgh” is shown in Figure 5.1. One natural question is: how good is this presentation
of results? Suppose we swapped maps and news. Would that presentation be better?
And if so, would the improvement be noticeable? The first step towards addressing the
presentation task is to determine what the system should do. In other words, we need an
evaluation methodology that can help us determine the quality of a particular arrange-
ment of Web and vertical results. Not only is an evaluation methodology essential for
comparing systems, it is also essential for model building (i.e., for automatically tuning
a system to produce high-quality output).

Aggregated web search results are typically evaluated based on user feedback, col-
lected either implicitly (e.g., by observing user clicks and skips [28, 63, 67, 78, 101]) or
explicitly (e.g., by directly asking users which presentations they prefer [121]). Most of
this prior work, however, focuses on the integration of at most a single vertical into the
Web results, either assuming a fixed location for the vertical [28, 63, 67] (e.g., above the
Web results), or a few alternative locations [101, 121] (above, in the middle of, or below
the Web results). We want an evaluation methodology that can handle multiple verti-
cals in multiple positions. Ponnuswami et al. [78] focus on the integration of potentially
multiple verticals throughout the Web results. However, they use metrics that measure
performance for each vertical independently (vertical click-through rate and coverage).
While vertical-specific metrics are informative, we want an evaluation metric that can
determine the quality of a particular presentation as a whole.

Our objective in this chapter is to propose and empirically validate a methodology for
aggregated web search evaluation. This includes evaluating not only which verticals are
presented/suppressed (as we do in Chapters 3 and 4), but also where they are presented.
As mentioned above, the number of possible presentations for a given query is large. In
spite of this, we want an evaluation metric that uses a relatively small number of human
relevance judgements to evaluate any possible presentation for a given query.

1This work was published in ECIR 2011 with co-authors Fernando Diaz, Jamie Callan, and Ben
Carterette [5].
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maps

web

news

images

web

Figure 5.1: An example presentation of vertical results for “pittsburgh”, where the maps
vertical is presented above, the news vertical within, and the images vertical below the top
Web results. Consistent with the major commercial search engines (i.e., Bing, Google,
and Yahoo!), we assume that same-vertical results must appear grouped together—
horizontally (e.g., images) or vertically (e.g. news)—within a in the output presentation.

The proposed methodology is defined by two main components. The first component
is the prediction of a ground truth or reference presentation. The reference presentation
marks the best possible presentation a system can produce given the query (and a set of
layout constraints). Because the set of all possible presentations is prohibitively large, we
do not attempt to identify the reference by eliciting judgements directly on full presen-
tations. Instead, we take a piece-wise, bottom-up approach. In other words, we collect
human judgements on sequences of Web and vertical results that must appear grouped
together in the final presentation. Then, we use these piece-wise judgements to derive the
reference presentation. Finally, we propose that any possible presentation of results can
be evaluated based on its distance (using a rank-based distance metric) to the reference.
This rank-based distance metric is the second major component. To validate our eval-
uation metric, we empirically test whether the metric correlates with user preferences.
More specifically, we show assessors pairs of presentations and ask whether they prefer
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one over the other. In cases where the assessors state a preference, we verify whether the
preferred presentation is the one scored superior by our metric.

5.1 Related Work in Aggregated Web Search Evaluation

Vertical results presentation focuses on deciding where to present vertical results (if at
all). In this chapter, we focus on evaluation. How can we determine the quality of a
particular presentation of results from zero or more verticals? Any evaluation metric
should be grounded on user behavior. Several studies investigate user behavior with
aggregated web search interfaces, for example, by considering click-through behavior
and user preference behavior. We review this related work in Section 5.1.1. Subsequently,
in Section 5.1.2, we describe existing alternatives for aggregated web search evaluation.

5.1.1 Understanding User Behavior

Several studies (most by Sushmita et al. [87, 100, 101, 102]) investigate how users interact
with aggregated web search interfaces and how these affect search quality, both from the
user’s perspective and in terms of task completion.

Sushmita et al. [87, 102] present several analyses of a large commercial query-log, with
clicks on Web and cross-vertical content. Several trends were found. First, most sessions
(about 90%) had clicks on a single type of content (either Web content or content from the
same vertical). Second, most sessions with clicks on multiple types of content included
clicks on Web content. Finally, as might be expected, users clicked more on highly ranked
content irrespective of its source. However, the distribution was flatter for images results.
That is, click-through rate for images results was less affected by rank. This may be due
to the visually-appealing nature of image thumbnails, typically used to represent images
results. From these query-log analyses, one might draw the following conclusions. First,
Web results continue to be highly desired. Second, predicting where in the Web results to
embed a particular (relevant) vertical is an important task (users tend to examine those
ranked higher). Third, click-through behavior may be vertical-dependent.

Sushmita et al. [100] conducted a small task-oriented user study with two types of
interfaces: a tabbed interface, where the user could access results from different verticals
by clicking on different tabs, and an aggregated interface, where the user was presented
the top results from each vertical within the search results page. The aggregated search
interface was static—each vertical was allocated a specific query-independent slot. Users
were given a topic and asked to compile as much relevant content about the topic as
possible. A few trends were observed. The aggregated interface was associated with
more clicks. In other words, participants inspected a greater number of results using the
aggregated interface. Also, the amount and diversity of content collected by participants
(i.e., perceived as being relevant) was greater for the aggregated interface. The user
study suggests that users interact with vertical content more when the vertical results are
readily visible within the search results page than when the vertical results are accessible
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using tabs.
In a different user study, Sushmita et al. [101] investigated user click-through behavior

using a dynamic aggregated search interface, similar to the one modeled in this disserta-
tion. This work focused on presentations with one of three verticals (images, news, and
video) embedded in three positions relative to the Web results (above the first Web results,
between Web results 5 and 6, and below the last Web result). They found a correlation
between click-through rate and both the relevance of the vertical and its rank. More sur-
prisingly, perhaps, they found a click-through bias in favor of video results. That is, users
clicked more on video irrespective of its relevance and rank. Zhu and Carterette [121]
conducted a similar study with the images vertical. They found a preference for images
ranked high for queries likely to have image intent. From these studies we can draw the
conclusion that users prefer relevant verticals ranked high. Thus, a dynamic aggregated
interface, where a vertical’s position is query-dependent, may be more appropriate than
a static one.

Our proposed formulation of the task and our evaluation metric are consistent with
these studies. More specifically, we always present Web results, we do not assume a fixed
slot for a particular vertical, and we propose an evaluation metric that punishes mistakes
at the top of the ranking more than at the bottom.

5.1.2 Aggregated Web Search Evaluation

Most research on aggregated web search focuses on vertical selection—predicting which
verticals are relevant. Besides the vertical selection work presented in this dissertation
(Chapters 3 and 4), Li et al. [67] evaluate classifiers for two verticals: shopping and jobs.
Performance was measured in terms of precision and recall for each vertical indepen-
dently. Diaz [28] and König et al. [63] focused on predicting when to display news results
(always displayed above the Web results) and evaluated in terms of correctly predicted
clicks and skips. Diaz [29] investigated single-vertical selection in the presence of user
feedback. Evaluation was conducted using a simulated stream of queries, where each
query impression was associated with at most a single relevant vertical. Performance was
measured in terms of correctly predicted queries, weighing false positives less than false
negatives. Their assumption is that users are more dissatisfied by not seeing a relevant
vertical than by seeing a non-relevant one (i.e., a user can easily skip over a non-relevant
vertical to get to the desired Web results).

The above work assumes at most a single relevant vertical per query and, either im-
plicitly or explicitly, assumes a fixed presentation template—a single vertical presented
above the Web results or not at all [28, 29, 63, 67]. For the purpose of vertical results
presentation evaluation, this work has several limitations. First, even if at most a single
vertical were truly relevant for every query, its optimal positioning may depend on its
degree of relevance and the relevance of the Web results. Second, in practice, the system
can only guess when a vertical is relevant. Thus, displaying multiple verticals at differ-
ent ranks is a way of resolving contention between verticals. The best presentations are
those that rank the true relevant vertical higher. Finally, though prior research suggests
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that single-vertical intent is more common than multiple-vertical intent [100], in some
situations, a user may actually want results from multiple verticals simultaneously. For
all these reasons, our goal is an evaluation methodology that can handle an arbitrary
number of verticals embedded throughout the Web results.

Punnuswami et al. [78] propose a method for vertical results presentation with multi-
ple verticals and slotting positions. Their approach is to train independent vertical classi-
fiers (one per vertical) and to assign each vertical to a slot using its prediction confidence
value and a set of slot-specific thresholds. In their approach, each vertical is assigned to a
slot independently of any other vertical. In a similar fashion, performance for each vertical
was evaluated independently of any other. Evaluation was conducted in an operational
setting based on implicit user feedback. Their evaluation methodology is to allocate a
small percentage of query-traffic to one of two conditions: the control condition, which
uses the existing baseline system, and the experimental condition, which uses the pro-
posed system. Then, performance (for a specific vertical and slot) is measured in terms
of coverage and vertical click-through rate. Coverage measures the percentage of queries
for which the vertical is assigned to the slot. Vertical click-through rate measures the
percentage of those queries for which the user clicks on the vertical. The goal for the
experimental system is to improve click-through rate while maintaining an acceptable
level of coverage.1

Evaluating based on click data has the advantage that the implicit judgements are
provided by real users within the context of a real search. On-line evaluation, however, is
time-consuming and can degrade the user experience if the experimental system is worse
than the baseline. Recent work proposes methods for collecting on-line user-interaction
data once and using this data to perform multiple rounds of off-line testing [66, 77].
The objective of this work is to perform off-line testing while avoiding a system bias.
That is, we do not want off-line evaluation to favor systems that are similar to the one
used to collect the user interaction data. The basic idea is to collect the user interaction
data in a completely unbiased fashion, where every system output is equally probable.
Then, given a particular model (with a fixed parameter configuration), evaluation can
be done by considering only those outputs that are identical to what the system would
have produced given the same query. Results show that metrics computed in this off-
line fashion closely approximate those computed in an on-line setting using the same
experimental system [66, 77].

Whether evaluation is on-line or off-line (i.e., using cached results, features, and user
clicks), evaluating based on user interaction data requires a live system with users. More-
over, because clicks (and skips) are noisy, they require many users. Our goal is a evalua-
tion methodology that does not suffer from this cold-start problem.

In this work, we evaluate alternative search results by presenting them to users side-
by-side and asking which they prefer. Several works elicit preference judgements on
pairs of search results. Thomas and Hawking [103] validated the side-by-side compar-

1If click-through rate improves, but coverage decreases significantly, then the experimental system is
simply being more conservative in predicting the vertical, which may not be considered an improvement.
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ison approach by presenting assessors with pairs of results of different quality (e.g.,
Google results 1-10/11-20, or overlapping sets 1-10/6-15). As expected, users typically
preferred results 1-10 over 11-20 or 6-15. Sanderson et al. [82] used a similar interface with
Amazon’s Mechanical Turk to validate a set of test-collection-based metrics: Normalized
Discounted Cumulative Gain (NDCG), P@10, and Mean Reciprocal Rank (MRR). NDCG
agreed the most with user preferences, obtaining 63% agreement overall and 82% agree-
ment for navigational queries. We use a similar methodology for validating our metric.

5.2 Layout Assumptions

In order to formally define the vertical results presentation task, we must first assume as set
of layout constraints. As previously mentioned, our goal in this chapter is an evaluation
metric that can measure the quality of any possible presentation of results for a given
query. The following layout constraints define the set of all possible presentations.

First, we assume that vertical results (if any) can only embedded or slotted in specific
positions relative to the top Web results (we focus on the top 10 Web results). Specifically,
we assume 4 vertical slotting positions: above the first Web result, between Web results
3-4, between Web results 6-7, and below the last Web result. A similar assumption is
made in prior work [28, 101, 121]. Effectively, this divides the top 10 Web results into
three blocks of Web results, denoted as w1, w2, and w3. Multiple verticals can be presented
in a particular slot, that is, above w1, between w1 and w2, between w2 and w3, or below
w3. Web results within the same Web block cannot be partitioned in any presentation.

Second, we assume that, if a vertical is presented, a fixed set of its top results must be
presented. This assumption simplifies the vertical results presentation task. If a vertical
is presented, the system does not have to decide which of its top results to present.
Instead, the task is to determine whether to present a vertical given its top results, and,
if so, where. Each vertical is associated with a minimum and maximum number of top
results that must be presented if the vertical is presented. If the vertical retrieves fewer
than its minimum number of results, it is not a candidate vertical.

Third, if a vertical is presented, then its top results must be grouped together—
vertically (e.g., news) or horizontally (e.g., images)—in the final presentation. This as-
sumption is consistent with all major commercial search providers and is at least partly
motivated by the fact that results from different verticals are presented differently. For
example, image results are presented as thumbnail images; news results are presented
using their title, news-source, and age or publication date; and local business results are
presented using the name of the business, its contact information, and their location is
often displayed geographically on a map. Combining our second and third assumptions,
every candidate vertical (i.e., every vertical that retrieves at least its minimum number of
results for the query) forms its own block of results. As with our Web blocks, results
from the same vertical block cannot be partitioned in any presentation.

Fourth, we assume that Web blocks w1−3 are always displayed and are done so in
their original order. Web results are not re-ranked relative to each other. Finally, we
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assume that users prefer to not see results from non-relevant verticals, even below the
last Web block: w3. Non-relevant vertical results should be suppressed entirely from
view.

5.3 Task Formulation: Block Ranking

Given our layout assumptions, we can formulate the vertical results presentation task
as one of ranking blocks of Web and vertical results, as shown in Figure 5.2. A block is
defined as a sequence of Web or same-vertical results that must be presented together in
the final aggregated results. If a block is presented, then all the results within the block
must be presented and must be grouped together. If a block is suppressed, then all the
results within the block must be suppressed.

Let Bq denote the set of blocks associated with query q. Bq will always includes all
three Web blocks (w1−3) and will include one block for each vertical that retrieves results.
The goal of block ranking is to produce an ordering of Bq, denoted by σq. Suppressed
verticals will be handled using an imaginary “end of search results” block, denoted
by eos. Blocks that are ranked above eos are displayed and those ranked below eos are
suppressed. Let σq(i) denote the rank of block i in σq. We say σq is a partial ranking
because all blocks ranked below eos (i.e., those that are suppressed) are effectively tied at
rank σq(eos) + 1.

Our objective is an evaluation measure that can determine the quality of any possible
presentation σq for query q. Our solution is to evaluate alternative presentations based
on their distance (using a rank-based distance metric) to a “gold standard” or reference
presentation, denoted by σ∗q . We assume that σ∗q defines the best possible block-ranking
for query q. Given the prohibitively large number of possible presentations for a given
query, we do not elicit human judgements directly on alternative presentations. Instead,
σ∗q is derived from judgements on individual blocks (we describe this in more detail
below). Any evaluation metric should be grounded on user preference data. We validate
the metric by making sure that the metric agrees with human preferences stated on pairs
of presentations.

5.4 Metric-Based Evaluation Methodology

Our metric-based evaluation methodology is depicted in Figure 5.3. The primary goal is
to derive a reference presentations for query q, which we denote by σ∗q . Then, we propose
that any arbitrary presentation σq can be evaluated based on its distance (using a ranked
based-distance metric) to σ∗q .

Our methodology proceeds in 4 steps. First, given query q (and our set of layout
constraints), we compose a set of blocks associated with the query, denoted by Bq. Set
Bq will include all three Web blocks w1−3 and one block for each vertical that retrieves
more that the minimum number of results (Figure 5.3 (a-b)). Then, we generate σ∗q using
human relevance judgements on individual blocks. Prior work on document-ranking
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Figure 5.2: The vertical results presentation task can be formulated as block ranking.

evaluation found that assessors work faster and have higher agreement when providing
pairwise preference judgements than when providing absolute judgements [18]. We
assume this is also true for blocks of Web and vertical results. Thus, the second step is
to collect pairwise preference judgements on all block-pairs in Bq (Figure 5.3 (c). More
specifically, each block-pair i, j ∈ Bq is presented to assessors who are asked to state
a preference. We denote these pairwise preference judgements by πq. Third, given
block-pair preference judgements πq, we use a voting method to derive the reference
presentation σ∗q (Figure 5.3 (d)). Finally, we propose that any alternative presentation σq

for q can be evaluated using a rank-based metric to measure its distance to σ∗q (Figure 5.3
(e)). We describe these steps in more detail in the next sections.

5.4.1 Collecting Block-Pair Preference Judgements

Given Bq, our methodology is to collect pairwise preference judgements on all block-
pairs i, j ∈ Bq, with the exception of pairs of Web blocks. We do not collect preference
judgements between Web block pairs because assume that Web blocks must be presented
in their natural order, that is σ∗q (w1) < σ∗q (w2) < σ∗q (w3).

Each pairwise preference judgement consists of a triplet of the form (q, i, j), composed
of query q and block pair i, j presented side-by-side in random order. A screenshot of
the assessment interface is shown in Figure 5.4. Assessors were given three choices: i
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(a) fix slots (b) compose blocks Bq (c) collect preferences πq

(d) derive reference σ∗q

!"#"!"$%"

(e) evaluate

Figure 5.3: Approach Overview.

is better j, j is better i, and both are bad. We omitted the choice that both i and j are
equally good to prevent assessors from abstaining from difficult decisions. We interpret
the assessor selecting “both are bad” as evidence that both i and j should be suppressed
for query q. These preference judgements, denoted by πq, are the raw input to the voting
method that derives the reference presentation σ∗q .

Let πq(i, j) denote the strength with which block i is preferred over block j (note that
πq(i, j) -= πq(j, i)). In general, πq(i, j) can be set differently depending on the particular
choice of assessors. For example, suppose assessor reliability is known. Then, we can
collect one judgement per block-pair and set πq(i, j) according to the reliability of an
assessor who prefers block i over j. In a different setting, for example, when using non-
expert annotators, we can collect redundant judgements per block-pair and set πq(i, j)
equal to the number of assessors who prefer i over j.

5.4.2 Deriving the Reference Presentation

There exist many voting methods for aggregating item preference data into a single
ranking. In this work, we used the Schulze voting algorithm because of its widespread
adoption and ease of implementation [85]. The Schulze algorithm is described in Algo-
rithm 1. The input to the algorithm is Bq and preference judgements πq and the output
is the reference presentation σ∗q .
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Figure 5.4: Block-pair assessment interface. Two blocks are displayed randomly side-by-
side (in this case books block and w3) and the assessor is asked which would best satisfy
a user for the given query and description: the left block, the right block, or neither.

The general idea behind the Schulze voting method is the following. Let πq(i, j)
denote the the strength with which block i is preferred over block j. We say that i directly
defeats j if π(i, j) > π(j, i). A beatpath from i to j is defined as a direct or indirect defeat
from i to j. An indirect beatpath from i to j is a sequence of direct defeats from i to j. For
example, if i directly defeats k and k directly defeats j, then this is an indirect beatpath
from i to j. The strength of an indirect beatpath corresponds to strength associated with
the weakest direct defeat in the beatpath. Finally, we say that i defeats j if the strongest
(direct or indirect) beatpath from i to j is stronger than the one from j to i. Blocks are
then ranked by their number of defeats.

As previously noted, the aggregation task is not only ranking blocks, but also de-
ciding which vertical blocks to suppress. Suppressed verticals are handled using the
imaginary eos block. The eos block is treated by the Schulze method the same as any
non-imaginary block. Every time an assessor selected that both i and j are bad, we incre-
mented the value of π(eos, j) and π(eos, i). Also, recall that we assume that Web blocks
(w1−3) are always presented and never re-ranked. This constraint was imposed by setting
π(eos, w∗) = π(wx, wy) = 0, where x > y, and by setting π(w∗, eos) = π(wx, wy) = N,
where x < y and N is some large number (we used N = 1000).
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Input: blocks Bq and pairwise preferences πq

Output: reference presentation σ∗q
foreach i ∈ Bq do

foreach j ∈ Bq do
if i -= j then

if πq(i, j) > πq(j, i) then
p(i, j) ← πq(i, j)− πq(j, i)

else
p(i, j) ← 0

end
end

end
end
foreach i ∈ Bq do

foreach j ∈ Bq do
if i -= j then

foreach k ∈ Bq do
if i -= k and j -= k then

p(j, k) ← max
(

p(j, k), min
(

p(j, i), p(i, k)
))

end
end

end
end

end
foreach i ∈ Bq do

foreach j ∈ Bq do
if i -= j then

if p(i, j) > p(j, i) then
wins(i) ← wins(i) + 1

end
end

end
end
σq ← SortDescending(wins)

Algorithm 1: The Schulze Voting Algorithm.

5.4.3 Measuring Distance from the Reference

Our proposed method is to evaluate any possible presentation σq by measuring its dis-
tance to the reference σ∗q . We used a rank-based distance metric. Possibly the most widely
used rank-based distance metric is Kendall’s tau (K), which counts the number of dis-
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cordant pairs between two rankings,

K(σ∗, σ) = ∑
σ∗(i)<σ∗(j)

[σ(i) > σ(j)],

where σ(i) denotes the rank of element i in σ. Kendall’s tau treats all discordant pairs
equally regardless of position. In our case, however, we assume that users scan results
from top-to-bottom. Therefore, we care more about a discordant pair at the top of the
ranking than one at the bottom. For this reason, we used a variation of Kendall’s tau
proposed by Kumar and Vassilvitskii [64], referred to as generalized Kendall’s tau (K∗),
which can encode positional information using element weights.

To account for positional information, K∗ models the cost of an adjacent swap, denoted
by δ. In traditional Kendall’s tau, δ = 1, irrespective of rank. Adjacent swaps are treated
equally regardless of position. In our case, however, we would like discordant pairs
at the top to be more influential. Let δr denote the cost of an adjacent swap between
elements at rank r − 1 and r. We used the DCG-like cost function proposed in Kumar
and Vassilvitskii [64],

δr =
1

log(r)
+

1
log(r + 1)

which is defined for 2 ≤ r ≤ n. Given rankings σ∗ and σ, element i’s displacement
weight p̄i(σ∗, σ) is given by the average cost (in terms of adjacent swaps) it incurs in
moving from rank σ∗q (i) to rank σq(i),

p̄i(σ∗, σ) =





1 if σ∗(i) = σ(i)
pσ∗(i)−pσ(i)
σ(i)∗−σ(i) otherwise

,

where pr = ∑r
2 δr. The K∗ distance is then given by,

K∗(σ∗, σ) = ∑
σ∗(i)<σ∗(j)

p̄i(σ∗, σ) p̄j(σ∗, σ)[σ(i) > σ(j)].

A discordant pair’s contribution to the metric is equal to the product of the two element
weights.

5.5 Methods and Materials

One important property of any evaluation measure is that it should correlate with user
preference data. In other words, aggregated search results preferred by humans should
be judged superior by the metric. In this section, we describe a user study that was
conducted to empirically validate the metric. In the next few sections, we first describe
our block-pair assessment interface. Block-pair assessments were collected in order to
derive reference presentations for a set of queries. Then, we describe our verticals and
queries. Finally, we describe our user study, where assessors were presented pairs of
presentations (shown side-by-side) and asked to state a preference.
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5.5.1 Block-Pair Preference Assessment

Given query q, we collected pairwise preference assessments for all pairs i, j ∈ Bq (except
between pairs of Web blocks). These assessments were collected in order to derive a
reference presentation for each query, denoted by σ∗q .

All block-pair judgements were collected using Amazon’s Mechanical Turk (AMT).
Workers were compensated US$ 0.01 for each judgement. Because we used untrained,
non-expert assessors, we collected redundant judgements for each block-pair. Each block-
pair was judged by 4 different assessors. Thus, we set πq(i, j) equal to the number of
assessors who preferred block i over block j. Likewise, we set πq(eos, i) equal to the
number of assessors who selected that block i was bad (i.e., should be suppressed) in
conjunction with another block j.

Following Sanderson et al. [82], quality control was done by including 150 “trap” HITs
(a Human Intelligence Task is a task associated with AMT). Each trap HIT consisted of
a triplet (q, i, j) where either i or j was taken from a query other than q. We interpreted
an assessor preferring the set of extraneous results as evidence of malicious or careless
judgement. If an assessor failed more than 2 trip HITs, all their judgements were removed
from the judgement pool.

As previously mentioned, while collecting block-pair judgements, in addition to the
query, assessors were given a topic description to help disambiguate the user’s intent.
In a preliminary experiment, we observed an improvement in inter-annotator agreement
from giving assessors topic descriptions. We were careful, however, to not explicitly
mention vertical intent. For example, for the query “pressure cooker”, we stated: “The
user plans to buy a pressure cooker and is looking for product information.” We did not
say: “The user is looking for shopping results.”.

5.5.2 Verticals

We focused on a set of 13 verticals constructed using freely-available search APIs pro-
vided by eBay (shopping), Google (blogs, books, weather), Recipe Puppy (recipes), Yahoo!
(community Q&A, finance, images, local, maps, news), Twitter (micro-blogs), and YouTube
(video). Figure 5.5 shows a few examples. A screenshot of every vertical is given in
Appendix A.

Each vertical was associated with a unique presentation of results. For example, news
results were associated with the article title and url, the news source title and url, and
the article’s publication date. The news block also included an optional thumbnail image
associated with the top result. Shopping results were associated with the product name,
condition (e.g., new, used), and price, and also included an optional thumbnail image
associated with the top result. Local results were associated with the business name and
url, its address and telephone number, and the number of reviews associated with it, and
included a map. Each vertical was associated with a minimum and maximum number
of top results (e.g., 1-4) from which to construct a block.
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(a) books

(b) finance

(c) local

(d) video

Figure 5.5: Example vertical blocks.

5.5.3 Queries

Our evaluation was conducted on a set of 72 queries from two different sources: the
AOL query log and Google Trends. Google Trend queries cover recent events and topics
currently discussed in news articles, blogs, and on Twitter (e.g., “us open fight”). AOL
queries cover more persistent topics likely to be relevant to verticals such as local (e.g.,
“cheap hotels in anaheim ca”), recipe (e.g., “cooking ribs”), and weather (e.g., “marbella
weather”). Queries were selected manually in order to ensure coverage across our set of
13 verticals. The complete list of queries and descriptions is given in Appendix B.
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5.5.4 Empirical Metric Validation

The goal of our user study is to determine whether our metric (the K∗ distance between
σq and σ∗q ) agrees with user preferences. That is, whether presentations that are preferred
by human assessors are also judged superior by the metric. Assessors were shown pairs
of presentations side-by-side (along with the query and its description) and were asked
to state a preference (“left is better”, “right is better”). We assumed that assessors would
have difficulty deciding between two bad presentations. Therefore, to reduce the cogni-
tive load, we also gave assessors a “both are bad” option (as it turns out, however, this
option was seldom used). Our hypothesis is that, if one presentation is preferred over
the other, the metric will agree with the stated preference. In other words, the preferred
presentation will be closer to σ∗q in terms of K∗. Significance was tested using a sign test,
where the null hypothesis is that the metric selects the preferred presentation randomly
with uniform probability.

For this analysis, we also used Amazon’s Mechanical Turk, using trap HITs to de-
tect unreliable assessors. As before, assessors were compensated with US$ 0.01 per
judgement. Given that presentation-pair assessments require a greater effort than block-
pairs, presentation-pair assessments took much longer to be completed by AMT work-
ers. Block-pairs were assessed in a couple of days, while presentation-pairs in a couple of
weeks. A screenshot of our presentation-pair assessment interface is shown in Figure 5.6.

Conducting this analysis required a method for selecting pairs of presentations to
show assessors. One alternative is to sample pairs uniformly from the set of all presen-
tations. However, we were particularly interested in pairs of presentations from specific
regions of the metric space. For example, does the metric agree with user preferences
when one presentation is close to the reference (presumably high quality) and the other is
far (presumably low quality)? Does it agree when both are close to the reference or both
are far? To investigate these questions, we sampled presentation-pairs using a binning
approach.

For each query, we enumerated every possible presentation and divided these into
three bins: a presumably high-quality bin (H), a medium-quality bin (M), and a low-
quality bin (L). The binning was done based on the metric value. The metric distribution
is such that this produces bins where |H| < |M| < |L|. The H bin is the smallest and
contains those presentations that are nearest to σ∗q . The L bin is the largest and contains
those presentations that are furthest from σ∗q . For each query, we sampled 4 presentation-
pairs from each of the six bin-combinations (H-H, H-M, H-L, M-M, M-L, and L-L)
and collected 4 redundant judgements per presentation-pair. In total, this resulted in
1,728 presentation-pairs and 6,912 individual preference judgements.

5.6 Experimental Results

Our evaluation methodology is to collect preference judgements on block-pairs for a
given query, to use these to derive a reference block-ranking, and, finally, to evaluate
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Figure 5.6: Presentation-pair assessment interface. Two presentations are displayed ran-
domly side-by-side and the assessor is asked which they prefer: the left presentation, the
right presentation, or neither.

alternative block-rankings by measuring their distance to the reference. To validate this
methodology, we present a user study where we verify whether block-rankings that are
preferred by assessors are scored superior by the metric.

Before presenting our metric validation results (i.e., the level of agreement between
the metric and the preferred block-ranking), we present inter-assessor results (i.e., the
level of agreement between assessors). We collected two different types of judgements
from assessors: block-pair judgements (used to derive the reference presentation) and
presentation-pair judgements (used to validate the metric). Inter-assessor agreement
results on block-pairs are given in Section 5.6.1. Inter-assessor agreement results on pre-
sentation-pairs are given in Section 5.6.2. Finally, in Section 5.6.3, we present our metric-
validation results.

5.6.1 Assessor Agreement on Block-Pair Judgements

The total number of AMT workers who contributed block-pair assessments was 120. Of
these, 2 workers had their assessments removed due to failing more than 2 “traps”. For
the remaining 118/120, worker contribution followed a power-law distribution. That is,
about 20% of the workers (24/118) completed about 80% of all block-pair assessments
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(9,856/12,293) .
We report inter-annotator agreement in terms of Fleiss’ Kappa (κf) [37] and Cohen’s

Kappa (κc) [22], both which correct for agreement due to chance. Fleiss’ Kappa measures
the (chance-corrected) agreement between any pair of assessors over a set of triplets.
Cohen’s Kappa measures the (chance-corrected) agreement between a specific pair of
assessors over a common set of triplets. Compared to Cohen’s Kappa, Fleiss’ Kappa is
convenient because it ignores the identity of the assessor-pair. It is designed to measure
agreement over instances labeled by different (even disjoint) sets of assessors. However,
precisely because it ignores the identity of the assessor-pair, Fleiss’ Kappa is dominated
by the level of agreement between the most active assessors, which we know to be a
selected few (i.e., 20% of the workers completed 80% of the judgements). To compensate
for this, in addition reporting Fleiss’ Kappa, we report the Cohen’s Kappa agreement for
all assessors-pairs with at least 100 triplets in common.

The Fleiss’ Kappa agreement over all triplets was κf = 0.656, which is considered
substantial agreement based on Landis and Koch [65]. In terms of Cohen’s Kappa agree-
ment, there were 25 pairs of assessors with at least 100 triplets in common. Of these,
5 (20%) had moderate agreement (0.40 < κc ≤ 0.60), 16 (64%) had substantial agreement
(0.60 < κc ≤ 0.80), and the remaining 4 (16%) had perfect agreement (0.80 < κc ≤ 1.00).
Overall, assessor agreement on block-pairs was high. We interpret this as evidence that
assessors did not have difficulty providing preferences for pairs of Web and vertical
blocks.

In terms of sources of disagreement, a pair of assessors could disagree in two ways:
by having one assessor state a preference and the other state the opposite preference or by
having one state a preference and the other state that “both are bad”. We may view the
first type of disagreement as more severe—the assessors prefer the blocks in the opposite
order. To examine which type of disagreement was more common, we used a weighted
version of Cohen’s Kappa [23] and penalized the first type of disagreement more than the
second. This increased the Cohen’s Kappa agreement for 20/25 assessors with at least
100 common triplets. Therefore, when assessors disagreed, it was typically not because
they preferred the blocks in the opposite order, but rather because one assessor stated a
preference and the other stated “both are bad”.

5.6.2 Assessor Agreement on Presentation-Pair Judgements

Assessor agreement on presentation-pairs is given in Table 5.1. Overall, assessor agree-
ment on presentation-pairs was low (κf = 0.216), which is considered fair agreement [65].
It was significantly lower than assessor agreement on block-pairs. This may not be sur-
prising. Agreement on presentation-pairs requires that assessors agree on the relative
costs associated with different types of errors: false-positives (displaying a non-relevant
vertical), false-negatives (suppressing a relevant vertical), and ranking errors (displaying
a relevant vertical in the wrong position). The cost associated with each error type may
be highly user-specific. More than 4 judgements per presentation-pair may be required
to see greater convergence.

85



Although assessor agreement on presentation-pairs was low, a few trends are worth
noting. First, agreement was particularly low (nearly random) on H-H pairs (κf = 0.066).
This is because the H bin corresponds to those presentations closest to σ∗q based on K∗,
which focuses on discordant pairs within the top ranks. As it turns out, about half of all
H-H pairs had the same top-three blocks and all pairs had the same top-two blocks. The
low inter-assessor agreement may be explained by users primarily focusing on the top
results, perhaps rarely scrolling down to see the results below the “fold”. Alternatively,
it may be that assessors have a hard time distinguishing between good presentations.
Further experiments are required to determine the exact cause of disagreement.

Assessor agreement was the highest for H-M and H-L. This means that assessors
agreed more on pairs where one presentation was close the σ∗q (based on K∗) and the
other was far. Agreement was lower on M-M, M-L, and L-L pairs. We revisit these
points below.

bins κf

H-H 0.066
H-M 0.290
H-L 0.303

M-M 0.216
M-L 0.179
L-L 0.237

all 0.216

Table 5.1: The Fleiss’ Kappa agreement on presentation-pairs.

5.6.3 Metric Validation Results

Given the low level of inter-assessor agreement on presentation-pairs, rather than focus
on the metric’s agreement with each individual preference, we focus on the metric’s agree-
ment with a majority preference. We present results for two levels of majority preference:
a majority preference of 3/4 or greater and a perfect (4/4) majority preference. These
results are presented in Table 5.2. The “pairs” column shows the number of presenta-
tion pairs for which the level of majority preference was observed. The “% agreement”
column shows the percentage of these pairs for which the metric agreed with the ma-
jority preference. Notice that, across bin-combinations, column “pairs” correlates with
inter-assessor agreement (Table 5.1).

The metric’s agreement with the majority preference was 67% on pairs where at least
3/4 assessors preferred the same presentation and 73% on pairs where all (4/4) assessors
preferred the same presentation (both significant at the p < 0.005 level). Agreement with
each individual preference (not in Table 5.2) was 60% (also significant at the p < 0.005
level).
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majority
bins preference pairs % agreement

all 3/4 or greater 1151 67.07%"

H-H 3/4 or greater 164 60.37%"

H-M 3/4 or greater 210 81.90%"

H-L 3/4 or greater 204 84.31%"

M-M 3/4 or greater 184 57.61%#

M-L 3/4 or greater 187 50.80%
L-L 3/4 or greater 202 63.37%"

all 4/4 462 72.51%"

H-H 4/4 47 65.96%#

H-M 4/4 95 87.37%"

H-L 4/4 97 91.75%"

M-M 4/4 75 58.67%
M-L 4/4 71 54.93%
L-L 4/4 77 63.64%#

Table 5.2: Metric agreement with majority preference. Significance is denoted by # and
" at the p < 0.05 and p < 0.005 level, respectively.

Possibly the most important trend observed in these results is that the metric’s agree-
ment with the majority preference was higher on pairs where there was greater con-
sensus between assessors. Across all bin-combinations, the metric’s agreement with the
majority preference was higher on presentation-pairs that had a perfect (4/4) majority
preference than on pairs that had a (3/4) majority preference or greater. This is a posi-
tive result if we primarily care about pairs where one presentation was strongly (or even
unanimously) preferred over the other. This same trend can also be seen across bin-
combinations. The metric’s agreement with the majority was the highest on H-M and
H-L pairs (82-92%). These were also the bin-combinations with the highest inter-assessor
agreement (κf = 0.290 for H-M and κf = 0.303 for H-L).

The stronger agreement between the metric and the majority preference for H-M and
H-L pairs as well as the higher inter-assessor agreement also means that, on average, the
reference presentation σ∗q was good. Assessors strongly preferred presentations close to
σ∗q over presentations far from σ∗q in terms of K∗. The metric’s agreement on H-H pairs
(60-66%) was lower. However, as discussed above, these pairs were very similar in terms
of the top-ranked blocks and assessor agreement was also low.

Finally, the metric was less reliable for M-M, M-L, and L-L pairs. However, again,
inter-assessor agreement was also lower for pairs in these bin-combinations (κf = 0.216,
κf = 0.179, and κf = 0.237, respectively). Inter-assessor agreement (and the metric’s
agreement with the majority preference) was lower when neither presentation was close
to σ∗q .
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5.7 Discussion

We examined the queries for which the metric’s agreement with the majority preference
was the lowest. In some cases, assessors had a strong preference towards a particular ver-
tical, but only when seen in the context of a full presentation, not during the block-pair
assessment phase. For example, for the query “ihop nutritional facts”, assessors favored
presentations with images ranked high. For the query “nikon coolpix”, assessors favored
presentations with shopping ranked high. For the queries “san bruno fire”, “learn to play
the banjo”, “miss universe 2010”, and “us open fight”, assessors favored presentations
with video ranked high.

Compared to some of the other verticals, the images, shopping, and video verticals are
visually appealing (i.e., all include at least one thumbnail image). Prior research found
a click-through bias in favor of visually appealing verticals (e.g., video) [101]. It may be
that this type of bias affected assessors more on presentation-pairs (i.e., where the ver-
tical is embedded within less visually appealing results) than on block-pairs (where the
vertical is shown in isolation). If accounting for such a bias is desired, then future work
might consider incorporating more context into the block-pair assessment interface. For
example, one possibility would be to show presentation-pairs where the only difference
is that the vertical-pair is swapped, as in Figure 5.7. This block-pair assessment interface
would allow the direct comparison between two blocks and would present the blocks in
the context of other results.

maps block

vs.

w1 block

weather block

weather block

maps block

w1 block

Figure 5.7: Context-aware block-pair assessment interface.

One important component of this work was the use of Amazon’s Mechanical Turk
to obtain relevance judgements (pairwise preferences for block-pairs and presentation-
pairs). As previously noted, we found that worker participation tends to follow a power-
law: 20% of the assessors complete 80% of the assessments. At first, this may seem
undesirable. We may prefer greater diversity of opinion. This trend, however, has a
major benefit for doing quality control: 80% of the assessments are made by assessors
who contribute many assessments, and thereby provide enough evidence to assess their
reliability (for example, using traps). The difficulty, however, lies in determining the
reliability of the 20% produced by assessors who contribute only a few assessments.
Thus, one way to improve quality control might be to increase the barrier of entry for
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assessors, for example, using qualification tests. Assessors should be a given an incentive
to provide either no assessments or many.

Our formulation of the presentation task as block-ranking assumes a one-dimentional
presentation of Web and vertical results (e.g., Figure 5.1). This assumption is motivated
by prior research which suggests that users interact with vertical results more when
these are directly displayed within the Web results [100]. This is also the most common
presentation strategy used by commercial search providers (e.g., Bing, Google, Yahoo!).
While we assume a one-dimensional display, there are vertical presentation strategies
that are multi-dimensional. Yahoo!, for example, sometimes presents multiple verticals
horizontally using a tabbed display above the first Web result (e.g., Figure 5.8).

Our assumption of a one-dimensional display affects two different components in our
evaluation methodology. First, it affects how we derive the reference presentation. The
Schulze voting algorithm [85] is used to produce a ranking of blocks based on their num-
ber of pairwise defeats over other blocks. Under the assumption of a one-dimensional
display, there is a direct correspondence between the reference block-ranking and the ref-
erence presentation (thus, we refer to both as simply the reference). Our assumption, which
is common to most IR research, is that users scan results from top-to-bottom. Second,
it affects our evaluation metric. We use a variant of Kendall’s tau, which measures the
distance between pairs of (one-dimensional) rankings.

Extending our evaluation methodology to handle multi-dimensional displays would
require re-thinking both of these components. It may be possible, however, to continue
modeling the reference presentation as a ranking of blocks and to continue using a rank-
based metric to measure distance from the reference block-ranking. Extending the first
component (i.e., deriving the reference presentation) would require learning an indirect
correspondence between a reference block-ranking and how blocks should be arranged
in a multi-dimensional display. For example, in Figure 5.8, it may be that users typi-
cally examine results first from left-to-right and then from top-to-bottom (this a simple
scenario). If so, then this provides a recipe for arranging blocks given a reference block-
ranking. Extending the second component (i.e., measuring distance from the reference
block-ranking) would require learning the weights that users assign to different types of
discordant pairs. These weights would have to be a function of the multi-dimensional
template. For example, in Figure 5.8, it may be that horizontal discordant pairs are less
important than vertical discordant pairs. Then, it might be possible to incorporate these
weights into the generalized Kendall’s tau distance metric [64].

5.8 Summary

In this chapter, our objective was a methodology for evaluating the end-to-end output of
an aggregated search system. The general idea is to evaluate the quality of an arbitrary
presentation σq by measuring its distance (using K∗) to a reference presentation σ∗q . Our
method for deriving σ∗q focuses on preference judgements on block-pairs, where a block
is a sequence of Web or same-vertical results that must appear grouped together (verti-
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news

web

images video twitter

Figure 5.8: Example of a multi-dimensional vertical display. Given the query “michelle
obama”, Yahoo! presents news, images, video, and twitter within a horizontal tabbed
display. Other verticals can appear embedded within the Web results below.

cally or horizontally) in the final ranking. The proposed methodology has the following
advantages.

• It does not require a live system with (many) users.

• It is cost-effective. With fewer than about 400 judgements per query, we can evalu-
ate the quality of any presentation of results. Furthermore, we show that block-pair
judgements can be collected using a large pool of untrained and inexpensive asses-
sors.

• It is portable. The methodology facilitates the construction of a portable test collec-
tion: a set of queries with relevance judgements (on block-pairs). The methodology
is portable in the sense that these relevance judgements can be distributed across
researchers and used to directly compare systems.

• It is general. We used a particular interface for assessing block-pairs, a particular
voting method for deriving the reference, and a particular rank-similarity metric for
measuring distance from the reference. Future work may consider others.
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• It is grounded in assessor behavior. We empirically show that the metric correlates
with user preferences, especially on presentation-pairs where one presentation was
strongly preferred across multiple assessors.

Several open questions remain. Assessor agreement on presentation-pairs was low.
Further experiments are needed to understand why. It may be, for example, that users
assign a different cost to different types of errors (false positives, false negatives, ranking
errors). Also, in some cases, assessors favored a particular vertical only when seen within
the context of other results. There may be preferential biases that affect presentation-pair
judgements more than block-pair judgements. Accounting for these presentation-level
biases in the block-pair judgements may require re-thinking the block-pair assessment
interface.
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Vertical Results Presentation:
Approaches

Chapter 6

End-to-end aggregated web search requires not only deciding which verticals to are rele-
vant (vertical selection), but also deciding where in the Web results to present them (vertical
results presentation). If we assume that vertical results must be presented in specific posi-
tions relative to the Web results (i.e., above, below, and in between certain Web results),
then the vertical results presentation task can be cast as block-ranking. A block is defined
as a short sequence of Web or vertical results that must appear grouped together in the
output presentation. In the previous chapter, we presented an evaluation methodology
for block-ranking. Based on this methodology, the objective is to produce a block-ranking
σq that approximates a “gold-standard” or reference ranking σ∗q . A user study was con-
ducted to empirically verify that when assessors prefer one block-ranking over another,
the preferred block-ranking is closer (in terms of a rank-based distance metric) to σ∗q .
This methodology facilitates not only evaluation, but also model learning. A set of la-
beled queries (each with a known σ∗q ) can be used to train a model to produce output that
approximates σ∗q . In this Chapter, we develop supervised approaches to block-ranking.

Casting block-ranking as a supervised machine learning problem has two major chal-
lenges. First, different verticals focus on different types of media (e.g., news, images,
videos) and serve different types of search goals (e.g., search for local businesses, items
for sale, weather information). Therefore, results from different verticals are associated
with different types of meta-data, which are likely to influence their relevance to a query.
For example, news results are associated with a publication date, local results are asso-
ciated with a geographical location, and community Q&A results are associated with a
number of suggested answers. If we want to use these meta-data as features, then block-
ranking requires approaches that can handle an inconsistent feature representation across
blocks from different verticals. Secondly, even if a feature is common to multiple verti-
cals, it may not be equally predictive. For example, the number of results retrieved by
the vertical search engine may be predictive for news. However, this type of information
is meaningless for a vertical that retrieves at most a single result, such as weather. Alter-
natively, a feature may be predictive for different verticals, but in the opposite direction.
For example, the query-term “pics” may be positive evidence for images, but negative
evidence for shopping. Likewise, a city name in the query may be positive evidence for
local, but negative evidence for finance. Thus, block-ranking may require approaches that
can exploit a vertical-specific predictive relationship between features and relevance. We
evaluate methods that address both challenges in different ways.
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Consistent with our work on vertical selection (Chapters 3 and 4), we evaluate ap-
proaches that rank blocks as a function of a set of features. To this end, we exploit various
types of features, including, for example, properties of the query, vertical-specific click-
through data, and the text-similarity between the query and the results presented in
the block. We partition features into two general classes: pre-retrieval and post-retrieval
features. During vertical results presentation, we assume that the system has already
issued the query to each vertical, or at least to those predicted relevant during vertical
selection. Thus, post-retrieval features can be derived directly from the vertical results.
We investigate the cost-benefit of post-retrieval features. Are they useful for predicting
where a vertical should be presented? Can they also be used to re-evaluate vertical se-
lection decisions in light of the vertical results? Answering these questions affects, for
example, whether the end-to-end system should issue the query to as many verticals as
possible (or to those which post-retrieval features help the most), or whether it should
cache post-retrieval features for future impressions of the query.

6.1 Formal Task Definition

The goal of block ranking is to produce a ranking of Web and vertical blocks in response
to a query. A block is defined as a short sequence of Web or same-vertical results that must
be grouped together—vertically (e.g., blogs, news) or horizontally (e.g., images, video)—in
the output presentation.

Let Bq denote the set of blocks associated with query q. Consistent with the set of
layout constraints given in Section 5.2, set Bq will include: all three Web blocks w1−3, one
block for each vertical that retrieves results, and the imaginary “end of search results”
block, denoted by eos (explained below).

Let σ∗q denote the gold-standard or reference block-ranking. σ∗q is assumed to be the
optimal ordering of Bq for query q. Formally, the objective of block ranking is to predict
a block-ranking σq that approximates σ∗q . The quality of the approximation can be mea-
sured using a rank-based distance metric, such as Kendall’s tau. In our experiments, we
measure the quality of σq using the generalized Kendall’s tau distance between σq and σ∗q ,
denoted as K∗(σq, σ∗q ). Generalized Kendall’s tau punishes ranking mistakes at the top
of σq more severely than at the bottom [64].

The imaginary eos block is used to mark the end of the visible results. Let σq(i) denote
the rank of block i in σq. Blocks ranked above eos are considered to be displayed to the
user and those ranked below eos are considered to be suppressed. Because the ranking
of blocks below rank σq(eos) is inconsequential to the user (i.e., it is not observed), for
the purpose of comparing σq with σ∗q , all blocks ranked below eos in σq are considered
tied at rank σq(eos) + 1.

Aggregated web search involves predicting which verticals are likely to be relevant
(vertical selection) and predicting where to present them, or whether to suppress them,
for example, in light of their results (vertical results presentation). In this chapter, we
focus on vertical results presentation. In order to separate vertical selection performance
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from our evaluation, we assume that the query is issued to every available vertical. That
is, Bq will include one vertical block for every vertical that retrieves results.

6.2 Related Work

Most previous research on vertical results presentation assumes at most a single rele-
vant vertical and a fixed presentation template. As previously mentioned in Section 3.7,
König et al. [63] and Diaz [28] focused on predicting whether to present news results
above the Web results (also known as slot 0) or not at all. In this chapter, we consider po-
tentially multiple verticals simultaneously and cast the problem as block-ranking rather
than assume a pre-specified slot for the vertical results.

Ponnuswami et al. [77, 78] is the only published research that considers potentially
multiple verticals at different positions. More specifically, this work considered three
slotting positions: top (above the Web results), middle (between Web results 3-4), and
bottom (below the last Web result). Their proposed framework combines vertical-specific
binary classifiers as follows. During the training phase, each classifier is trained to pre-
dict whether its vertical should be presented in the top slotting position. Ponnuswami
et al. [78] show that training data for such a binary classifier can be generated from im-
plicit user feedback—by presenting random presentations to users and observing clicks
and skips. Then, at test time, first an upstream vertical selection component predicts
which verticals to present (in any of the three slotting position). Then, each classifier de-
scribed above is used to predict whether its vertical (if selected) should be presented in
the top slotting position. Finally, using two threshold parameters, each selected vertical
is assigned to the top, middle, or bottom position based on its classifier’s prediction con-
fidence value. As previously mentioned, one challenge in vertical results presentation
is that different verticals may be associated with different types of predictive evidence.
Ponnuswami et al. [78] addressed this challenge by learning a different binary classifier
per vertical. Thus, each classifier can use a different set of features. The underlying
assumption is that confidence values from these different binary classifiers are directly
comparable. We make a similar assumption in our work on vertical selection (Chap-
ter 3) and in this chapter evaluate a similar classification framework for vertical results
presentation.

The work above casts vertical results presentation as a classification task. Addition-
ally, in this chapter, we investigate whether it can also be cast as a learning-to-rank task.
In machine learning, learning-to-rank (LTR) algorithms learn to order items as a function
of a set of features. In document ranking, features may be derived from the query (e.g.,
whether the query contains a domain name [56]), the document (e.g., the URL’s PageR-
ank [80]), and the query-document pair (e.g., the document’s BM25 score [80]). Exist-
ing LTR methods can be classified into three types. Point-wise methods (e.g., Gradient
Boosted Decision Trees [38]) learn to predict a document’s relevance grade independent
of other documents. Pair-wise methods (e.g., RankSVM [56]) learn to predict whether
one document is more relevant than another. List-wise methods (e.g., AdaRank [114]) di-
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rectly optimize an IR evaluation measure such as NDCG, which considers the quality of
the ranking as a whole. In addition to document-ranking, LTR methods have been suc-
cessfully applied to other tasks, such as ranking alternative language translations [31],
ranking related news stories [71], and ranking 3D protein structures for a given amino
acid sequence [32]. No prior work, however, has applied LTR methods to the task of
ranking blocks of Web and vertical results.

6.3 Features

We propose machine learning approaches that rank blocks as a function of a set of fea-
tures. To this end, we use various types of features which we believe are predictive of a
particular block’s relevance to a query. These features can be divided into two general
classes.

1. Pre-retrieval features can be generated before the query is issued to the Web or ver-
tical search engine. These features include, for example, the topic of the query
or whether the query contains a particular named-entity type (e.g., the name of a
person, product, or location). Pre-retrieval features are independent of the block.

2. Post-retrieval features must be generated after the query is issued to the Web or
vertical search engine. These features include, for example, the total number results
retrieved by the block’s search engine or the average text-similarity between the
query and the results presented in the block.

The goal of vertical selection (Chapters 3 and 4) is to predict which verticals (if any)
are likely to have relevant content. Thus, vertical selection uses only pre-retrieval fea-
tures. In vertical results presentation, however, our assumption is that query has already
been issued to those verticals selected. Therefore, the system also has access to post-
retrieval features.

We investigate the importance of post-retrieval features. Are they useful for block-
ranking? If so, are they predictive for some verticals more than others? As previously
stated, the vertical results presentation task includes deciding which selected verticals to
present (rank above eos in σq) and which to suppress (rank below eos in σq). Are post-
retrieval features useful for predicting which selected verticals to present/suppress in
light of their results? Next, we motivate and describe each feature. A summary of our
features is presented in Section 6.3.3.

6.3.1 Pre-retrieval Features

Pre-retrieval features can be generated before the query is issued to any search engine.
Thus, pre-retrieval features are independent of the block under consideration.
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Named-Entity Type Features

These binary features correspond to named-entity types possibly appearing in the query.
Queries were automatically annotated using the BBN IdentiFinder named-entity tag-
ger [8]. Named-entity features include location (possibly predictive for local, maps, and
weather), product (possibly predictive for shopping), person (possibly predictive for news
and images), and organization (possibly predictive for finance). In total, we focused on 24
named-entity types. Each binary feature equals 1 if the named-entity type appears at
least once in the query and 0 otherwise.

Category Features

Some verticals may be topically focused. Thus, knowing the general topic of the query
may help in block ranking. We focused on 30 topical categories, derived as follows.
First, we selected 150 categories from the Open Directory Project (ODP) hierarchy and
crawled Web documents associated with these ODP nodes. Then, in order to reduce the
number of category features, these 150 categories were clustered into 30 clusters. Cluster-
ing was done using complete-link agglomerative clustering [72]. The distance between
ODP categories was computed using the symmetric Kullback-Leibler divergence [53]
between category language models. We used unigram language models with add-one
smoothing to avoid zero probabilities. Let θi denote the language model associated with
cluster/category i. We set the ith category feature for query q according to,

catq(i) =
1
Z ∏

w∈q
P(w|θi),

where Z normalizes across clusters/categories.

Click-through Features

User clicks are often viewed as surrogates for relevance. The queries associated with
clicks on a particular document convey the types of information needs the document
satisfies. Likewise, the queries associated with clicks on vertical results convey the types
of information needs the vertical satisfies. Our click-through features harness this type
of evidence by considering the similarity between the query and those associated with
clicks on vertical content (or content very similar to the vertical’s).

Click-through data was derived from the AOL query-log. We derived one click-
through feature per vertical as follows. First, for each vertical, we manually selected a
set of Web domains which we believe have content closely related to the vertical. The
vertical-to-domain mapping is given in Table 6.1. Then, we constructed vertical-specific
(unigram) language models using all queries (allowing duplicates) associated with click-
events on the vertical’s corresponding domains. Finally, given a query, we generate one
feature per vertical based on the query generation probability given the vertical’s query-
based language model. Given query q, we set the click-through feature for vertical i
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according to,

clickq(i) =
1
Z ∏

w∈q
P(w|θi),

where Z normalizes across verticals.

Vertical-Intent Features

Users often express vertical-intent explicitly using keywords such as “news” (for the news
vertical), “pics” (for the images vertical) or “buy” (for the shopping vertical). The goal of
our explicit vertical-intent features is to determine vertical relevance based on how often
the query co-occurs with keywords used in explicit requests for the vertical. For example,
given the query “britney spears”, we may predict that images is relevant because users
often issue the query “britney spears pics”. Co-occurrence statistics were derived from
the AOL query-log.

Vertical-intent features were generated as follows. First, we manually associate each
vertical with a small set of keywords which we believe are often used in explicit re-
quests for the vertical. For example, the images vertical was associated with “picture(s)”,
“photo(s)”, “pic(s)”, and “image(s)”. The complete vertical-to-keyword-set mapping is
given in Table 6.2. Then, to measure the affinity between the query and a particular
vertical, we use the chi-squared statistic to measure the lack of independence between
two events: the occurrence of the query in the AOL query-log and the occurrence of
any of the vertical’s vertical-intent keywords. To reduce sparsity (particularly for long
queries), we compute the chi-squared statistic for each query-term individually and use
the geometric average. The geometric average (rather than the arithmetic average) was
used to favor queries with terms that consistently co-occur with keywords used in explicit
requests for the vertical.

6.3.2 Post-retrieval Features

Post-retrieval features must be generated after the query is issued to the Web or vertical
search engine. Because they are generated from the vertical (or Web) search engine
results, different block-types are associated with a different set of post-retrieval features,
though some features are common to multiple block-types.

Hit Count Features

This feature considers the number of results retrieved from the Web or vertical search
engine. For some verticals, an abundance of query-related content in the index may be
predictive of its relevance. This may be true, for example, for news, where the rate of
content production may correlate with the rate of content demand. However, we do not
expect this feature to be useful for every vertical. For example, the number of retrieved
results contributes no useful information for verticals that retrieved at most a single result
(finance, maps, and weather).
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vertical urls
blogs blogger.com

wordpress.org
typepad.com
qawker.com
ibiblio.org
blogspot.com

books *books.com
community Q&A answers.yahoo.com

howstuffworks.com
finance finance.yahoo.com

hoovers.com
images picasa.google.com

flickr.com
local local.yahoo.com

yellowpages.com
citysearch.com

maps maps.google.com
maps.yahoo.com
mapquest.com

news news.yahoo.com
nytimes.com
wsj.com
cnn.com
foxnews.com
ap.org
cbsnews.com

recipes allrecipes.com
cooks.com
foodnetwork.com
*recipe.com

shopping craigslist.com
target.com
ebay.com
walmart.com
shopping.yahoo.com
amazon.com
sears.com
overstock.com

video *videos.com
youtube.com
video.google.com
movies.yahoo.com

weather weather.com
weather.yahoo.com

Table 6.1: Vertical-to-URL mapping. URLs correspond to either the actual vertical (e.g.,
the shopping vertical was constructed using the eBay search API) or content related to
the vertical (e.g., http://www.cooks.com contains recipes and is thus related to the recipe
vertical). A * denotes a “wildcard” operation.98



vertical keyword set
blogs blog(s)

books book(s)
community Q&A how, when, where, who, why, what

finance stock(s)
images picture(s), photo(s), pic(s), image(s)

local city name
maps map(s)
news news

recipes recipe(s)
shopping shop, shopping, buy, sale(s), product(s), review(s), price(s)

video video(s)
weather weather, forecast

Table 6.2: Vertical-to-keyword mapping.

Temporal Features

Some verticals may be highly time sensitive. Prior work, for example, shows that recency
is important in news search [28]. Temporal information was available for four verticals:
news, blogs, community Q&A, and twitter. Our assumption is that, for these verticals,
users care primarily about recent results. If this is true, then the average age of results
presented in the block should affect its relevance. Temporal features are generated as
follows. For each individual vertical result, we measure the elapsed time (in hours)
between the current and created date/time. We included four features for each time-
sensitive vertical: the minimum, maximum, mean, and standard deviation of the elapsed
time across results within the block.

Text-Similarity Features

The goal of these features is to characterize the text-similarity between the query and the
results presented in the block. The challenge in deriving text-similarity features is that
results from different sources (i.e., results from the Web search engine and from different
verticals) are associated with different sets of textual representations. For example, each
Web result is associated with three representations: a title, URL, and summary snippet.
Each community Q&A result is associated with two representations: a question and an
optional “best answer”. Each weather result is associated with a single representation:
the location, which we define as the concatenation of the city, state, and country of the
weather forecast. The complete set of representations associated with each block-type is
given in Table 6.3.

Text-similarity features are generated for a query-block pair in two steps. In the first
step, for each result within the block, we measure the text similarity between the query
and each representation associated with the result. We use four different text-similarity
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measures: (1) the cosine similarity between the query and the representation, (2) the
maximum number of query-terms appearing consecutively in the representation, (3) the
percentage of query-terms appearing in the representation, and (4) the percentage of
the representation-terms corresponding to a query-term. Similar text-similarity features
were used in prior learning-to-rank research (for document ranking) [56, 70].1

The second step depends on whether the block-type is associated with a single result
per block (e.g., weather, finance, and maps) or multiple results per block (e.g., news, local,
and shopping). For block-types with a single result, we simply include our four similarity
measures for each of its text representations. For block-types with multiple results, for
each query-representation similarity measure, we use the minimum, maximum, mean,
and the standard deviation across results within the block.

block-type representations
blogs url, title

books title, author(s)
community Q&A question, best answer, subject

finance company
images url, title

local url, title, location
maps location
news url, title, summary snippet, news source

recipes url, title
shopping url, title

twitter tweet
video title

weather location
web url, title, summary snippet

Table 6.3: Block-types along with their textual representations.

6.3.3 Summary of Features

Table 6.4 provides a summary of our features and the block-types for which each feature
group is available. Pre-retrieval features are independent of the block. Thus, every block-
type is associated with the same set of 80 pre-retrieval features: 24 named-entity type
features, 30 category features, 13 click-through features, and 13 vertical intent features.
Notice that we added all 13 click-through features (one per vertical) and all 13 vertical
intent features (one per vertical) to every block’s feature representation, irrespective of

1In previous chapters, we use KL-divergence (KLD) to measure text-similarity. Here, we use the cosine
distance for the following reason. KLD requires smoothing both language models to avoid zero probabilities.
Both queries and our representations are terse (most terms occur once or zero times). Therefore, smoothing
would significantly change their language models. The cosine similarity does not require smoothing. The
query and the representation can be completely disjoint.
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its type. Click-through features were not generated for Web blocks w1−3. A language
model derived from queries with clicks on Web content would simply look like a back-
ground language model. Likewise, vertical-intent features were not generated for Web
blocks w1−3. Because Web results are always presented by default, users typically do not
explicitly request Web content using query keywords.

Post-retrieval features, as opposed to pre-retrieval features, are derived from the Web
or vertical search engine results or directly from those results presented in the block.
Therefore, different types of blocks are associated with a different set of post-retrieval
features. Some post-retrieval features are available for multiple block-types (e.g., query-
summary text-similarity features are available for news and w1−3). Others, however, are
available for a single type of block (e.g., query-tweet similarity features are available
only for twitter). Table 6.4 presents the number of features that each group contributes
for each block-type and the total feature count.

6.4 Block-Ranking Approaches

As previously mentioned, casting block-ranking as a supervised machine learning prob-
lem is associated with two main challenges. First, different types of blocks are associated
with different features. Second, even when a feature is common to multiple block-types,
it may have a type-specific relationship with relevance. We propose three general ap-
proaches which address both challenges in different ways.

6.4.1 Classification Approach

Our classification framework takes the form of n independent binary classifiers (one per
vertical). We choose to use logistic regression due to its prediction accuracy and training
speed on large-scale classification tasks [68].

Each binary classifier is trained to predict whether a particular vertical should be pre-
sented (ranked above eos) or suppressed (ranked below eos). While training the classifier
for vertical v, a query is considered a positive instance if v is ranked above eos in the
reference ranking σ∗q and a negative instance otherwise. To compensate for class imbal-
ance (verticals are more often suppressed), each positive training instance is weighted
according to the number of negative instances in the training set and vice-versa.

The classification approach produces a block-ranking by assigning vertical blocks to
slots. Consistent with our layout constraints, we assume four vertical slotting positions
relative to the Web results: slot s1 (above w1), slot s2 (between w1 and w2), slot s3 (between
w2 and w3), and slot s4 (between w3 and eos). In the output ranking, a slot may contain
zero or more vertical blocks.

The classification approach combines all n vertical-specific binary classifiers as fol-
lows. First, the query, represented as a vector of features, is submitted to each candidate
vertical’s classifier. Each classifier outputs a prediction probability that its vertical should
be presented (i.e., ranked above eos in the predicted ranking σq). Let P(σq(v) < σq(eos))
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denote the prediction probability that v should be presented. Then, as shown in Fig-
ure 6.1, each candidate vertical is assigned to a slot (or is suppressed) using four thresh-
old parameters τ1−4. Vertical v is assigned to slot x if P

(
σq(v) < σq(eos)

)
≥ τy ∀ x ≤ y. In

other words, vertical v is assigned to the highest slot for which v’s prediction probability
is greater than or equal to all thresholds below it. At this point, vertical blocks assigned
to the same slot are tied. Finally, ties are broken by ordering vertical blocks within the
same slot by descending order of prediction probability. This approach focuses on as-
signing verticals to slots. It might not, however, do a good job in ordering vertical blocks
within a slot.

s1

s2

s3

s4

w1

w2

w3

τ1

τ2

τ3

τ4

eos

Figure 6.1: Vertical slotting positions. The classification approach predicts an output
presentation by assigning verticals to slots s1−4 using threshold parameters τ1−4. Ties
(i.e., verticals assigned to the same slot) are broken using the prediction probability.

The classification approach addresses the two challenges mentioned above by training
a different binary classifier per vertical. Each classifier adopts its own feature represen-
tation, which is unique to the vertical, and learns a vertical-specific relationship between
features and block relevance.

6.4.2 Voting Approach

In the classification approach, each independent binary classifier is trained to predict
whether a particular vertical should be presented or suppressed. Our voting approach
also combines independent binary classifiers. However, these are trained to make more
fine-grained predictions. Independent binary classifiers are trained to predict the relative
ordering between pairs of blocks of a particular type. Each classifier is trained to predict
whether block i (of a particular type) should be ranked above or below block j (of another
particular type) for a given query.

The voting approach uses one binary classifier per block-type pair. Given n verticals
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and m non-vertical block-types, the total number of classifiers is given by (n+m
2 )− (m

2 ).
The second term accounts for the fact that Web results are always presented and always
ranked in their original order (i.e., σq(w1) < σq(w2) < σq(w3) < σq(eos)). Thus, it is not
required to learn a classifier to determine the relative ordering between pairs of non-
vertical blocks. In our case, n = 13 and m = 4, which results in 130 independent binary
classifiers. The large number of binary classifiers used by this method may be viewed as
a disadvantage. Later, we describe one way to reduce this number.

The training phase proceeds as follows. Recall that Bq denotes the set of block asso-
ciated with query q and includes one block per candidate vertical, all three Web blocks
(w1−3), and the eos block. While training a classifier specific to a block-type pair, the
query is considered a positive or negative instance depending on the pair’s relative rank.
Certain block-type pairs occur more frequently in one order versus the other. Therefore,
to correct for class imbalance, each positive training instance is weighted according to
the number of negative instances in the training set and vice-versa.

To predict a block-ranking for query q, first, every block-pair i, j ∈ Bq is submitted
to the appropriate classifier, depending on the type of i and the type of j. Let P(σq(i) <
σq(j)) denote the prediction probability that i should be ranked above j. This probability
can be treated as a preference score between i and j. The voting approach produces the
output block-ranking σq by combining these preference scores as input to the Schulze
voting method [85].

As in the classification approach, each binary classifier is associated with a unique
feature representation. More specifically, each classifier is associated with three sets
of features: one set of pre-retrieval features, which are independent of the block-types
under consideration, and two separate sets of post-retrieval features (one set specific to
each type in the block-type-pair).

The voting approach addresses both challenges mentioned above (block-type-specific
features and a potentially different predictive relationship across types) by training a
different binary classifier per block-type pair. Each classifier adopts its own feature
representation and learns a predictive relationship that is specific to the block-type-pair.

One limitation of this configuration is the large number of independent binary clas-
sifiers. An alternative to learning one model per block-type pair is to learn one model
per vertical/non-vertical block-type pair. This results in four models per vertical: three
which predict the vertical’s relevance compared to each Web block (w1−3) and one which
predicts its relevance compared to eos (i.e., it predicts whether to display/suppress the
vertical). As before, given a query, every block-pair i, j ∈ Bq, where one is a vertical- and
the other a non-vertical block, is submitted to the appropriate classifier. Then, the output
prediction probabilities are combined as the input to the Schulze voting method in order
to derive σq.

6.4.3 Learning to Rank Approaches

Block-ranking can also be cast as a learning-to-rank (LTR) problem. Many different
LTR methods have been proposed. In this work, we adopt a pairwise learning to rank
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approach. Pairwise approaches optimize over the set of pairwise preferences implicit in
the training data. More specifically, we adopt a method that solves the classic RankSVM
optimization problem, first proposed by Joachims [56].

RankSVM learns a linear model fw parameterized by feature weight vector w. Let
φ(i, q) denote a feature generating function that outputs a feature vector for the block i
and query q. At test time, given q, the predicted score for block i is given by fw(i, q) =
〈w, φ(i, q)〉. Finally, the output ranking σq is inferred by sorted score.

In contrast with the previous two approaches, casting block-ranking as an LTR prob-
lem requires training a single model fw to predict a block’s rank irrespective of its type.
In our situation, this is problematic because different block-types are associated with dif-
ferent features and those that are common to multiple block-types may be predictive for
some types more than others, or predictive in the opposite direction. Next, we propose
three LTR variants which address these challenges in different ways. Each variant makes
a different assumption about how features may be correlated with block relevance across
different block-types.

Equally Correlated Features

One alternative is to assume that each feature is equally predictive of block relevance
(in the same direction) independent of the block-type. The feature representation is as
follows. Pre-retrieval features are independent of the block. This model uses a single
copy of each pre-retrieval feature. Post-retrieval features are block-specific (i.e., they are
generated directly from the block or the block’s search engine results). Similar to pre-
retrieval features, this approach also uses a single copy of each post-retrieval feature. If a
block is not associated with a particular post-retrieval feature, then the feature is zeroed-
out in that instance. Consider, for example, our post-retrieval features which determine
the text-similarity between the query and the summary snippets presented in the block.
These features are only associated with news and Web blocks w1−3. Therefore, if the
block is not one of these types, all these features are zeroed-out.

This approach assumes that features are equally correlated with relevance irrespec-
tive of the block-type. Once trained, model fw will apply the same weight to a feature
independent of the instance’s block-type. We denote this LTR variant as LTR-G because
it assumes a vertical-general relationship between features and relevance.

Uniquely Correlated Features

This approach makes the opposite assumption as the previous one. It assumes that
every feature—whether it is a pre- or post-retrieval feature—is uniquely correlated with
relevance across different block-types. The feature representation is as follows. We make
a separate, block-type-specific copy of each feature. So, for example, given 17 block-types
(13 verticals + 3 Web blocks and the eos block), we make 17 copies of each pre-retrieval
feature (one per block-type). Given an instance, all copies are zeroed-out except for those
corresponding to the instance’s block-type. For post-retrieval features, we make one copy
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per block-type for which the feature is available. Consider, for example, our temporal
features, which are available for blocks from blogs, community Q&A, news, and twitter.
We make 4 copies of each temporal feature.

This approach assumes that features are correlated differently with relevance de-
pending on the block-type. Once trained, model fw will apply a different weight to a
feature, depending on the instance’s block-type. While this added flexibility may be ad-
vantageous, the increased number of features may introduce predictive noise and result
in overfitting. Thus, this LTR variant may require more training data than LTR-G. We de-
note this LTR variant as LTR-S because it assumes a vertical-specific relationship between
features and relevance.

Equally and Uniquely Correlated Features

The previous two approaches make opposite assumptions: features are either equally
correlated or uniquely correlated with relevance for different block-types. A third alter-
native is to make neither assumption a priori, but to give the algorithm the freedom to
exploit both types of relationships using training data.

For this approach, we maintain a single copy of each pre- and post-retrieval fea-
ture which is shared across all block-types. As before, if an instance’s block-type is not
associated with a shared feature, the feature is zeroed-out for that instance. In addi-
tion to these shared features, we make one block-type-specific copy of each pre- and
post-retrieval feature. Given an instance, all copies corresponding to types other than
the instance’s block-type are zeroed-out. The canonical feature representation for this
approach is the union of features used by the previous two approaches.

This approach makes no assumption about how a feature is correlated with relevance
across block-types. If a feature is equally correlated across block-types, then the algo-
rithm has the flexibility of exploiting this relationship by assigning a large (positive or
negative) weight to the version of the feature which is shared across types. Alternatively,
if a feature is correlated differently for different block-types, then the algorithm can ex-
ploit a type-specific relationship by assigning a large positive weight to some copies of
the feature and a large negative weight to others. We denote this LTR variant as LTR-GS
because it has the flexibility of learning a vertical-specific and vertical-general relation-
ship for every feature. Of all three LTR variants, LTR-GS is associated with the largest
number of features and may therefore need to most training data to avoid overfitting.

6.5 Methods and Materials

We train algorithms to predict a block-ranking σq that approximates the reference block-
ranking σ∗q and compare methods based on the quality of their approximation on pre-
viously unseen queries. More specifically, we evaluate each predicted block-ranking σq

based on its generalized Kendall’s tau distance to the reference σ∗q .
Evaluation was conducted using 10-fold cross-validation. Unless otherwise stated,
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statistical significance is tested using a one-tailed paired t-test (at the p < 0.05 level) by
comparing performance across test queries (i.e., the concatenation of all 10 test-folds).
We evaluate block-ranking performance using a set of 13 verticals and 1070 queries.

6.5.1 Verticals and Queries

We focused on the same set of 13 verticals used in Chapter 5, which were constructed
using freely available APIs from eBay (shopping), Google (blogs, books, weather), Recipe
Puppy (recipes), Yahoo! (community Q&A, finance, images, local, maps, news), Twitter (micro-
blogs), and YouTube (video).

A set of queries for model learning and evaluation was collected using sampling.
Different situations call for different methods for query sampling. In our case, we are
interested not only in performance across queries, but also across verticals. Queries were
sampled from two different sources: the AOL query-log and Google Trends.2 The AOL
query-log contains about 20M queries issued to the AOL search engine over a period
of three months in 2006. Being from 2006, AOL queries may not cover current topics
for which verticals like news and twitter are relevant. For this reason, we also sampled
queries from Google Trends. Google Trends provides the 20 most popular queries issued
to the Google Web portal in the last hour (after removing spam queries) and also provides
daily aggregates, which are available for dates in the past.

A total of 1,070 queries were sampled in two phases. During the first phase, 500
queries were sampled uniformly at random from the AOL query log (rejecting dupli-
cates). As it turns out, after collecting assessments for these queries, only 43 had at
least one vertical displayed (i.e., ranked above eos) in σ∗q . In other words, for these 500
queries, assessors had a strong preference towards Web results. Thus, during the second
phase, the sampling was biased in favor of queries with at least one relevant vertical (and
potentially multiple).

Our biased sampling approach proceeds as follows. Let P(v|q) denote the relevance
of vertical v to query q and let Q denote the set of all queries. To ensure coverage across
all verticals, first, a vertical v is selected in a round-robin fashion. Then, a query is
sampled from Q according to,

P(v|q)
∑q∈Q P(v|q)

We now describe how to we estimate P(v|q) without using human judgements. In
order to guide users towards more successful searches, commercial search provides often
suggest queries that are related to the current search. In some cases, the set of recom-
mended queries provides evidence that a particular vertical is relevant to the query. For
example, as shown in Figure 6.2, given the query “pittsburgh”, Bing recommends the
query “pittsburth photos”. This recommended query suggests that users who issue the
query “pittsburgh” often want to see image results.

2http://www.google.com/trends
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Figure 6.2: Given the query “pittsburgh”, a search engine recommends a set of related
queries (red, dashed box). The related query “pittsburgh photos” (blue, solid box) sug-
gests that users who issue the query “pittsburgh” often want to see photos (i.e., it sug-
gests that the images vertical is relevant).

Each vertical was associated with a set of keywords believed to be used in explicit
requests for the vertical. Let Tv denote the set of keywords associated with v and let Qs

q
denote the set of queries suggested by Bing in response to q. P(v|q) was approximated
according to,

P(v|q) ≈ 1
|Qs

q|
∑

q′∈Qs
q

I(|q′ ∩ Tv| > 0)

where q′ ∩ Tv denotes the intersection between terms in q′ and Tv. Queries were sampled
from a large set of queries: 20K queries sampled uniformly from the AOL query-log, all
Google Trends daily aggregates from a year preceding the second round of assessments,
and all Google Trends queries (scraped hourly) from 3 days preceding the second round
of assessments.

6.5.2 Block-Pair Preference Assessment

As described in Section 5.4, given q, the reference presentation σ∗q is derived from human
preference judgements on block-pairs. More specifically, it is derived from preference
judgements on all block pairs i, j ∈ Bq. These preference judgements, denoted by πq, are
the raw input to the Schulze voting method, which produces σ∗q . A block-pair judgment
is defined by a triplet (q, i, j).
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As in Chapter 5, block-pair judgments were collected using Amazon’s Mechanical
Turk (AMT). Assessors were compensated with US$ 0.01 per block-pair. The block-pair
assessment interface was similar to the one used in our user study, with three main
differences. First, rather than include a single block-pair assessment per HIT (Human
Intelligence Task) we included five block-pair assessments per HIT and priced HITs at
US$ 0.05.3 Second, assessors were not given a topic description for the query. Instead,
they were instructed to interpret results based on their best guess of the hypothetical
user’s intent. We purposely omitted topic descriptions in order to model query ambi-
guity and diversity in the aggregated results. That is, we want query ambiguity to be
reflected in the vertical’s presented in σ∗q . We expected, however, that omitting the topic
description would reduce inter-assessor agreement, particularly for queries without a
obvious relevant vertical. Third, in order to annotate more queries, we collected 3 re-
dundant judgements per triple (q, i, j) instead of 4. Let πq(i, j) denote the strength with
which block i is preferred over j given q. We set π(i, j) equal to the number of assessors
who prefer i over j given q. π(eos, i) was set equal to the number of assessors who stated
that i is bad in conjunction with another block j.

To do quality control, 10% of all block-pair assessments were traps. In a trap assess-
ment, the assessor is given a triplet (q, i, j), but either block i or j is taken from a query
other than q. If the assessor selects the extraneous block as the preferred block, we con-
sider it a failed trap. Assessors who failed more than 2 traps had all their judgements
removed from the pool and resubmited to AMT.

Block-Pair Assessment Results

Because we collected redundant block-pair judgements, we can measure inter-assessor
agreement. Inter-assessor agreement in terms of Fleiss’ Kappa was κf = 0.524, which is
considered moderate agreement based on Landis and Koch [65]. We interpret this level
of agreement high enough to suggest that assessors did not find the assessment task or
the interface confusing. Agreement on this round of assessments, however, was lower
than in Chapter 5.4 (κf = 0.656). There may be two reasons for this. First, queries were
sampled automatically, whereas in Chapter 5 they were selected manually. It may be that
these manually selected queries had a more obvious relevant vertical, which resulted in
higher agreement. On this round of assessments, agreement on the 500 queries that were
sampled uniformly from the AOL query log was κf = 0.502. Agreement on the 570
queries that were sampled using biased sampling was κf = 0.546. Thus, agreement is
higher when the query is biased towards at least one vertical. Secondly, assessors were
not given topic descriptions, and, therefore, may have adopted different interpretations
for the same query.

3In addition to compensating assessors for their work, using AMT requires paying Amazon a 10%
commission, with a minimum commission fee of $ 0.001. Thus, pricing HITs at US$ 0.01 results in paying
Amazon a 50% rather than a 10% commission per HIT.
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6.5.3 Modeling Bias Towards Vertical Results

In certain scenarios, one may prefer a system that is biased towards vertical results. In
other words, the aggregated web search provider may want to tune the system so that it
more frequently presents vertical results and/or presents them higher in the output pre-
sentation (i.e., ranks them higher in σq). This may occur, for example, if the search com-
pany has contractual obligations with vertical providers or advertisers (prior research
shows that such contractual obligations occur [78]).

Vertical bias can be modeled in our evaluation framework using vertical pseudo-votes,
a parameter p in the range [0, ∞]. As previously noted, πq(i, j) corresponds to the number
of assessors who prefer i over j given q. A vertical bias can be introduced by incrementing
this value by some number of pseudo-votes p, but only if i corresponds to a vertical block.
If i and j correspond to blocks from different verticals, this method increments both
πq(i, j) and πq(j, i) by an equal number of pseudo-votes. This has the effect that, after
producing σ∗q using the Schulze voting method, vertical results are ranked higher in σ∗q .
However, the ranking of verticals relative to each other is unchanged. Modeling vertical
bias using vertical pseudo-votes changes σ∗q and, therefore, changes model learning and
evaluation. Rather than select a single pseudo-vote parameter p, we learn and evaluate
models across several values of p (i.e., p = {0, 1, 2, 3, 4, 5}). Table 6.5 presents the number
of queries for which a type of block was presented within the top 3 ranks of σ∗q for
different values of p. Across values of p, the verticals ranked higher in σ∗q were video,
local, news, blogs, and community Q&A. This is consistent with prior work that found a
bias in favor of video [101].

Given no vertical bias (p = 0), only 190/1070 (18%) queries had at least one vertical
presented in σ∗q (i.e., ranked above eos). This number may seem low. Bing, for exam-
ple, presents at least one vertical for 652/1070 (61%) of our queries. There are several
possible explanations for this difference. Commercial search providers often use implicit
feedback (i.e., clicks and skips) as features or targets for prediction [28, 78]. Gathering
this feedback data requires presenting a vertical more often than it is relevant. Addi-
tionally, as explained above, commercial search providers may have strong insentives to
show verticals often. These may include contractual obligations with advertisers (who
advertise in the vertical) and alleviating traffic from the Web search engine. Finally,
presenting verticals is a type of diversification in light of query ambiguity. We might
have observed more verticals presented if we would have collected a greater number of
redundant preference judgements per block-pair.

6.5.4 Evaluation Metric

Given query q, the objective in block-ranking is to produce a ranking of blocks σq that
approximates the reference ranking σ∗q . Thus, our primary evaluation metric is the Gen-
eralized Kendall’s tau distance between the predicted block-ranking σq and the reference
block-ranking σ∗q , denoted as K∗(σ∗q , σq) [64].

Generalized Kendall’s tau is closely related to Kendall’s tau (K), which measures the
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pseudo-votes p
block-type 0 1 2 3 4 5

blogs 5 13 38 80 139 193
book 0 1 3 6 12 23

community Q&A 4 10 26 52 80 115
finance 5 8 11 14 16 20
image 5 10 19 39 61 83

local 10 17 24 32 46 60
map 1 3 5 8 12 15

news 8 26 53 86 105 123
recipe 1 3 7 16 22 32

shopping 4 8 18 33 40 66
twitter 0 0 0 2 5 12
video 21 44 100 208 286 360

weather 6 11 12 13 14 14
w1 1070 1070 1066 1045 1013 947
w2 1067 1059 1027 940 852 749
w3 1003 927 801 636 507 398

any vertical 67 143 269 434 563 672

Table 6.5: Number of queries (out of 1070) in which each block-type was presented
within the top 3 ranks of σ∗q as a function of pseudo-votes.

number of discordant pairs between two rankings of the same set of elements,

K(σ∗, σ) = ∑
σ∗(i)<σ∗(j)

[σ(i) > σ(j)],

where σ(i) denotes the rank of element i in σ. For our purposes (i.e., to measure the dis-
tance between σq and σ∗q ), Kendall’s tau has a major limitation: it considers all discordant
pairs equally important. However, in aggregated web search users typically scan results
from top to bottom. Thus, discordant pairs at the top of the ranking should be more
influential. Generalized Kendall’s tau (K∗) accounts for positional information using el-
ement weights. Let δ denote the cost of an adjacent swap. In traditional Kendall’s tau,
δ = 1, irrespective of rank. Adjacent swaps are treated equally regardless of rank. Let δr

denote the cost of an adjacent swap between elements at rank r− 1 and r. As suggested
by Kumar and Vassilvitskii [64], adjacent swaps at the top of the ranking can be made
more influential by using the following DCG-like cost function,

δr =
1

log(r)
+

1
log(r + 1)

defined for 2 ≤ r ≤ n. Given rankings σ∗ and σ, element i’s displacement weight
p̄i(σ∗, σ) is given by the average cost (in terms of adjacent swaps) it incurs in moving
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from rank σ∗q (i) to rank σq(i),

p̄i(σ∗, σ) =





1 if σ∗(i) = σ(i)
pσ∗(i)−pσ(i)
σ(i)∗−σ(i) otherwise

,

where pr = ∑r
2 δr. The K∗ distance is then given by,

K∗(σ∗, σ) = ∑
σ∗(i)<σ∗(j)

p̄i(σ∗, σ) p̄j(σ∗, σ)[σ(i) > σ(j)].

A discordant pair’s contribution to the metric is equal to the product of the two element
weights.

In Chapter 5, we present a user study that shows that when assessors strongly prefer
one block-ranking over another, the metric judges the preferred ranking as superior.

In its current form, K∗ has two limitations: lower is better, which is uncommon for
evaluation metrics, and its range is query-dependent—-its highest value is a function of
the number of blocks associated with the query. Since we are interested in average perfor-
mance across queries, the metric’s range should be query-independent. Both limitations
can be addressed by scaling K∗ to the range [−1, +1] according to,

K∗scaled(σ∗, σ) =
K∗¬(σ∗, σ)− K∗(σ∗, σ)
K∗¬(σ∗, σ) + K∗(σ∗, σ)

where,
K∗¬(σ∗, σ) = ∑

σ∗(i)<σ∗(j)
p̄i(σ∗, σ) p̄j(σ∗, σ)[σ(i) < σ(j)].

This normalization is analogous to the normalized form of regular Kendall’s tau,

K(σ∗, σ) =
C− D
C + D

,

where C is the number of concordant pairs and D is the number of discordant pairs and
C + D is the total number of pairs. From hereon, we refer to K∗scaled simply as K∗.

6.5.5 Implementation Details

Classification and Voting Approaches

The classification framework requires tuning threshold parameters τ1−4, which are used
to slot verticals based on each classifier’s prediction confidence value. In addition to
these parameters, logistic regression requires tuning cost factor C, which determines the
cost of misclassifying a training set instance. Instead of using a single held-out validation
set, these 5 parameters were tuned using 10-fold cross-validation. More specifically,
they were tuned for each train/test pair individually by doing a second level of 10-fold
cross-validation on each primary fold’s training set. An exhaustive search was used to
find the parameter values with the best average performance across secondary train/test
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pairs. We did not tune parameter C for each vertical individually as doing so would
have resulted in an intractable number of parameter settings. The voting approach also
uses logistic regression models: one per block-type-pair. The C parameter was tuned
as described above (i.e., not individually for each block-type pair). In both approaches,
models were trained using the LibLinear toolkit.4

Learning-to-Rank Approaches

As shown in Table 6.5, most queries have Web blocks w1−3 ranked high and verticals
ranked low (or suppressed). This is a problem if during training the LTR model learns
that the best alternative is to present w1−3 and suppress all verticals. In the classification
and voting approach, we balanced the training data using instance weighting. That is,
more weight was allocated to training instances from the minority class. Casting block-
ranking as a learning-to-rank problem may also require some form of instance weighting.

Our approach to instance weighting is as follows. Let σw
q denote a block-ranking

which presents Web blocks w1−3 in their original order and suppresses all verticals.
Given a training query q, −K∗(σ∗q , σw

q ), which is in the range [−1, +1], measures the
distance between σ∗q and σw

q . If −K∗(σ∗q , σw
q ) is close to +1, it means that σ∗q has verticals

presented in the top ranks. If −K∗(σ∗q , σw
q ) is close to −1, it means that σ∗q has Web blocks

w1−3 presented in the top ranks and verticals presented in the low ranks or suppressed.
Our approach to instance weighting is to replicate queries in the training set proportional
to this distance. This has the effect that queries which deviate from σw

q are oversampled.
The amount of replication is controlled using parameter α. First, we scale −K∗(σ∗q , σw

q )
to zero min and unit max (using queries from the training set). Then, we multiply this
value by α. Given training query q, the number of additional copies of q in the training
set is given by −αK∗min-max(σ∗q , σw

q ). Note that when α = 0, no additional copies of q are
added to the training set. We evaluate the effect of parameter α in Section 6.7.1.

In addition to parameter α, RankSVM has a regularization parameter λ. Both param-
eters were tuned using two levels of 10-fold cross-validation. An exhaustive search was
used to find the parameter values with the best average performance across secondary
train/test pairs. We trained LTR models using the sofia-ml toolkit.5

6.6 Experimental Results

We evaluate three general approaches to block-ranking: the classification approach, the
voting approach, and the LTR approach. One limitation of the voting approach is that
it requires a large number of independent binary classifiers. To address this limitation,
we propose a second version of the voting approach that trains a binary classifier only
for block-type-pairs where one type corresponds to a vertical block-type and the other
corresponds to a non-vertical block-type. Both are included in this evaluation. We also

4http://www.csie.ntu.edu.tw/cjlin/liblinear/
5http://code.google.com/p/sofia-ml/
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include all three variants of the LTR approach, with parameter α tuned using cross-
validation.

Results in terms of average K∗(σ∗q , σq) are presented in Table 6.10. As mentioned,
pseudo-vote parameter p controls for vertical bias. The higher its value, the greater the
bias towards verticals ranked high. Rather than choose a single parameter p, results are
presented for p = {0, 1, 2, 3, 4, 5}. When p = 0, the σ∗q ’s used for training and evaluation
have no vertical bias. The second row in Table 6.10 (WEB) corresponds to a degenerate
baseline that suppresses all vertical results and simply presents w1−3 above eos in their
original order.

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
WEB 0.982! 0.959!∨ 0.896$∨ 0.773$#∨ 0.656$#∨ 0.520$#∨

classification!$ 0.950#∨ 0.943#∨ 0.924" 0.878" 0.824"∧ 0.775"∧

voting (all pairs)"# 0.984! 0.960!∨ 0.898$∨ 0.830$∨ 0.744$∨ 0.734$∨

voting (only v-w pairs) 0.980!# 0.956!#∨ 0.898$∨ 0.822$∨ 0.760$"∨ 0.734$

LTR-G ∧∨ 0.980! 0.967!" 0.932" 0.871" 0.798$" 0.754$"

LTR-S 0.986!∧ 0.970!" 0.937!" 0.883"∧ 0.838!"∧ 0.792!"∧

LTR-GS 0.986!∧ 0.973!"∧ 0.936!" 0.882"∧ 0.843!"∧ 0.795!"∧

Table 6.6: Block-ranking results in terms of average K∗(σ∗q , σq). Statistical significance was
tested using a one-tailed paired t-test, comparing performance across pairs of queries. A
!($) denotes significantly better(worse) performance compared to the classification ap-
proach, a "(#) denotes significantly better(worse) performance compared to the voting
(all pairs) approach, and a ∧(∨) denotes significantly better(worse) performance com-
pared to the LTR-G approach.

Table 6.10 shows several meaningful trends. Performance for all methods decreases
with greater values of p (this was expected for WEB). One possible reason is the following.
As p increases, the number of queries with top-ranked verticals increases. This means
that the room for error also increases. When p is low, ranking w1−3 above all verticals is
a reliable and effective strategy.

When p = 0, WEB performs well. This is not surprising given that 94% of all queries
(1003/1070) had Web blocks w1−3 in the top-three ranks of σ∗q (see Table 6.5). In fact,
the only two approaches that significantly outperform WEB when p = 0 are LTR-S and
LTR-GS. Significance with respect to WEB is not shown in Table 6.10. For values of p ≥ 3,
all block-ranking approaches significantly outperform WEB. Thus, given a vertical bias,
any of the three general block-ranking approaches is better than presenting only Web
results.

Both voting approaches perform similar to each other. This is interesting because the
second version (which learns one binary classifier per vertical/non-vertical block-type)
uses many fewer binary classifiers than the first (which learns one classifier per block-
type). The performance for both voting approaches, however, deteriorates for p ≥ 2.

The classification approach does surprisingly well considering that it uses a just one
binary classifier per vertical. Its performance is competitive across all values of p, show-
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ing that it can be effectively trained to fit different degrees of vertical bias.
Comparing among the three LTR variants, performance is significantly worse for

LTR-G. It never performs better and often performs significantly worse than both LTR-S
and LTR-GS, particularly for values of p ≥ 3. For values of p ≥ 4, LTR-G performs
significantly worse than the classification approach. The improvement of LTR-S and
LTR-GS over LTR-G reveals the importance of exploiting vertical-specific evidence. Im-
posing the constraint that features must be similarly correlated with relevance across
different block-types degrades performance. LTR-G and LTR-S perform better by giving
the learning algorithm the flexibility to exploit a block-type-specific relationship between
features and block relevance.

Compared to the classification approach, LTR-S and LTR-GS both perform better. The
improvement is significant for all values of p, except p = 3, where all three perform
at the same level. We view this as a positive result in favor of casting block-ranking
as a learning-to-rank task. In contrast with the classification approach, both of these
LTR variants perform better and require training only a single model (rather than one
per vertical). Relative to each other, LTR-S and LTR-GS are statistically indistinguishable
across all values of p (statistical significance not shown in Table 6.10). We provide an
explanation for this in Section 6.7.3.

6.7 Discussion

Several questions remain. Our results show that casting block-ranking as a learning-to-
rank problem is a good idea. In addition to allowing the model to learn a vertical-specific
relationship between features and relevance, we argue that instance weighting during
LTR training is also important. In Section 6.7.1, we test the importance of parameter α

on LTR performance.
Our approach is to rank blocks as a function of a set of features. Different features

have a different cost. For example, post-retrieval features require issuing the query to
the vertical search engine. Thus, we want to know each feature group’s contribution to
overall performance (Section 6.7.2) as well as performance for each vertical (Section 6.7.3).

Making a block-type-specific copy of each feature (as in the LTR-S and LTR-GS ap-
proaches) is one way to allow an LTR model to learn a block-type specific relationship
between features and relevance. In Section 6.7.4, we evaluate a second alternative, which
is to include features that identify the block-type and use a learning algorithm that can
exploit feature interactions.

In Section 5.6, we found that our metric’s ability to predict the preferred block-
ranking is the highest (in the 80-90% range) when one block-ranking is close to σ∗q (i.e.,
in the H bin) and the other is far from σ∗q (i.e., in the M or L bin). Taking a highly
conservative view of the metric, we might consider two alternative presentations indis-
tinguishable to users if they fall under bin-combinations other than H-M and H-L. In
Section 6.7.5, we compare the voting, classification, and LTR methods under this conser-
vative assumption.
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6.7.1 Effect of Parameter α on LTR variants

The goal of parameter α is to focus LTR training on those queries that have verticals
ranked high. Given enough evidence in favor of a particular vertical, we want to the LTR
model to overcome the prior probability that the vertical is ranked low. Our method for
instance weighting is to replicate queries in the training set proportional to the K∗ dis-
tance between the reference block-ranking σ∗q and one that presents w1−3 and suppresses
all verticals. Parameter α controls the amount of replication.

We are interested in the effect of parameter α on performance. Each LTR variant is
evaluated under two conditions. In the first condition, α = 0, which corresponds to no
replication—each training query q appears just once in the training set. In the second
condition, α is tuned by sweeping across α = {0, 10, 25, 50}. Notice that when α is tuned,
α = 0 (no replication) is also a parameter choice. The results with α tuned are identical
to those in Table 6.10.

Table 6.7 presents results (in terms of average K(σ∗q , σq)) for all three LTR variants
under these two conditions. As a second point of reference, we also present results for
the classification approach.

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
classification 0.950 0.943 0.924 0.878 0.824 0.775
LTR-G, α = 0 0.983! 0.967! 0.923 0.839$ 0.775$ 0.701$

LTR-S, α = 0 0.986! 0.966! 0.928 0.863$ 0.798$ 0.723$

LTR-GS, α = 0 0.986! 0.967! 0.940! 0.870 0.812 0.743$

LTR-G, α tuned 0.980#! 0.967! 0.932" 0.871" 0.798"$ 0.754"$

LTR-S, α tuned 0.986! 0.970! 0.937"! 0.883" 0.838"! 0.792"!

LTR-GS, α tuned 0.986! 0.973"! 0.936! 0.882" 0.843"! 0.795"!

Table 6.7: Block-ranking results in terms of K(σ∗q , σq). A "(#) denotes a significant
improvement(drop) in performance for an LTR variant with α tuned compared to its
counterpart for which α is forced to zero. A !($) denotes significantly better(worse)
performance compared to the classification approach.

Before comparing LTR variants across both conditions, it should be noted that the
relative performance between LTR variants when α = 0 (rows 3-5) is consistent with their
relative performance when α is tuned (rows 6-8). That is, LTR-S and LTR-GS outperform
LTR-G and their improvement increases with p. Due to their superior performance, we
focus the discussion on LTR-S and LTR-GS. For both approaches, tuning α (vs. setting it to
zero) has either no effect or significantly improves performance. For p ≥ 4, setting α = 0
degrades performance even compared to the classification approach. Thus, casting block-
ranking as a learning-to-rank task requires not only providing the learning algorithm the
flexibility to exploit a block-type-specific predictive relationship between features and
relevance, it also requires re-weighting training-phase instances in order to overcome the
prior probability that verticals are ranked low.
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6.7.2 Feature Contribution to Overall Performance

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
all feats. 0.950 0.943 0.924 0.878 0.824 0.775

no ne type 0.952 (0.29%) 0.946 (0.23%) 0.920 (-0.47%) 0.877 (-0.17%) 0.826 (0.14%) 0.778 (0.49%)
no category 0.953 (0.38%) 0.944 (0.02%) 0.916 (-0.83%)# 0.889 (1.21%)" 0.827 (0.28%) 0.775 (0.03%)

no click 0.946 (-0.42%) 0.940 (-0.40%) 0.908 (-1.71%)# 0.863 (-1.69%)# 0.808 (-1.97%)# 0.759 (-2.05%)#

no vert. int. 0.949 (-0.06%) 0.939 (-0.44%) 0.914 (-1.15%)# 0.879 (0.12%) 0.824 (0.00%) 0.768 (-0.87%)
no hit count 0.952 (0.28%) 0.946 (0.22%) 0.920 (-0.51%) 0.875 (-0.41%) 0.826 (0.24%) 0.785 (1.32%)
no location 0.949 (-0.06%) 0.940 (-0.33%) 0.921 (-0.31%) 0.877 (-0.16%) 0.826 (0.23%) 0.775 (0.08%)

no temporal 0.948 (-0.19%) 0.950 (0.66%)" 0.924 (0.02%) 0.880 (0.22%) 0.822 (-0.24%) 0.774 (-0.02%)
no text-sim. 0.947 (-0.28%) 0.945 (0.17%) 0.915 (-0.94%)# 0.868 (-1.14%)# 0.805 (-2.34%)# 0.744 (-3.97%)#

no post-ret. 0.949 (-0.10%) 0.942 (-0.19%) 0.916 (-0.86%)# 0.864 (-1.62%)# 0.805 (-2.29%)# 0.748 (-3.44%)#

(a) classification approach

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
all feats. 0.986 0.970 0.937 0.883 0.838 0.792

no ne type 0.986 (-0.02%) 0.970 (0.05%) 0.938 (0.19%) 0.888 (0.57%) 0.835 (-0.42%) 0.802 (1.28%)
no category 0.985 (-0.10%) 0.970 (-0.03%) 0.940 (0.31%) 0.879 (-0.46%) 0.835 (-0.35%) 0.794 (0.21%)

no click 0.985 (-0.04%) 0.970 (0.00%) 0.939 (0.26%) 0.877 (-0.67%) 0.836 (-0.20%) 0.791 (-0.13%)
no vert. int. 0.986 (-0.03%) 0.973 (0.33%)" 0.938 (0.12%) 0.886 (0.31%) 0.839 (0.16%) 0.797 (0.60%)
no hit count 0.984 (-0.15%) 0.970 (-0.01%) 0.934 (-0.26%) 0.887 (0.41%) 0.834 (-0.45%) 0.790 (-0.23%)
no location 0.986 (-0.01%) 0.971 (0.13%) 0.938 (0.12%) 0.885 (0.15%) 0.833 (-0.65%) 0.805 (1.61%)"

no temporal 0.986 (0.01%) 0.970 (0.04%) 0.937 (0.05%) 0.884 (0.13%) 0.837 (-0.10%) 0.797 (0.65%)
no text-sim. 0.985 (-0.09%) 0.970 (0.04%) 0.933 (-0.41%) 0.874 (-1.04%) 0.816 (-2.60%)# 0.765 (-3.44%)#

no post-ret. 0.986 (-0.02%) 0.968 (-0.18%) 0.937 (0.08%) 0.863 (-2.29%)# 0.813 (-2.95%)# 0.762 (-3.79%)#

(b) LTR-S

Table 6.8: Feature ablation results for the classification approach and the LTR-S approach.
A "(#) denotes a significant improvement(drop) in performance compared to the model
with access to all features.

A feature ablation study was conducted to test each feature group’s contribution to
overall performance, measured in terms of average K(σ∗q , σq). The analysis is conducted
for both the classification and the LTR-S approach because these were the two general
approaches that performed the best in Section 6.6. Each feature group was individually
omitted and this model was compared to a model with access to all features. Because
features may be correlated, a non-significant drop in performance does not necessarily
mean that the feature group contributes no useful information.

Results are presented in Table 6.8 for the classification approach and the LTR-S ap-
proach. The top four feature groups are pre-retrieval features. The next four features are
post-retrieval features. The last row corresponds to a model that ignores all post-retrieval
features.

Table 6.8 shows several interesting results. The LTR-S approach appears to be slightly
more robust to missing features. One possible reason is the following. The classification
approach trains one independent binary classifier per vertical. The LTR-S approach, on
the other hand, trains a single model. It may be that training a single model allows
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the LTR-S approach to better shift its focus towards block-types for which it is more
confident.

The features with the greatest drop in performance (at least for p ≥ 4) are text-
similarity features, which are a type of post-retrieval feature. This shows the importance
of deriving evidence directly from those results presented in the block. Also, it suggests
the importance of issuing the query to as many vertical search engines as possible (in
order to derive this type of evidence) or caching these post-retrieval features for future
impressions of the query. Text-similarity features may have contributed the most to
performance because many of the block-types often ranked high in σ∗q were associated
with text-rich information. These included Web blocks w1−3, news, blogs, and community
Q&A.

Finally, omitting most feature groups did not result in a significant drop in perfor-
mance. There may be two reasons for this. First, features may be correlated. Second,
most verticals are rarely ranked high in σ∗q . It may be that some features are highly
predictive for these minority verticals, but this may not have a noticeable effect on the
average K∗(σ∗q , σq). We explore this further in the next section by using a different metric
to measure per-vertical performance.

6.7.3 Feature Contribution to Per-Vertical Performance

Evaluating a feature’s contribution to a particular vertical is not trivial. Suppose, for
example, that we omit temporal features and want to evaluate the effect on the news
vertical. One possibility might be to compare the news vertical’s predicted rank and its
ideal rank across a set of queries. However, omitting temporal features may affect other
verticals as well. And, if so, then ranking mistakes for those verticals would displace
news from its ideal rank.

For this reason, we focus our analysis on the classification approach, which trains one
binary classifier per vertical. Each vertical-specific classifier is trained to predict whether
the vertical should be displayed (ranked above eos) or suppressed (ranked below eos)
in σq. Performance for a particular vertical is evaluated by considering the quality of
confidence values produced by the vertical’s corresponding classifier. Let Qv denote the
queries for which v is a candidate vertical. We evaluate the quality of confidence values
output from v’s classifier by computing the average precision (AP) metric on a ranking
of Qv (ranked in descending order of confidence value that v should be presented). In
computing AP, a ranked query q is considered “relevant” if σ∗q (v) < σ∗q (eos) and “non-
relevant” otherwise. Results are presented in Table 6.9. We limit our discussion to the
case where p = 5 because it is associated with verticals ranked higher in σ∗q .

Table 6.9 shows several noteworthy trends. First, performance across verticals varied
widely (see row “all features”). The best-performing verticals were weather (AP=0.938),
finance (AP=0.638), and news (AP=0.594). Interestingly, both weather and finance were mi-
nority verticals. Both were presented (i.e., ranked above eos in σ∗q ) for only 14 and 21
queries, respectively. In spite of having few positive instances for training, performance
for both these verticals was good. As it turns out, weather was easy because every query
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for which it was presented had the query term “weather” (e.g., “weather louisville ky”).
This explains why the most predictive feature for weather was the click-through feature
(i.e., the query’s similarity to those with clicks on weather-related content, many which
contain “weather”). Similarly, finance was easy because 10/21 queries for which it was
presented had the query term “stock(s)” (e.g., “boeing stock”). In other words, perfor-
mance for weather and finance was high because their queries often had explicit vertical
intent, which is easy to detect.

It is interesting that news was among the best performing verticals. This result is
inconsistent with our vertical selection results in Chapter 3 (see Table 3.5). The most
useful features for news were text-similarity features, which are a type of post-retrieval
feature. Thus, while it is difficult to detect that a query is newsworthy using only pre-
retrieval evidence (as in Chapter 3), useful evidence can be harnessed by issuing the
query to the news vertical.

The worst performing verticals were twitter (AP=0.053), books (AP=0.088), and com-
munity Q&A (AP=0.284). Both twitter and books were minority verticals, while community
Q&A was fairly common. Predicting twitter may require predicting that the query is
about a trending topic, which we did not explicitly address. Many queries for which
twitter was presented were sampled from Google Trends, however, we purposely did
not use this information as evidence. Predicting books and community Q&A seems diffi-
cult. Queries for which these verticals were relevant had no clear pattern. For books, for
example, some queries had the keyword “book” (e.g., “books on giraffes”), some corre-
sponded to a book title (e.g., “lolita”), some corresponded to an author name (e.g., “dr.
phil”), and, finally, others corresponded to encyclopedic information needs (e.g., “wed-
ding cake ideas”, “why don’t babies sleep at night”, “perennials”). Community Q&A
queries showed a similar pattern. This may explain why text-similarity features were
the only ones to significantly improve performance for both. In the absence of a clearly
predictive query-pattern, it seems useful to derive evidence directly from the block.

Features contributed to performance differently for different verticals. For example,
vertical intent features, which exploit vertical-related keywords, were predictive for maps.
Many queries for which maps was relevant had the keyword “map(s)”. Similarly, vertical-
intent features were predictive for images because many queries for which images was
relevant had the keywords “photo(s)”, “pic(s)”, and “picture(s)”. Category features were
predictive for shopping because one of our category clusters was related to the shopping
ODP node.

Different features also hurt performance for different verticals. For example, named-
entity type features hurt performance for books and news. Category features hurt perfor-
mance for community Q&A, finance, news, and recipe. Click-through features hurt perfor-
mance for communtiy Q&A and news.

The only features that did not significantly hurt performance for any vertical were
text-similarity features. In the previous section, text-similarity features had the greatest
contribution to overall performance. In this analysis, text-similarity features were the
most consistently predictive for different verticals.
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To summarize, this analysis reveals several important results. First, as might be ex-
pected, some verticals are more difficult than others. This is consistent with results
presented in Chapters 3 and 4. Second, different features were predictive for different
verticals. This may suggest why LTR-S and LTR-GS perform at the same level. Because
most features help some verticals and hurt others, there is little to be gained from learn-
ing a vertical-general relationship between features and relevance. Finally, text-similarity
features did not hurt performance for any vertical and improved performance for sev-
eral. For some verticals, the improvement from including text-similarity features was
substantial (an 86% imporovement for news).6 Therefore, in practice, it may be worth de-
termining which verticals gain the most from text-similarity evidence. Then, the vertical
selection component can be tuned so that those verticals are selected more often.

6.7.4 LTR Model with Cross-Product Features

The success of LTR-S and LTR-GS over LTR-G reveals that an LTR approach to block-
ranking requires allowing the model the flexibility to exploit a block-type-specific rela-
tionship between features and block relevance. With a linear ranker (i.e., RankSVM), one
solution is to make a block-type-specific copy of each feature. A second potential alter-
native is to use an LTR model that can exploit feature interactions that somehow convey
block-type information. In this section, we investigate the performance of a RankSVM
model with a full cross-product feature representation. We denote this LTR variant as
LTR-C.

The input feature representation for LTR-C is identical to the one used by LTR-G.
Internally, however, LTR-C learns on all conjunctions of two features. As with all our
LTR variants, the set of features input to LTR-C include 17 binary features which serve
to identify the block-type (recall that we have 17 block-types: 13 verticals, 3 Web blocks,
and the eos block). In this respect, the set of features used internally in LTR-C can be
viewed a superset of those used by LTR-S—the feature representation adopted by LTR-S
corresponds to the set of two-feature conjunctions that include one of these 17 block-
type-identifying features.

One might expect LTR-C to perform well because it has access to the same feature
representation as LTR-S as well as other types of feature interactions. On the other hand,
however, the (internal) feature representation is the largest of all LTR variants, which
may lead to over-fitting (considering our small amount of training data).

Table 6.10 shows performance for the LTR-C model (in terms of average K∗-distance to
the reference) compared to LTR-G and LTR-S. LTR-C performs essentially at the same level
as LTR-G (it performs significantly better for p = 4). LTR-C performs significantly worse
than LTR-S. There may be two reasons for this. First, it may be that the only two-feature
conjunctions modeled by LTR-C that are useful are those that are modeled by LTR-S (the
rest may be simply introducing noise). Second, it may be necessary to model interactions

6Table 6.9 shows a 45.26% decrease in performance from omitting text-similarity features. This corre-
sponds to a 85.63% improvement from including them.
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more complex than conjunctions. Gradient Boosted Decision Trees [38], used in Chap-
ter 4, may be one alternative to model more complex interactions. Further experiments
are needed to determine why LTR-C does not perform better.

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
LTR-S 0.986 0.970 0.937 0.883 0.838 0.792
LTR-G 0.980 0.967 0.932 0.871 0.798 0.754
LTR-C 0.981$ 0.966$ 0.938 0.869$ 0.814$" 0.760$

Table 6.10: Block-ranking performance in terms of average K∗(σ∗q , σq). Statistical signifi-
cance was tested using a one-tailed paired t-test, comparing performance across pairs of
queries. A !($) denotes significantly better(worse) for LTR-C vs. LTR-S. A "(#) denotes
significantly better(worse) performance for LTR-C vs. LTR-G.

6.7.5 Binning Analysis

Our main evaluation metric is the K∗-distance between the predicted block-ranking σq

and the reference block-ranking σ∗q . In Chapter 5, we tested this metric’s agreement
with user preferences on pairs of alternative block-rankings. We found that the metric’s
agreement with the assessors’ majority preference is high (in the 80-90% range) when
one block-ranking is close to σ∗q (i.e., in the H bin) and the other is far from σ∗q (i.e.,
in the M or L bin). Conversely, the metric’s agreement is low (in the 50-65% range)
when both block-rankings are close to σ∗q or both are far from σ∗q (see Table 5.2). As
might be expected, inter-assessor agreement followed a similar trend (see Table 5.1). One
might interpret these results by concluding that presentation pairs which fall under bin-
combinations other than H-M and H-L are indistinguishable to users—they are either
both equally good or both bad enough that their difference does not matter. In this
section, we compare approaches under this assumption.

To conduct this analysis, we take the following approach. We binarize the metric
value (i.e., K∗-distance) to equal ‘1’ if the predicted block-ranking σq is in the H bin and
‘0’ otherwise. Note that if we average this binary variable across queries, it corresponds
to the average number of queries for which the approach predicts a block-ranking in
the H bin. To compare approaches against each other, we use a one-tailed paired t-test
(paired on queries) on this binary metric. The null hypothesis is that both approaches
predict block-rankings that are indistinguishable (i.e., both block-rankings correspond to
a ‘1’ or both correspond to a ‘0’). Given a query, one approach will outperform another
only if it predicts a block-ranking in the H bin (i.e., outputs a ‘1’) and the other predicts
one in the M or L bin (i.e., outputs a ‘0’).

Our results are given in Table 6.11 for the voting approach, the classification ap-
proach, and the LTR-G and LTR-S LTR variants. We present results for different values
of pseudo-votes p. The table should be read as follows. Column ‘avg’ gives the aver-
age number of queries for which the approach predicts a block-ranking in the H bin.
Subsequent columns give the significance test results. Cell cij corresponds to the p-value
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associated with the test that the approach in row i outperforms that in column j. A ‘–’ is
inserted if i does not outperform j.

Tables 6.11 present several noteworthy results. In general, the trends are the same as
in Section 6.6. All approaches perform worse as p increases. As we argued previously,
this is probably because as p increases there is more room for error (i.e., simply present-
ing w1−3 in the top ranks becomes less effective). LTR-S performs either at the same level
or better than the voting and classification approaches. Furthermore, it performs equal
to or better than LTR-G, which reaffirms that casting block-ranking as a learning-to-rank
task requires learning a type-specific relationship between features and block relevance.

One difference in this analysis is that LTR-S and LTR-G perform at the same level
when p = 0 (no vertical bias). In Section 6.6 LTR-S significantly outperforms LTR-G.
When p = 0, both approaches are equal if we consider only those block-rankings that
are likely to be noticeably better. This result, combined with the fact that LTR-S and
LTR-G diverge with greater values of p (observed here and in Section 6.6), shows that
LTR-S’s advantage over LTR-G comes from being able to rank verticals more effectively.

In summary, our most robust solution, LTR-S, performs relatively well when p ≤ 3.
Performance for LTR-S (and all other approaches) drops as we increase the bias in favor
of vertical results (e.g., when p = 5). There are several possible reasons for this. It may
be that more training data is necessary to learn how to rank verticals more effectively.
It may also be that when p = 5, the noise-to-signal ratio is too high. As we introduce a
greater bias, we deviate more from the choices made by our assessors. Future extensions
of this work should consider these possibilities. Additionally, the proposed approaches
may be improved by considering different types of evidence or by exploiting predictive
relationships between different verticals.

6.8 Summary

In this chapter, we proposed and evaluated three general machine learning approaches
to block-ranking—ordering blocks of Web and vertical results in response to a query. The
block-ranking task is associated with two main challenges. First, blocks from different
verticals have a unique feature representation. Second, similar features may be correlated
with relevance differently for different verticals. Our three proposed approaches address
these challenges in different ways.

The best overall performance was obtained by casting block-ranking as a learning-to-
rank (LTR) problem. However, our results show that, to be successful, the LTR model
requires two things. First, the feature representation must allow for the model to learn
a vertical-specific predictive relationship between features and block relevance. That is,
even if a feature is shared among block’s from different verticals, the feature representa-
tion must allow the model to weight the feature as positive evidence for some verticals
and negative evidence for others. Second, during training, the model must be biased in
favor of training queries with verticals ranked high, which are the minority. We show
that ignoring either of these requirements significantly hurts performance.
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p = 0
avg vote class LTR-G LTR-S

vote 0.972 – 0.000 – –
class 0.868 – – – –

LTR-G 0.974 0.353 0.000 – –
LTR-S 0.979 0.072 0.000 0.083 –

p = 1
avg vote class LTR-G LTR-S

vote 0.928 – 0.000 – –
class 0.864 – – – –

LTR-G 0.936 0.153 0.000 – –
LTR-S 0.950 0.001 0.000 0.004 –

p = 2
avg vote class LTR-G LTR-S

vote 0.778 – – – –
class 0.803 0.032 – – –

LTR-G 0.862 0.000 0.000 – –
LTR-S 0.876 0.000 0.000 0.029 –

p = 3
avg vote class LTR-G LTR-S

vote 0.646 – – – –
class 0.693 0.002 – – –

LTR-G 0.732 0.000 0.001 – –
LTR-S 0.764 0.000 0.000 0.002 –

p = 4
avg vote class LTR-G LTR-S

vote 0.507 – – – –
class 0.586 0.000 – – –

LTR-G 0.599 0.000 0.182 – –
LTR-S 0.676 0.000 0.000 0.000 –

p = 5
avg vote class LTR-G LTR-S

vote 0.472 – – – –
class 0.505 0.027 – – –

LTR-G 0.512 0.020 0.318 – –
LTR-S 0.567 0.000 0.000 0.000 –

Table 6.11: Binning evaluation results.

124



Consistent with the central theme of the dissertation, various types of evidence were
integrated as input features. A set of feature ablation studies showed that different
features improve performance for different verticals, which is another result in favor of
evidence-integration. The features that contributed the most to overall performance (and
those that were consistently useful across different verticals) were text-similarity features,
derived from the similarity between the query and the results presented in the block.
These are a type of post-retrieval feature. Thus, they can only be generated for those
verticals predicted relevant during vertical selection. Their contribution to performance
suggests the importance of issuing the query to a vertical when possible (or at least to
those which benefit the most) or caching this type of evidence for future impressions of
the query or those similar to it.

The relevance of a particular vertical (and therefore its target rank) may be a function
of other verticals presented. For example, suppose that a user issues the query “nikon
cool pix” and wants to know what the camera looks like. Both the images and the video
vertical may be relevant. However, presenting both of them in the top ranks may be
redundant. This is a phenomenon we did not investigate in this chapter. Addressing
this issue would first require a change in our block-pair assessment interface. Block-
pair judgements were collected outside the context of other vertical results (we raised
this issue in Section 5.7). Thus, novelty/diversity may not be reflected in our derived
reference presentations (used for training and testing).

Suppose, however, that we have training data that reflects (positive/negative) corre-
lations between different verticals. There are several possibilities, which future research
might consider. One is to filter redundancies during vertical selection using a two-stage
classification framework where the predicted relevance of each vertical is used as a fea-
ture in each vertical-specific classifier. A second alternative is to identify query-intent
classes at a higher level than vertical-relevance and to associate each class with a partic-
ular set of verticals. A third alternative is to address redundancy as a post-process to
block-ranking. A simple solution, for example, would be modify the predicted block-
ranking using Maximal Marginal Relevance [17], where vertical similarity can be esti-
mated using any of the metrics proposed in Hong et al. [48]. A final alternative is to use
a learning-to-rank algorithm that favors diversity in the predicting ranking [81].
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Resource Selection in a Homogeneous
Environment

Chapter 7

A consistent trend in the experiments presented so far in the dissertation is the impor-
tance of evidence integration in aggregated web search. Evidence-integration plays a
critical role in deciding which verticals to issue the query to (Chapters 3 and 4) as well as
in deciding where to present the vertical results (Chapter 6). However, up to this point,
we have focused on aggregated web search. Is evidence integration also useful in a more
traditional—more homogeneous—federated search environment?

In this chapter, we propose and evaluate a classification-based framework for resource
selection in a homogeneous federated search environment, where collections contain
similar types of (text-rich) documents and use similar retrieval algorithms. Most prior
resource selection methods, such as CORI [14] and ReDDE [94], were designed with
a homogeneous environment in mind and a large body of published work empirically
confirms their effectiveness in this type of environment [14, 90, 94, 95, 96, 98, 104].

Consistent with the main theme of the dissertation, we explore a variety of sources
of evidence believed to be correlated with resource relevance. We use features similar
to those presented in previous chapters and explore a few new ones. Most importantly,
we explore evidence derived from click-through data. Once in operation, a federated
search system has access to implicit user feedback on aggregated results from previously
seen queries. Given a new query, one potentially useful source of evidence is the query’s
similarity to those previously seen queries that have resulted in a click on a document
from a particular resource.

In Chapter 4, we presented models that attempt to make maximal use of already-
available training data (collected for a set of existing verticals) to learn a predictive model
for a new vertical. In this chapter, we propose another cost-effective method for training
a classification-based resource selector. In contrast to the methods in Chapter 4, however,
the method proposed here uses no editorial input of any kind. For this reason, we refer
to it as zero-judgement training.

The idea behind zero-judgement training is the following. Given n candidate re-
sources, the goal of resource selection is to decide which k resources to issue the query
to. We refer to a (federated) retrieval that merges content from k < n resources as a
partial-dataset retrieval and one that merges content from all k = n resources as a full-
dataset retrieval. At the core, our zero-judgement training method is based on the fol-

1This work was published in CIKM 2009 with co-authors Fernando Diaz and Jamie Callan [2].
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lowing assumption: given a query, an effective partial data-set retrieval will resemble a
full-dataset retrieval. If we assume this to be true, then, given k, the resource selection
objective can be viewed as that of selecting those k resources whose merged ranking
more closely approximates a full-dataset merge. More specifically, because users scan
results from top-to-bottom, the objective is to select those k resource that contribute the
greatest number of results to the top ranks of a full-dataset merge. Given this objective,
our zero-judgement training method, then, is to generate training data from a set of full-
dataset retrievals conducted off-line. Put differently, we train a classification system to
predict a collection’s inclusion in the top ranks of a full-dataset retrieval.

We present a thorough evaluation of the classification-based approach and several
state-of-the-art resource selection methods on three federated search testbeds which were
constructed in-house. This allowed us to investigate several questions not yet addressed
in the dissertation. How does a classification-based approach perform with hundreds of
candidate resources? Our three testbeds consisted of 30, 250, and 1000 collections, where
the first testbed had the largest collections and the third has the smallest collections.
Recall that the classic resource selection approach is to derive evidence exclusively from
sampled documents. Another question we explore is: what is the effect of resource
representation quality on resource selection effectiveness across algorithms? Compared
to the classification approach, how do these methods perform when given access to fairly
complete representations (i.e., large sample sets relative to the collection size)? How
do they perform when given access to impoverished representations (small sample sets
relative to the collection size)? Is there more to gain from evidence-integration—from
the classification-based approach’s ability to easily integrate evidence as features—in
one scenario vs. the other?

7.1 Formal Task Definition

Given a set of n candidate collections and a query q, the goal of resource selection is to
choose k collections from which to retrieve documents. Consistent with most prior work
in resource selection, we assume that k, or the number of collections to select, is given.
We expect that, on average, a retrieval that merges content from k = n collections will be
superior to one that merges content from k < n collections. Therefore, given k, our goal
is to select those collections whose merged ranking more closely approximates a ranking
that merges content from all n collections.

In this chapter, we are primarily concerned with the quality of the end-to-end output:
the merged results. In order to focus on resource selection (rather than merging), we
simulate merging by assuming access to each (retrieved) document’s centralized index
score. That is, we assume access to the retrieval score that would be given to a (retrieved)
document if the query were issued to an index of all collection content.
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7.2 Classification-based Approach

Our classification approach takes the form of n independent, one-vs-all logistic regres-
sion models (one per collection). We trained logistic regression models using the LibLin-
ear toolkit.1 At test time, given a query, each classifier makes a binary prediction with
respect to its collection. Then, we prioritize all n collections based on each classifier’s
confidence of a positive prediction, Pi(y = 1|q). Given this ranking of n collections, we
select the top k.

Training collection-specific classifiers requires training data in the form of binary
judgements on collections. If Q denotes the set of queries and C the set of target collec-
tions, we require a function of the form,

F : Q× C → {+1,−1},

which maps query-collection pairs to +1, if Ci is relevant to q, and −1, otherwise.
As previously noted, our objective is to learn a model that selects collections based on

their contribution to a full-dataset retrieval. This is based on the assumption that, on av-
erage, a full-dataset retrieval, where k = n, outperforms a partial dataset retrieval, where
k < n. Given a full-dataset retrieval of query q, we generate true (positive/negative)
labels for every collection based on each collection’s contribution to the top (full-dataset)
ranks. More specifically, we consider the query a positive example for the collection if the
collection contributes more than τ documents to the top T full-dataset results. Otherwise,
we consider the query a negative example.

7.3 Features

We investigate three types of features. Consistent with Chapter 3, we explore corpus
features, derived from sampled documents, and query category features, derived from the
query topic. Additionally, we explore click-through features, derived from queries with
clicks on documents from the collection.

7.3.1 Corpus Features

As in Chapter 3, corpus features are derived from sampled collection documents. In
this work, however, instead of using a single collection scoring method as a type of
feature, we adopted three existing resource selection methods: CORI [14], Seo and Croft’s
geometric average approach [86] (GAVG), and ReDDE.top, the same ReDDE variant used
in Chapter 3. Although these three methods derive evidence from the same source
(i.e., collection samples), they model different phenomena. CORI and GAVG model the
similarity between the query and collection text. They differ in that CORI models the
collection as one large query-independent bag of words, while GAVG focuses on those
collection documents most similar to the query. In contrast, ReDDE.top approximates

1Available at: http://www.csie.ntu.edu.tw/cjlin/liblinear/
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each collection’s average retrieval score given a full-dataset retrieval. Because they model
different phenomena, these resource scoring methods may contribute complementary
evidence. Thus, we included features from all three. Next, we describe these in more
detail.

CORI

CORI adapts INQUERY’s inference net document ranking approach to ranking collec-
tions [14]. Here, all statistics are derived from sampled documents rather than the full
collection. We used the CORI score with respect to each collection as a feature, for a total
of n CORI score features.

Geometric Average (GAVG)

Seo and Croft’s approach [86] issues the query to the centralized sample index and scores
collection Ci by the geometric average query likelihood from its top m samples,

GAVGq(Ci) =

(

∏
d∈top m from Si

P(q|d)

) 1
m

,

where P(q|d) is the query likelihood score and Si denotes Ci’s sample set. If fewer than
m documents from Si match the query, the product above is padded with Pmin(q|d), the
retrieval’s minimum query likelihood. We used the GAVG score with respect to each
collection as a feature, for a total of n GAVG score features.

ReDDE.top

Like GAVG, given a query, ReDDE.top conducts a retrieval from a centralized sample
index, producing a retrieval score for every sampled document. Then, it assumes that
each scored sampled document within the top N represents some number of documents
in its original collection with the same score. Finally, by normalizing across collections, it
scores each collection by the average retrieval score in its estimated distribution of scores.
More details are presented in Section 3.3.1.

We used two sets of ReDDE.top features, one set using N = 100 and a second set
using N = 1, 000, for the following reason. The first set accumulates scores from the top
100 sampled documents. However, a collection with no samples in the top 100 receives
a score of zero. This is problematic if the number of collections with a non-zero score
is less than k, the number of collections to select. To increase the number of collections
with a non-zero ReDDE.top score, we used a second set of ReDDE.top features setting
N = 1,000. We use 2n ReDDE.top features: n features corresponding to the ReDDE.top
score for each collection setting N = 100 and another n features corresponding to the
ReDDE.top score for each collection setting N = 1, 000.
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7.3.2 Query Category Features

If collections are topically-focused, then a potentially useful source of evidence is the
topic of the query. We built a set of binary query-topic classifiers as follows. First, we
selected a set of 166 topics from the Open Directory Project (ODP) hierarchy and crawled
Web documents associated with each of these ODP nodes.2 Then, these document sets
were used to train logistic-regression classifiers (one per category) using unigram fea-
tures. Because queries are terse, instead of applying each trained classifier directly on
the query string (represented as a unigram vector), we apply each classifier to those doc-
uments in the centralized sample index. Finally, we classify the query using a retrieval
from this index. We set the value of category feature yi according to,

CATq(yi) =
1
Z ∑

d∈RN
S ,q

P(q|d)

(
P(yi|d)

∑yj∈Y P(yj|d)

)
, (7.1)

where P(yi|d) is category yi’s confidence value on document d and the normalizer Z =
∑d∈RN

S ,q
P(q|d). For these features, we set N = 100.

We use 166 query category features (one per topical category). In Chapter 6 we also
used query-category features, but, in order to reduce the number of features, we clus-
tered ODP nodes into 30 categories. In this work, we used a larger number of category
features for two reasons. First, we focus on testbeds with hundreds of resources (i.e., 250
and 1000 resources). Thus, using more fine-grained topics seems useful for distinguish-
ing between these. Second, as we show later, our zero-judgement training method can
be used to produce a fairly large training set (i.e., 75,000) queries. Thus, reducing the
number of category features (at the expense of possibly losing discriminative category
granularity) seems undesirable.

7.3.3 Click-through Features

Once in operation, a resource selection system has access to user feedback in the form
of clicks on collection documents. A click on a document can be viewed as a surrogate
for document relevance. We view a click on a document as a surrogate for collection
relevance, in favor of the collection from which the document originates. Click-through
features exploit the similarity between the query and those previously seen queries that
have resulted in a click on a document from the collection.

We model click-events as follows. For a collection, Ci, let Qi denote the set of queries
(allowing duplicates) associated with a click event on a document from Ci. We index
each Qi as an individual pseudo-document in a corpus of n documents. Then, given a
query, we use the retrieval score of each Qi as a feature. This results in n click-through
features (one per collection).

2http://www.dmoz.org
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7.3.4 Summary of Features

The total number of features varies with the number of candidate resources (denoted by
n), which varies across testbeds. CORI and GAVG contribute n features each (one per
resource). ReDDE.top contributes 2n features (n with setting N = 100 and another n
with setting N = 1, 000). In addition to these, we use 166 query-category features and n
click-through features (one per resource).

7.4 Methods and Materials

In this section, we describe our experimental methodology: our experimental testbeds,
evaluation queries, evaluation metrics, and baselines for comparing the performance of
the proposed classification-based framework. Also, we describe a few implementation
details pertaining to our zero-judgement training method and some of our features.

7.4.1 Evaluation Testbeds

The TREC GOV2 test collection is a large crawl of the “.gov” portion of the Web, contain-
ing about 25M documents.3 The GOV2 corpus was used to construct 3 experimental fed-
erated search testbeds, varying the number of target collections: 1,000, 250, and 30. We
refer to these testbeds as gov2.1000, gov2.250, and gov2.30, respectively. We constructed
the gov2.1000 testbed following the procedure described in Fallen and Newby [34]. While
the GOV2 corpus consists of about 17,000 unique hosts (e.g., www.epa.gov), the largest
1,000 hosts contain about 90% of the GOV2 collection (i.e., about 22M documents). The
gov2.1000 testbed was constructed by treating each of the largest 1,000 hosts as a separate
collection.

Testbeds gov2.250 and gov2.30 were constructed by clustering hosts in the gov2.1000
testbed into 250 and 30 clusters, respectively, as follows. First, to represent hosts, we
randomly sampled 1,000 documents from each. We define a host’s vocabulary by all
term-stems (using the Porter stemmer [79]) appearing at least 10 times in its document
sample. Host-specific language models were constructed using maximum likelihood
without smoothing. The distance between hosts was computed using the Jeffrey di-
vergence between their respective language models [53], also known as the symmetric
Kullback-Leibler divergence,

DJ(θi||θj) = ∑
w

(
P(w|θi)− P(w|θj)

)
log2

(
P(w|θi)
P(w|θj)

)
.

We used average-link agglomerative clustering, iteratively merging clusters according to
their hosts’ average pair-wise similarity. We seeded the clustering by first combining
hosts belonging to the same government entity (e.g., nih, usgs, usda, epa, uspto, nasa).

Figure 7.1 shows each testbed’s collection size distribution. The gov2.1000 and gov2.250
testbeds have a few large collections and many small collections, while gov2.30 has many

3http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
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Figure 7.1: Collection size distribution of our three experimental testbeds.

large collections and a few small ones. In the gov2.1000 testbed, 720 (72%) collections
have fewer than 10,000 documents and 438 (44%) have fewer than 5,000 documents. In
the gov2.250 testbed, 131 (66%) collections have fewer than 10,000 documents. In the
gov2.30 testbed, 24 (80%) collections have more than 1M documents.

7.4.2 Queries

We evaluated on TREC queries 701-850, used in the ad-hoc retrieval task of the Terabyte
Track from 2004, 2005, and 2006. Recall that we are missing about 10% of the GOV2
collection in our testbeds, corresponding to those documents in GOV2 not originating
from the 1,000 largest hosts. In spite of these missing documents, all queries had at least
one relevant document in our testbeds except query number 703, which has no relevant
documents in the entire GOV2 collection.

7.4.3 Evaluation Metrics

We are interested in the quality of document rankings produced by selecting only a few
collections and combining their documents into a single ranked list. For this reason, we
evaluate in terms of precision at different cut-off points, P@{5, 10, 30}, when selecting
between 1-5 collections. To focus evaluation on resource selection rather than results
merging, we assume access to a function that provides the score that a centralized re-
trieval would have provided for every document retrieved. Access to such a function
is realistic in a cooperative setting, for example, where resources divulge corpus statis-
tics (e.g., number of documents, average document length, IDF values, etc.) to facilitate
document score normalization and merging. Thus, given a set of collections selected, we
combine their documents into a single ranked list according to each document’s “global”
retrieval score.
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7.4.4 Implementation Details

Zero-Judgement Training

As described in Section 7.2, we train a classification system to select collections based
on their contribution to the top-ranks of a full-dataset retrieval. During training, for a
given collection, the query is considered a positive instance if the collection contributes
more than τ documents to the top T ranks of a full-dataset retrieval. We set T = 30
because we evaluate merged results in terms of P@{5, 10, 30} and we set τ = 3 in order
to ignore collections that contribute only a few documents to the top 30. We do not claim
that this configuration is optimal. Another alternative, for example, would have been
to train different models using T = {5, 10, 30} when evaluating based on P@{5, 10, 30},
respectively.

Our “training data” consists of full-dataset retrievals which select and merge con-
tent from all collections. There are multiple possibilities for selecting a set of “training”
queries (e.g., using a query-log or generating artificial queries from the collection text).
However, one requirement is that there be enough positive instances for training for ev-
ery collection. In other words, for each collection, there should be a sufficient number of
queries with hits in the collection.

In this work, training queries were sampled from the AOL query-log, which consists
of about 20M queries that were issued by about 650K users to the AOL search engine
over a period of three months in 2006. Recall that our three experimental testbeds consist
of clusters of hosts from the “.gov” domain (1, 000 singleton host clusters in the case of
the gov2.1000 testbed). Click events in the AOL query-log are uniquely identified by
user ID, query, date/time and host URL (i.e., for the host associated with the document
clicked). Therefore, it is possible to identify all AOL click events associated with any one
of our 1, 000 hosts. For each host, we estimate a query multinomial using the query’s
relative frequency in its click events. A set of 75,000 queries was sampled (without
replacement) using a two-step iterative processes. First, a host is sampled uniformly
from the set of 1, 000 hosts. Then, a query is sampled from the host’s query multinomial.
Hosts were sampled uniformly to favor coverage across hosts and, thereby, coverage
across collections in our three testbeds. Queries were sampled according to their relative
frequency in click events in order to favor popular queries likely to have hits in the
collection.

Features Implementation

Some of our features (i.e., CORI, GAVG, ReDDE.top) required sampling documents from
every collection. Documents were sampled from each collection uniformly without re-
placement. In some federated search environments, collection documents may only ac-
cessible to the system via a search interface. If this is the case, prior work suggests that
high-quality samples (similar to those obtained using uniform sampling) can be obtained
using query-based sampling [16].

Click-through features required simulating click events on collection documents.
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Click-through data collected over time was simulated also using the AOL query-log.
We collected a total of 305, 236 click events associated with our 1,000 “.gov” hosts. About
25% of hosts had no AOL click events and about 35% had fewer than 50. Click events
associated with a query in our test set (described later) were omitted from the set of
queries used for training and from those used to simulate click-through data.

7.4.5 Single-Evidence Baselines

The classification approach was evaluated against six single-evidence baselines, includ-
ing one for every type of feature used in the classification approach.

ReDDE.top was used as a single-evidence baseline as follows. First collections are
prioritized by ReDDE.top score using N = 100. A second priority list is constructed
using N = 1, 000. If the first priority list has fewer than k collections, the remaining
collections are selected from the second priority list.

In addition to ReDDE.top, we evaluated against the original version of ReDDE [94],
which is described in detail in Section 2.3. We used the version of ReDDE referred to
as modified ReDDE in Si and Callan [94]. As we did with ReDDE.top, modified ReDDE
creates two priority lists: one by setting ReDDE parameter τ = 0.0005 and a second one
by setting τ = 0.003. Given k, modified ReDDE selects collections from the first priority
list only if the collection has a ReDDE mass greater than 0.10. If more collections are
needed to complete k collections, the remaining collections are selected from the second
priority list.

Our category baseline (denoted as CATS) scores collections based on the similarity
between the topical profile of the query and the topical profile of the collection. The
query’s topical profile is given by normalizing Equation 7.1 across categories, such that
∑yj∈Y CATSq(yj) = 1. The collection’s topical profile is defined by,

P(yj|Ci) =
1
|Si| ∑

d∈Si

P(yj|d)
∑yk∈Y P(yk|d)

where Si denotes the set of documents sampled from collection Ci. The similarity be-
tween the query and collection topical profiles is given by the Bhattacharya distance
between these two distributions [7],

B(q, Ci) = ∑
yk∈Y

√
P(yk|q)× P(yk|Ci).

Finally, we also evaluated a baseline approach that scores collections by query likelihood
given its click-through queries, denoted by CLICK, as described in Section 7.3.3.

7.5 Experimental Results

As previously mentioned, one of our objectives is to investigate the effect of resource
representation quality on resource selection performance across algorithms. In partic-
ular, we focus on sample set quality. Four of our single-evidence baselines (i.e., CORI,
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P@5
k full cori gavg redde.top redde cats click classification
1 0.569 0.224 0.405 0.360 0.166 0.192 0.183 0.392 (-3.31%)
2 0.569 0.315 0.446 0.447 0.275 0.256 0.239 0.436 (-2.40%)
3 0.569 0.372 0.479 0.489 0.336 0.302 0.277 0.482 (-1.37%)
4 0.569 0.405 0.483 0.506 0.380 0.321 0.322 0.506 (0.00%)
5 0.569 0.417 0.495 0.529 0.395 0.336 0.337 0.510 (-3.55%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.188 0.331 0.321 0.150 0.152 0.147 0.355 (7.30%)
2 0.534 0.264 0.390 0.394 0.248 0.215 0.194 0.399 (1.19%)
3 0.534 0.323 0.423 0.436 0.302 0.261 0.228 0.446 (2.47%)
4 0.534 0.359 0.438 0.457 0.344 0.285 0.270 0.458 (0.15%)
5 0.534 0.380 0.442 0.484 0.364 0.302 0.281 0.468 (-3.33%)

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.113 0.201 0.206 0.102 0.095 0.091 0.224 (8.68%)
2 0.452 0.167 0.266 0.268 0.168 0.139 0.124 0.281 (4.59%)
3 0.452 0.217 0.305 0.312 0.206 0.170 0.152 0.319 (2.51%)
4 0.452 0.247 0.319 0.337 0.248 0.194 0.185 0.339 (0.53%)
5 0.452 0.266 0.325 0.362 0.275 0.205 0.195 0.352 (-2.60%)

Table 7.1: Results for experimental condition gov2.1000.1000.

GAVG, ReDDE.top, and ReDDE) focus exclusively on evidence derived from collection
samples. The classification-based approach used these as input features and, thus, is also
indirectly affected by sample set quality. To investigate the effect of sample set quality
on performance, every method was evaluated on all three testbeds under two conditions:
using sample sets of 300 samples per collection and using sample sets of 1000 samples
per collection. We denote the resulting six experimental conditions as gov2.x.y, where
x denotes the testbed and y denotes the sample set size. For instance, gov2.1000.1000
denotes the condition which uses the gov2.1000 testbed and sample sets of 1000 samples
per collection.

Results are presented based on P@{5, 10, 30}. Tables 7.1-7.3 show results across our
three testbeds when sampling 1,000 documents from each collection. Tables 7.4-7.6 show
results when sampling 300 documents from each collection. In addition, to evaluate the
overall performance of federated search, we present results from centralized retrieval
(denoted as “full”), from a single index of all n collections combined. The classification
approaches’s percent improvement is with respect to the best single-evidence baseline.
Statistical significance is with respect to all single-evidence baselines. Significance, using
a paired t-test on queries, is denoted with a # at the p < 0.05 level and a " at the
p < 0.005 level.

The classification-based approach either significantly outperforms or is statistically
indistinguishable from the best single-evidence baseline in all cases. In the gov2.1000.1000
condition, the GAVG and ReDDE.top baselines perform at the same level as the classifi-
cation approach. We investigate how this experimental condition favors these methods
in the next section.

From the performance of our single-evidence baselines, we notice two trends. First,
all baselines that derive evidence from sampled documents (i.e., CORI, GAVG, ReDDE.top,
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P@5
k full cori gavg redde.top redde cats click classification
1 0.569 0.137 0.294 0.326 0.238 0.174 0.220 0.419 (28.40%)"

2 0.569 0.228 0.328 0.408 0.360 0.242 0.303 0.494 (21.05%)"

3 0.569 0.291 0.360 0.432 0.417 0.272 0.340 0.497 (14.91%)"

4 0.569 0.323 0.374 0.475 0.483 0.313 0.364 0.505 (4.44%)
5 0.569 0.357 0.389 0.489 0.503 0.345 0.388 0.515 (2.40%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.105 0.248 0.283 0.209 0.142 0.188 0.371 (31.35%)"

2 0.534 0.186 0.293 0.363 0.311 0.201 0.262 0.452 (24.40%)"

3 0.534 0.248 0.330 0.394 0.372 0.229 0.291 0.460 (16.70%)"

4 0.534 0.282 0.338 0.432 0.430 0.266 0.308 0.477 (10.58%)"

5 0.534 0.293 0.350 0.438 0.457 0.297 0.334 0.487 (6.46%)#

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.068 0.158 0.197 0.143 0.090 0.130 0.265 (34.13%)"

2 0.452 0.124 0.196 0.272 0.230 0.132 0.182 0.343 (26.19%)"

3 0.452 0.168 0.233 0.309 0.283 0.151 0.213 0.359 (16.05%)"

4 0.452 0.204 0.245 0.337 0.331 0.187 0.227 0.372 (10.22%)"

5 0.452 0.226 0.262 0.344 0.353 0.208 0.246 0.382 (8.38%)"

Table 7.2: Results for experimental condition gov2.250.1000.

P@5
k full cori gavg redde.top redde cats click classification
1 0.569 0.281 0.302 0.322 0.295 0.323 0.298 0.370 (14.52%)
2 0.569 0.380 0.403 0.419 0.428 0.384 0.374 0.447 (4.39%)
3 0.569 0.434 0.446 0.456 0.447 0.427 0.421 0.487 (6.76%)
4 0.569 0.462 0.468 0.487 0.472 0.451 0.454 0.499 (2.48%)
5 0.569 0.474 0.472 0.503 0.491 0.482 0.460 0.507 (0.80%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.246 0.264 0.269 0.246 0.280 0.255 0.318 (13.67%)
2 0.534 0.332 0.348 0.361 0.368 0.340 0.335 0.393 (6.56%)
3 0.534 0.391 0.387 0.403 0.392 0.384 0.374 0.438 (8.49%)#

4 0.534 0.426 0.415 0.442 0.415 0.407 0.413 0.461 (4.41%)
5 0.534 0.445 0.429 0.462 0.444 0.433 0.423 0.471 (2.03%)

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.181 0.188 0.185 0.167 0.195 0.176 0.220 (12.87%)
2 0.452 0.253 0.262 0.261 0.269 0.267 0.241 0.304 (13.32%)#

3 0.452 0.309 0.294 0.304 0.304 0.302 0.280 0.346 (11.71%)#

4 0.452 0.339 0.326 0.337 0.328 0.313 0.309 0.361 (6.47%)
5 0.452 0.353 0.341 0.358 0.345 0.334 0.320 0.377 (5.25%)

Table 7.3: Results for experimental condition gov2.30.1000.

and ReDDE) performed better using 1, 000 vs. 300 samples per collection. This shows
that these methods are sensitive to the sampled set size. They perform better with more
evidence, which is consistent with previous evaluations [92]. Second, the relative perfor-
mance between single-evidence methods varied across experimental conditions. In the
gov2.1000.1000 condition, GAVG and ReDDE.top clearly outperform CATS and CLICK
in all cases. This is not true in the gov2.30.300 condition. When k = 1, in the gov2.30.300
condition, CATS and CLICK both outperform GAVG and ReDDE.top. These approaches
derive evidence from different sources. GAVG and ReDDE.top derive evidence exclu-
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P@5
k full cori gavg redde.top redde cats click classification
1 0.569 0.209 0.323 0.303 0.125 0.200 0.183 0.383 (18.26%)
2 0.569 0.306 0.358 0.407 0.221 0.263 0.239 0.427 (4.95%)
3 0.569 0.340 0.399 0.450 0.283 0.301 0.277 0.463 (2.99%)
4 0.569 0.370 0.427 0.466 0.313 0.313 0.322 0.482 (3.46%)
5 0.569 0.381 0.440 0.478 0.350 0.333 0.337 0.490 (2.53%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.174 0.277 0.270 0.110 0.166 0.147 0.332 (19.90%)#

2 0.534 0.260 0.317 0.358 0.191 0.224 0.194 0.392 (9.57%)
3 0.534 0.293 0.361 0.399 0.253 0.269 0.228 0.432 (8.07%)
4 0.534 0.321 0.381 0.419 0.283 0.276 0.270 0.444 (5.93%)
5 0.534 0.339 0.399 0.433 0.321 0.297 0.281 0.456 (5.27%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.452 0.097 0.174 0.171 0.074 0.101 0.091 0.218 (25.65%)#

2 0.452 0.162 0.216 0.245 0.126 0.141 0.124 0.270 (10.52%)
3 0.452 0.191 0.249 0.284 0.172 0.176 0.152 0.304 (7.10%)
4 0.452 0.211 0.267 0.304 0.197 0.185 0.185 0.324 (6.47%)
5 0.452 0.230 0.284 0.321 0.224 0.208 0.195 0.341 (6.05%)

Table 7.4: Results for experimental condition gov2.1000.300.

P@5
k full cori gavg redde.top redde cats click classification
1 0.569 0.125 0.212 0.274 0.228 0.111 0.220 0.391 (42.65%)"

2 0.569 0.184 0.267 0.353 0.333 0.176 0.303 0.472 (33.84%)"

3 0.569 0.246 0.286 0.407 0.391 0.232 0.340 0.494 (21.45%)"

4 0.569 0.267 0.306 0.434 0.428 0.268 0.364 0.498 (14.86%)"

5 0.569 0.290 0.319 0.462 0.447 0.279 0.388 0.518 (12.21%)"

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.096 0.178 0.228 0.186 0.089 0.188 0.342 (49.71%)"

2 0.534 0.161 0.234 0.304 0.270 0.156 0.262 0.427 (40.40%)"

3 0.534 0.218 0.249 0.366 0.350 0.195 0.291 0.450 (22.94%)"

4 0.534 0.236 0.273 0.399 0.387 0.218 0.308 0.456 (14.31%)"

5 0.534 0.258 0.283 0.417 0.409 0.233 0.334 0.476 (13.99%)"

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.057 0.115 0.148 0.133 0.055 0.130 0.241 (62.60%)"

2 0.452 0.109 0.161 0.209 0.190 0.107 0.182 0.315 (51.13%)"

3 0.452 0.149 0.182 0.253 0.251 0.138 0.213 0.333 (31.42%)"

4 0.452 0.173 0.200 0.292 0.277 0.154 0.227 0.350 (19.77%)"

5 0.452 0.187 0.210 0.314 0.302 0.166 0.246 0.362 (15.34%)"

Table 7.5: Results for experimental condition gov2.250.300.

sively from sampled documents. CATS derives evidence from the topical similarity be-
tween the query and the collection. CLICK derives evidence from click-through data.
Different types of evidence was particularly useful under different conditions.

Two results support the hypothesis that full-dataset retrievals can be used to harvest
data for training a machine learned resource selection method. First, a full-dataset re-
trieval outperformed all methods, including the classification approach, in all cases. Sec-
ond, the classification approach, trained on data harvested from full-dataset retrievals,
performed at the same level or better than the best single-evidence baseline in all cases.
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P@5
k full cori gavg redde.top redde cats click classification
1 0.569 0.224 0.266 0.251 0.231 0.282 0.298 0.374 (25.68%)"

2 0.569 0.317 0.322 0.350 0.342 0.353 0.374 0.450 (20.07%)"

3 0.569 0.409 0.376 0.391 0.400 0.412 0.421 0.493 (16.88%)"

4 0.569 0.446 0.424 0.403 0.413 0.444 0.454 0.487 (7.40%)
5 0.569 0.467 0.436 0.443 0.442 0.464 0.460 0.509 (8.91%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.194 0.222 0.206 0.178 0.238 0.255 0.321 (25.79%)"

2 0.534 0.287 0.271 0.313 0.292 0.299 0.335 0.402 (20.04%)"

3 0.534 0.361 0.327 0.353 0.338 0.352 0.374 0.442 (18.13%)"

4 0.534 0.403 0.363 0.370 0.376 0.394 0.413 0.457 (10.55%)#

5 0.534 0.432 0.385 0.413 0.401 0.428 0.423 0.479 (10.71%)#

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.128 0.153 0.143 0.118 0.153 0.176 0.223 (26.75%)"

2 0.452 0.206 0.198 0.227 0.200 0.218 0.241 0.312 (29.38%)"

3 0.452 0.263 0.243 0.265 0.246 0.271 0.280 0.347 (24.06%)"

4 0.452 0.308 0.282 0.291 0.282 0.300 0.309 0.367 (18.51%)"

5 0.452 0.336 0.295 0.334 0.317 0.322 0.320 0.390 (15.97%)"

Table 7.6: Results for experimental condition gov2.30.300.

7.6 Discussion

In this section, we further investigate the effect of resource representation quality (i.e.,
sample set quality) on resource selection performance across methods. Furthermore, we
present results from a set of feature ablation studies which investigate whether different
features are more or less predictive given varying degrees of resource representation
quality.

7.6.1 Collection Representation Quality

As shown in Table 7.1, ReDDE.top and GAVG, which derive evidence from sampled
documents, performed well in the gov2.1000.1000 experimental condition. In this con-
dition, 1,000 documents were sampled from every collection. As previously mentioned,
72% of collections in the gov2.1000 testbed have fewer than 10,000 documents and 44%
have fewer than 5,000 documents. This means that a sample set of 1,000 documents con-
stitutes at least 20% of the full collection for about half the collections in gov2.1000. In
other words, in the gov2.1000.1000 condition, ReDDE.top and GAVG had access to fairly
complete representations for about half the collections.

Furthermore, we would expect these methods to do well if these smaller collections
frequently contain relevant documents. To examine this, we binned collections by their
number of documents and determined, for each bin, the number of times a collection
from the bin contains at least 10 documents relevant to a test query. These histograms
are shown in Figure 7.2. In the gov2.1000 testbed, the smallest collections, with 1,000-
10,000 documents, most often contained at least 10 documents relevant to a test query.
In contrast, in the gov2.250 and gov2.30 testbeds, the collections that most often contain
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Figure 7.2: Number of instances in which a collection of a given size (bin) contributes at
least 10 relevant documents to a test query.

at least 10 documents relevant to a test query have more than 100,000 documents.
To conclude, we can say that in the gov2.1000.1000 condition, corpus-based single-

evidence baselines such as ReDDE.top and GAVG benefited from having fairly complete
representations (i.e. large sampled sets relative to the collection size) for those collections
containing many relevant documents. Interestingly, in this condition, the classification
approach performed at the same level as these methods. In other conditions, we see a
more clear benefit from the kind of evidence-integration afforded by the classification
approach.

7.6.2 Feature Ablation Studies

The classification approach integrates different types of evidence as input features. In
this section, we conduct a set of feature ablation studies to test the contribution of evi-
dence integration to the classification approach’s performance. We focus on experimental
condition gov2.1000.1000 and gov2.30.300. Our motivation is to verify that the classifica-
tion approach is capable of focusing on the most reliable features under different exper-
imental conditions. Based on the analysis from Section 7.6.1, in the gov2.1000.1000 con-
dition, we expect the classification approach to focus on evidence derived from sampled
documents (i.e., CORI, GAVG, and ReDDE.top features). In the gov2.30.300 condition,
we expect it to focus on other types of evidence. We individually omitted each feature
type (CORI, GAVG, ReDDE.top, CATS, and CLICK) and measure its contribution to per-
formance based on the classifier’s percent decrease in precision. Significance, again, is
tested using a paired t-test on queries.

Results are presented in Table 7.7. These results confirm our hypothesis. In the
gov2.1000.1000 condition, in the majority of cases, omitting ReDDE.top features leads
to a significant drop in performance. This is because in the gov2.1000.1000 condition,
ReDDE.top had access to fairly complete representations for those collections with rele-
vant content. On the other hand, in the gov2.30.300 condition, CLICK features were more
predictive, particularly in terms of P@30.
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gov2.1000.1000
P@10

k all.features no.cori no.gavg no.redde.top no.cats no.click
1 0.355 0.355 (0.00%) 0.357 (0.57%) 0.331 (-6.81%) 0.355 (0.00%) 0.354 (0.19%)
2 0.399 0.399 (0.00%) 0.393 (-1.52%) 0.383 (-4.04%) 0.385 (-3.37%) 0.401 (-0.51%)
3 0.446 0.446 (-0.15%) 0.436 (-2.26%) 0.401 (-10.23%) " 0.436 (-2.41%) 0.438 (-1.95%)
4 0.458 0.456 (-0.29%) 0.442 (-3.52%) # 0.425 (-7.18%) # 0.450 (-1.76%) 0.449 (-1.91%)
5 0.468 0.467 (-0.14%) 0.454 (-3.01%) # 0.431 (-7.89%) # 0.466 (-0.43%) 0.456 (-2.58%)

P@30
k all.features no.cori no.gavg no.redde.top no.cats no.click
1 0.224 0.224 (0.00%) 0.227 (1.40%) 0.213 (-5.19%) 0.229 (2.20%) 0.225 (-0.20%)
2 0.281 0.281 (0.16%) 0.274 (-2.39%) 0.266 (-5.02%) 0.271 (-3.51%) 0.277 (-1.44%)
3 0.319 0.317 (-0.77%) 0.311 (-2.59%) 0.292 (-8.61%) # 0.312 (-2.24%) 0.313 (-2.10%)
4 0.339 0.338 (-0.20%) 0.330 (-2.70%) 0.319 (-5.80%) # 0.331 (-2.38%) 0.336 (-0.79%)
5 0.352 0.350 (-0.51%) 0.344 (-2.35%) 0.331 (-5.97%) # 0.347 (-1.52%) 0.344 (-2.35%) #

gov2.30.300
P@10

k all.features no.cori no.gavg no.redde.top no.cats no.click
1 0.321 0.321 (0.21%) 0.319 (-0.63%) 0.305 (-4.81%) 0.324 (1.05%) 0.279 (-13.18%)
2 0.402 0.394 (-2.00%) 0.390 (-3.01%) 0.392 (-2.50%) 0.388 (-3.51%) 0.379 (-5.84%)
3 0.442 0.438 (-0.91%) 0.428 (-3.04%) 0.423 (-4.26%) 0.431 (-2.43%) 0.435 (-1.52%)
4 0.457 0.449 (-1.76%) 0.455 (-0.44%) 0.469 (2.64%) 0.450 (-1.62%) 0.456 (-0.29%)
5 0.479 0.477 (-0.42%) 0.472 (-1.40%) 0.474 (-0.84%) 0.480 (0.28%) 0.465 (-2.81%)

P@30
k all.features no.cori no.gavg no.redde.top no.cats no.click
1 0.223 0.224 (0.70%) 0.219 (-1.41%) 0.206 (-7.34%) 0.228 (2.41%) 0.191 (-14.37%)
2 0.312 0.309 (-1.22%) 0.300 (-4.08%) # 0.301 (-3.51%) 0.295 (-5.52%) 0.283 (-9.46%) #

3 0.347 0.338 (-2.51%) 0.333 (-3.99%) 0.335 (-3.54%) 0.330 (-4.90%) # 0.319 (-8.12%) #

4 0.367 0.356 (-2.93%) 0.364 (-0.79%) 0.370 (0.98%) 0.349 (-4.70%) 0.349 (-4.82%)
5 0.390 0.380 (-2.52%) 0.387 (-0.63%) 0.383 (-1.72%) 0.381 (-2.29%) 0.372 (-4.65%)

Table 7.7: Feature type ablation study. A significant drop in performance, using a paired
t-test on queries, is denoted with a # at the p < 0.05 level and a " at the p < 0.005 level.

This analysis demonstrates that the classification approach is capable on focusing on
the most reliable features depending on the condition. Also, although CORI, GAVG, and
ReDDE.top features derive evidence from the same source (i.e., sampled documents),
they model different phenomena. Our results show that they do not contribute equally
to performance. This further motivates a feature integration approach, even when the
features are derived from the same source.

7.7 Summary

We evaluated a classification approach to resource selection in a homogeneous environ-
ment, one in which collections contain similar types of documents and satisfy similar
types of information requests. The classification approach was compared to a number of
single-evidence baselines, including three existing resource selection methods that have
produced good results in previous evaluations. From this set of experiments, we draw
the following conclusions.
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• Most resource selection methods derive evidence from a single source of evidence,
mainly sampled collection documents. Casting resource selection as a multiclass
learning approach allows us to integrate multiple sources of evidence as input
features. Evidence integration leads to a more robust solution. Different sources
of evidence are more/less predictive under different experimental conditions. By
integrating them all as input features, the classification approach is able to perform
either at the same level or better than the best single-evidence baseline.

• This is the first time that a resource selection method models full-dataset retrieval
explicitly. A classification system is trained to select collections based on their im-
pact to a retrieval that merges content from all collections. This is significant be-
cause a lot of training data can be produced without human relevance judgements
as long as the system has access to (offline) full-dataset retrievals.

• Corpus-based evidence, derived from collection samples, was integrated using
three existing resource selection methods. Although they derive evidence from
the same source, these three methods model different phenomena. A set feature of
ablation studies (across experimental conditions) show that these methods are not
redundant in terms of predictiveness. This further validates a feature integration
approach, even if features are derived from the same source (in this case, sampled
documents).

• In a homogeneous environment, a machine learning approach to resource selec-
tion can be trained using full-dataset retrievals, without using human relevance
judgements. This result may generalize to a heterogeneous environment provided
that the merging algorithm produces, on average, superior retrievals when merg-
ing results from every collections than when merging results from only a few. In
fact, this may be a logical design principle for results merging algorithm develop-
ment. If the results merging algorithm satisfies this criterion, it may be possible to
train a resource selection algorithm from full-dataset retrievals in a heterogeneous
environment, where results merging is more complex.
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Conclusions
Chapter 8

This chapter summarizes the work presented in the thesis, considers its major contribu-
tions, and discusses directions for future work.

8.1 Summary

This dissertation takes a machine-learning, feature-integration approach to the two major
sub-tasks associated with federated search: resource selection—deciding which resources
to issue the query to and results merging—deciding where to display the results from
different resources within the final presentation.

With the exception of Chapter 7, we focused on aggregated web search—the prediction
and integration of relevant vertical content into the Web search results. Compared to
federated search environments investigated in prior research, aggregated web search is
associated with two distinguishing properties: result-type heterogeneity—verticals retrieve
very different types of results (e.g., news articles, images, videos, local business listings,
weather forecasts)—and retrieval-algorithm heterogeneity—verticals use very different re-
trieval algorithms (e.g., recency is important for news, geographical proximity is impor-
tant for local). These two types of heterogeneity violate some of the major assumptions
made by state-of-the-art selection and merging algorithms.

8.1.1 Resource Selection

A consistent finding in all our experiments is that feature-integration is essential for
effective resource selection. This is, in fact, one major limitation of existing resource
selection methods—most derive evidence exclusively from (sampled) resource content
and do not provide an easy way of incorporating other types of evidence. Throughout
the thesis, we have demonstrated the importance of corpus features (derived from sampled
vertical content), query-log features, (derived from previous queries issued directly to the
vertical), click-through features (derived from clicks on vertical content), and query features
(derived from properties of the query-string, independent of any vertical). In every
feature ablation study, we found that no single type of feature is exclusively responsible
for performance. A significant advantage of a machine learning approach is its capability
of easily integrating multiple types of evidence as input features.

Our feature ablation studies also revealed a second important trend: query features,
which are not generated from the vertical, are particularly important. In Chapter 3, for
example, we found that the topic of the query (e.g., whether the query is health-related)
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was the single most important type of evidence for vertical selection.1 This is an impor-
tant result because it means that any appropriate solution to vertical selection requires
learning a vertical-specific relationship between features and vertical relevance. Different
verticals will focus on different topics. Thus, exploiting query category evidence requires
learning a vertical-specific relationship between the query category and the relevance of
a particular vertical. For example, if the query is health-related, this is positive evidence
for health, but negative evidence for movies. Other types of query evidence also require
taking the identity of the vertical into consideration. The presence of the query-term
“weather” (i.e., query-keyword evidence) is positive evidence for weather, but negative
evidence for games. The presence of a location name in the query (i.e., named-entity type
evidence) is positive evidence for local, but negative evidence for finance. A high degree
of co-occurrence between the query and the term “video” (i.e., query-log evidence) is
positive evidence for video, but negative evidence for images. Such vertical-specific pre-
dictive relationships can be automatically learned from training data, either by learning
a different model for each vertical, as in Chapter 3, or by exploiting feature-interactions
which consider the identity of the vertical, as in Chapter 6.

One limitation of a machine learning approach is that it requires training data. There-
fore, our goal in Chapter 4 was to investigate ways of making maximal use of already-
available training data (collected for a set of existing source verticals) to learn a predictive
model for a new target vertical (associated with no training data).

We found that training an effective portable model—one that can make accurate pre-
dictions with respect to any vertical, including one absent of training data—requires
identifying the most portable features—those consistently correlated with relevance (in
the same direction) across verticals. The most portable features were found to be those
generated from the vertical in question (i.e., from vertical query-traffic or from sampled
vertical content). Within the set of most portable features were those corresponding to
existing content-based resource selection methods. In retrospect, this result makes sense.
These unsupervised resource-scoring methods were designed to use a single metric to
make predictions with respect to all resources.

Conversely, we found that learning an effective target-specific model—one that is cus-
tomized specifically for the target—requires harnessing non-portable, vertical-specific
features. The challenge, however, is that harnessing target-specific features requires train-
ing data (with respect to the target). We showed that high-confidence predictions from
a portable model (with respect to the target) can be used to harness these target-specific
features. This result puts existing content-based resource selection methods under a new
light—their portability across resources makes them a good source of target-vertical la-
bels, which can be used to bootstrap a more effective model that harnesses target-specific
evidence.

To investigate the generality of a machine-learning approach to selection, in Chapter 7
we focused on a more traditional federated search environment, associated with result-

1This was due partly because many of our verticals were topically-focused (e.g., autos, games, health,
movies, sports, travel). However, we expect this to be the case in many aggregated search environments.
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type and retrieval-algorithm homogeneity. There, we found that integrating non-content
based evidence, for example, derived from click-through data, is particularly important
when resource representations are poor. That is, when resource sample sets (used by
content-based methods such as CORI [14], GAVG [86], and ReDDE [94]) are relatively
small for those collections with relevant content. In practice, we may not know when
resource representations are poor. Or worse, even if we do, sampling restrictions may
prevent us from constructing better ones. We showed, however, that when given access
to multiple sources of evidence, a machine-learning approach is capable of shifting its
focus between content-based features (derived from sampled content) and non-content-
based features (derived from other information) depending on the actual resource rep-
resentation quality. Compared to content-based methods, a feature-integration machine
learning approach is more robust.

Additionally, in Chapter 7, we show that at least in a homogeneous environment, a
machine-learning approach can be trained without using human-produced training data
of any kind. Our zero-judgement training method harvests training data from retrievals
that merge content from every available resource. A machine-learning method was
trained to select those resource whose merged ranking approximates one that merges
content form all. This training approach may be particularly useful in a dynamic envi-
ronment, where changes in resource content and user interest might reduce the effec-
tiveness of an already-trained model. Assuming access to recent queries (representative
of current interests), a fresh new set of training queries can be harvested at zero editorial
cost.

8.1.2 Results Presentation

When resources retrieve similar types of results, an appropriate presentation strategy is
to interleave results from different resources in an unconstrained fashion. In an aggre-
gated web search environment, however, result-type heterogeneity imposes a number of
layout constraints on the final presentation. One constraint, for instance, is that same-
vertical results must appear grouped together—vertically (e.g., news) or horizontally (e.g.,
images)—in the aggregated results. In the absence of layout constraints, existing methods
cast the results presentation task as retrieval score normalization: transforming scores
from different resources so that they are directly comparable and can be used to induce
a merged ranking. These methods are not well-suited for aggregated web search. Even if
we had some way of incorporating layout constraints, some verticals, particularly those
that behave like a database look-up (e.g., weather, finance, movie times), are not associated
with a retrieval score. A major contribution of the dissertation is the formulation of the
vertical results presentation task as block-ranking. In this formulation, the goal is to or-
der sequences of Web and vertical results that must appear grouped together in the final
presentation.

Based on this formulation of the presentation task, in Chapter 5, we proposed and
empirically validated a methodology for evaluating a particular presentation of results
(i.e., a particular ranking of Web and vertical result-blocks). We found that, in most
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cases, non-expert, inexpensive assessors are capable of making preferential judgements
between pairs of blocks and that these pairwise judgements can be used to derive a
ground truth or reference presentation. Our evaluation approach, then, is to score alter-
native presentations (i.e., alternative block-rankings) based on their distance (using an
existing rank-based distance metric [64]) to the reference. A user study demonstrated
that when assessors (strongly or unanimously) prefer a particular block-ranking over
another, the metric also scores the preferred block-ranking as superior.

Finally, in Chapter 6, we investigated machine learning approaches to block-ranking.
The methodology from Chapter 5 was used for model learning and evaluation. In other
words, models were trained to produce output that approximates the reference block-
ranking and were evaluated based on the quality of their approximation on unseen
queries. Consistent with the rest of the dissertation, models were trained to predict a
block’s rank as a function of a set of features. These experiments show several important
results.

The best-performing models were those that allow the algorithm to learn a vertical-
specific relationship between features and block relevance. In other words, even if a
feature is common to multiple verticals, the best models do not assume that the fea-
ture is equally correlated with relevance for different verticals. We presented two general
approaches that can exploit a vertical-specific relationship between features and block
relevance. One alternative is to learn and combine vertical-specific classifiers in order to
produce a final block-ranking. A second alternative is to learn a single model by casting
the task as a learning-to-rank (LTR) problem. The challenge with this second approach,
however, is that LTR models assume that each feature has a consistent predictive re-
lationship (with rank) across all elements being ranked (in our case, across blocks from
different verticals). We show that a vertical-specific predictive relationship can be learned
by making “copies” of each feature (one per vertical) so that the model can assign a dif-
ferent weight to different copies, depending on whether the feature has a positive or
negative correlation (or no correlation) with a particular vertical’s relevance. The impor-
tance of learning a verticals-specific relationship between features and vertical relevance
is consistent with the results from Chapter 3, where the query-category was the most
predictive source of evidence for vertical selection.

Another major finding in this work is the importance of post-retrieval evidence. Dur-
ing vertical selection, the task is to predict which verticals are relevant using only pre-
retrieval evidence (i.e., without issuing the query to the vertical). During vertical results
presentation, however, the assumption is that the query has already been issued to those
verticals selected. Thus, post-retrieval features can be derived from the vertical search
engine results, including those actually presented in the vertical block. Our results show
that post-retrieval features contribute significantly to performance. In fact, they were
the only features to not hurt performance for any vertical and improve performance for
several. Moreover, in Chapter 3, news was one of the worst-performing verticals. Given
access to post-retrieval features, however, it was one of the best-performing.

This result has important implications for end-to-end aggregated web search. For
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some verticals, the decision to present or suppress the vertical is better informed using
post-retrieval evidence. While this may not be surprising, the magnitude of the im-
provement is considerable for some verticals (e.g., an 86% improvement for news). While
post-retrieval evidence never hurts performance, it does not help every vertical. For
example, it had little impact for finance and images. To improve the end-to-end results
(and maintain efficiency), system designers might consider identifying those verticals for
which post-retrieval features are the most useful and tuning the vertical selection ac-
cordingly so that post-retrieval evidence can be generated for those verticals more often.
A second alternative is to develope a framework for caching post-retrieval features for
future impressions of the query or queries similar to it.

8.2 Thesis Contributions

As the field of Information Retrieval has progressed, researchers and commercial search
providers have considered a wider range of search tasks. A consistent finding in empiri-
cal IR research is that different search tasks require specialized solutions. Different types
of media require different representations. Different definitions of relevance require dif-
ferent search algorithms. Different user objectives require different ways of presenting
results and different user interactions. As a result, in recent years we have seen an ex-
plosion of highly customized search services. In the context of Web search, these include
search services for news, images, videos, local businesses, weather forecasts, driving di-
rections, on-line discussions, items for sale, digitized books, scientific publications, and,
more recently, even social-media interactions. This gives rise to a new challenge: How
do we provide users with integrated access to all these diverse search services within a
single search interface? This is the goal of aggregated web search and the main focus on
this dissertation.

Aggregated web search can be viewed as a type of federated search, which has been
studied extensively for the past two decades. However, as this dissertation shows, exist-
ing federated search solutions are not well-suited for an environment where resources
retrieve very different types of results (result-type heterogeneity) and use very different
retrieval algorithms (retrieval algorithm heterogeneity). This dissertation contributes new
approaches to the two main tasks associated with aggregated web search: vertical selec-
tion and vertical results presentation. We show through extensive experimentation that the
proposed methods are effective, robust, and generalize across federated search environ-
ments. Not only do they outperform existing approaches in a heterogeneous environ-
ment, they also outperform these in a more homogeneous federated search environment,
for which existing methods were designed.

At the core of our proposed methods is the use of supervised machine learning as
a means for (1) integrating different types of features and (2) learning a predictive rela-
tionship between features and vertical relevance. We believe that this new approach to
federated search benefits the field in several meaningful ways. First, it places a greater
emphasis on feature engineering. This is advantageous because it encourages division
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of labor, which may result in better features and faster system development. Second,
diversifying across features is a way of mitigating risk. Given enough high-quality train-
ing data, ineffective features should not completely devastate system performance. This
added robustness may encourage the development of new types of features. Finally,
while our feature-integration approach differs from existing federated search techniques,
which focus on a single type of evidence, it does not ignore them. Two decades worth
of federated search research has produced many theoretically-grounded resource selec-
tion methods that are highly effective in certain environments. In our approach, these
can be used as input features in the same way that BM25 can be used as a feature in
machine-learned document ranking. A feature-integration approach generalizes existing
approaches.

Throughout the dissertation, we investigate various different types of features and
sources of training data. We believe this is an important contribution. Prior federated
search research focused almost exclusively on content-based evidence. Additionally, we
show that training data can be produced, not only by expert assessors, but also non-
expert, inexpensive Amazon Mechanical Turk workers. Most prior federated search
research simulated a federated search environment by partitioning TREC corpora as-
sociated with a judged set of queries (usually judged by expert assessors).

While domain adaptation has been applied to various other learning problems, we
present the first investigation of domain adaptation for the task of vertical selection. This
investigation revealed that certain features (particularly those generated from the verti-
cal) generalize well across verticals and can therefore be applied to a new vertical with no
training data. Furthermore, they can be used to discover highly predictive vertical-specific
features. The dissertation contributes algorithms that can re-use training data, which is
expensive and time-consuming to produce. Additionally, our methods may help better
allocate resources for the production of new training data. For example, after adapting a
model to a new vertical, assessors can focus on annotating low-confidence queries. Alter-
natively, it may be more cost-effective to have assessors identify vertical-specific features,
as we found those to be particularly predictive and non-portable.

While most prior work in federated search recognized the interdependence between
resource selection and results merging, no work to date has exploited this interdepen-
dence to improve end-to-end performance. Our results show that there is much to gain
from sharing information between these two different sub-tasks. In a homogeneous
environment, retrievals that merge content from all available resources can be used to
generate training data for resource selection. In aggregated web search, a trained vertical
results presentation model can re-evaluate vertical selection decisions in light of post-
retrieval evidence (derived from the vertical results). This may be a potential source of
training data for vertical selection. In other words, if the vertical results presentation
component suppresses a vertical based on post-retrieval evidence, this is evidence that
the vertical selection component should not have selected it based on pre-retrieval evi-
dence. Future research should continue investigating ways in which decisions made by
one component can be a source of (unsupervised) training data for the other.
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Formulating the vertical results presentation task as block-ranking plays two impor-
tant roles in the dissertation. First, it facilitates evaluation. Our methodology is to derive
a reference presentation for the query and to evaluate alternative presentations based on
their distance (or similarity) to the reference. Second, it facilitates model learning. Mod-
els can be trained to produce output that approximates the reference. Our evaluation
methodology has several advantages, which we believe will encourage other researchers
to work on aggregated web search. First, it facilitates (off-line) test-collection-based eval-
uation. Relevance assessments and cached features can be easily distributed among
researchers and alternative approaches can be directly compared. Most prior research in
aggregated web search was conducted in a commercial setting, with a live system and
millions of users to provide implicit feedback. On-line evaluations (using implicit feed-
back) are more difficult in an academic setting. Second, our evaluation methodology is
inexpensive, therefore new evaluation testbeds can be developed at a reasonable cost.

Other aggregation tasks have similar layout constraints as those we defined for the
vertical results presentation task. Examples include news story aggregation, aggregating
content in portals like AOL, and recommending search-assistance tools to users. In all
these cases, the system can assume a fixed presentation template (i.e., a fixed set of slots)
and the problem can be formulated as deciding which content to surface and where
to display it. Thus, our block-ranking methods and our evaluation methodology may
encourage new research in these areas, especially in non-commercial environments.

8.3 New Directions

Within the area of aggregated web search, there are two major problems we did not
address. First, advancing the use of supervised approaches to selection and presentation
requires methods that can maintain performance given changes in vertical content and
user interests. Second, one of our assumptions (which is also made by all aggregated
web search work to date) is that verticals behave independently. We believe that overall
performance can be substantially improved by sharing evidence across vertical results.

The work presented in this dissertation is important because it may facilitate re-
search in other IR applications with similar assumptions and a similar task formulation.
We propose work on two areas which have large potential and are currently not well
understood.

8.3.1 Aggregated Search with Dynamic Content and User Interests

The aggregated web search environment is dynamic. The environment can change in
three ways: a new vertical can be added to the set of candidate verticals, content can be
added to (or removed from) a particular vertical, and the interests of the user population
may drift, effectively changing the distribution of queries input to the system. In Chap-
ter 4, we focus on the first type of change—the introduction of a new vertical (with no
training data) to the set of candidate verticals (with training data). Further advancing

148



the use of supervised methods for vertical selection and presentation requires approaches
that can handle the other two changes in the environment. Prior work confirmed that a
change in resource content can degrade the performance of an already-tuned resource
selector [93].

In machine learning, the problem of concept drift occurs when the relationship be-
tween features and the target class changes over time [84]. One approach, for example,
is to maintain a running ensemble of classifiers, which are re-weighted, pruned, and/or
augmented with new ensemble members based on new, more recent training exam-
ples [62]. Future work might consider selection and presentation approaches that can
adapt to concept drift without access to new training examples. Just as Chapter 4 found
that some features are portable across verticals (and therefore also predictive for a new
vertical with no training data), we may find that some features are portable for the same
vertical across time-periods. For example, the presence of the query-term “news” will
likely be a portable feature across time-periods for news. A model trained on these time-
portable features may be able to produce high-precision/low-recall predictions that can
be used to discover features that are specifically predictive for the vertical, but only for
the current time-period.

8.3.2 Improving the Coherence between Cross-Vertical Results

Throughout the dissertation, we made the assumption that verticals operate fairly inde-
pendently from each other. In fact, in our formulation of the vertical results presentation
task, we explicitly assume that the task is not to predict which results from the vertical
to present, but rather to predict whether to present the vertical given its results (and if
so, where). There are two issues with having verticals operate independently from each
other. First, different verticals may focus on different interpretations of the query, mak-
ing the aggregated results seem fragmented and incoherent. Second, while the query
may be a difficult query for one vertical, it may be an easy query for another. Thus, the
results from a confident vertical are a source of evidence for improving the results from
a less confident vertical. In this sense, having verticals operate independently is a missed
opportunity.

Figure 8.1 shows results from two verticals predicted relevant to the query “joplin” by
a commercial search provider. At the time the query was issued, a tornado had recently
hit the community of Joplin, Missouri. While the news vertical focuses on this event,
the images vertical focuses on a different sense of the query (the singer Janis Joplin).
As it turns out, each vertical focused on the query sense that is most prevalent in its
collection.2 One might argue, however, that the disproportionate amount of content in
the news index about Joplin, Missouri provides evidence of a new query sense that is
suddenly important and should be reflected in the images results. A better retrieval might
have presented images from both senses.

2At the time, the news vertical had 13, 900 hits for “joplin missouri” and 445 hits for “janis joplin”. On
the other hand, the images vertical had 1, 430, 00 hits for “joplin missouri” and 3, 050, 000 hits for “janis
joplin”.
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news

images

Figure 8.1: A commercial search engine presents news and images results in response the
query “joplin”.

The idea is that we want to bias results from some verticals (predicted ineffective)
to be similar to those from other verticals (predicted effective). This requires addressing
two questions. First, how do we detect that a vertical produced an effective retrieval?
Several (automatic) retrieval effectiveness predictors have been proposed in prior work,
which focus, for example, on properties of the top-ranked documents [25, 27] or on the
rank-stability [116, 120]. The second question is, given an effective vertical retrieval,
how can we bias other vertical retrievals to be similar to it? One approach may be query-
expansion—generating expansion terms from some verticals and re-submitting the query
to the others. A second approach might be to bias results from different verticals to be
close in a hyperlink graph.3

8.3.3 Aggregated Mobile Search

Currently, commercial mobile search providers support many of the same verticals known
to desktop searchers.4 However, aggregated mobile search is associated with unique chal-
lenges and opportunities, which are not well understood. The solutions presented in
this dissertation may provide a framework for, not only developing aggregated mobile
search solutions, but also learning more about the problem.

One major opportunity in aggregated mobile search is the availability of rich infor-
mation about the user’s current context (e.g., their local time, location and movement)
and, possibly, even their current activity (e.g., are they likely at home, at work, in an
unfamiliar location, or traveling?). Clues about the user’s activity can be provided by

3Often, vertical content is harvested from the Web and can therefore be associated with one or several
nodes in a Web hyperlink graph.

4For a demonstration, see: http://mobile.yahoo.com/search
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historical contextual data. IR researchers have long advocated that user context (includ-
ing time and location) should play a more active role in search [49]. In aggregated mobile
search, for example, weather results may be more relevant in the morning, maps results
may be more relevant if the user is moving, traffic information may be more relevant
during rush hours, and movie times may be more relevant in the evenings.

In addition to contextual information, aggregated mobile search is also unique in the
way that users interact with the search results. For example, local results often present
the business’s phone number, which the user can click to directly place a call. This is
a stronger signal of relevance than a traditional click. Also, the ability to scroll, pinch-
and-zoom, and rotate (coupled with the reduced screen size) means that the system
always knows precisely where the user is looking. The evidence-integration approaches
presented in this dissertation may provide a framework for investigating the role of
contextual information and implicit feedback signals in aggregated mobile search. Does
contextual information help? Are some feedback signals more predictive than others?
Are there confounding effects between the user’s context and the predictiveness of a
particular feedback signal?

8.3.4 Search Tool Recommendation

Just as different verticals support different search goals, different search tools and inter-
ventions are designed to assist searchers in different scenarios. For example, if a search
is ineffective, the user may benefit from seeing query suggestions or potential query-
expansion terms [59]. If a query is too general, a clustering of results may assist the user
in narrowing their search [47, 58]. Facet-value pair recommendation can also help users
narrow their search when there is evidence that document meta-data can effectively iso-
late the relevant set [118]. If a search is largely exploratory, the user may benefit from
seeing search trails from other users who performed a similar search and identified use-
ful content [73]. During long sessions, note-taking applications can help users keep track
of search results [30]. The goal of all these search tools and interactions is to guide users
towards more successful searches. The challenge, however, is that they are not always
appropriate.

The problem of search tool recommendation can be cast as an aggregated search prob-
lem, where the goal is to resolve contention between different interventions rather than
different verticals. Several factors affect the relevance of a particular intervention. First,
different interventions are appropriate in different user scenarios, as motivated above.
Second, the usefulness of a particular intervention is affected by the information available
to the system (query suggestions should not be presented without evidence of their effec-
tiveness). Third, different users may prefer different search tools. The feature-integration
methods presented in the dissertation may provide a framework for addressing the prob-
lem of search-assistance tool recommendation. Potentially useful sources of predictive
evidence include pre- and post-retrieval effectiveness predictors [46], user interaction
data which can predict the user’s intent [44] or level of frustration [36], session-level
evidence [111], and user-preference information.
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Vertical Blocks
Appendix A

Figures A.1- A.3 show example vertical blocks associated with the 13 verticals used in
Chapters 5 and 6.

(a) blogs

(b) books

(c) community Q&A

(d) finance

Figure A.1: Example vertical blocks.
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(e) images

(f) local

(g) maps

(h) news

Figure A.2: Example vertical blocks.
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(i) recipes

(j) shopping

(k) twitter

(l) weather

(m) video

Figure A.3: Example vertical blocks.
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User Study Queries and Descriptions
Appendix B

Set of queries and descriptions used in the user study presented in Chapter 5.

1. aperture vs photoshop: The user is looking for reviews that compare "Apple Aper-
ture" and "Adobe Photoshop".

2. apple store pittsburgh: The user is looking for an Apple Store in Pittsburgh, PA.

3. bank of america online banking: The user is looking for information on the new
features that Bank of America is adding to their online services.

4. belize map: The user is looking for a map of Belize.

5. best buy: The user is looking for financial information on the company Best Buy

6. best weather to fish in: The user is looking for recommendations on favorable
weather conditions for fishing.

7. boston hotels near convention center: The user is looking for hotels in Boston that
are near the convention center.

8. brussels belgium weather: The user is looking for current weather information for
Brussels, Belgium.

9. calculate a golf handicap: The user is looking for instructions on how to properly
calculate a "golf handicap"

10. caribou coffee: The user is looking for financial information on the company Cari-
bou Coffee

11. cheap hotels in anaheim california: The user is looking for inexpensive hotels in
Anaheim, CA.

12. cooking ribs: The user is looking for instructions on how to cook ribs.

13. craigslist suspect dies: The user wants to read about the recent death of the "Craigslist
suspect".

14. culinary school charlotte north carolina: The user is looking for culinary schools in
Charlotte, NC.
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15. destin florida forecast: The user is looking for weather information for Destin, FL.

16. discovery channel hostage crisis: The user is looking for information on the recent
hostage incident that occurred at the Discovery Channel’s Headquarters.

17. dominican republic maps: The user is looking for a map of the Dominican Repub-
lic.

18. earthquake christchurch new zealand: The user is looking information on the re-
cent earthquake in Christchurch, New Zealand.

19. eggs recall list: The user would like to find a list of brands, stores, and plants
affected by the recent egg salmonella outbreak.

20. facebook places: The user would like to learn more about Facebook’s new applica-
tion: "Facebook Places".

21. floyd mayweather racist rant: The user is looking for a video clip of boxer Floyd
Mayweather’s controversial rant against opponent Manny Pacquiao.

22. fodors europe travel guide: The user would like to purchase a Fodor’s travel guide
for Europe.

23. giant goldfish france: The user is looking for information on the unusually large
"goldfish" recently captured in France.

24. help people who have cancer and need funding: The user is looking for charitable
ways of giving financial support to cancer victims.

25. home depot: The user would like to find a Home Depot store in Pittsburgh, PA.

26. hotel captain cook anchorage ak: The user is looking for the "Captain Cook" hotel
in Anchorage, Alaska.

27. hotels in biloxi ms: The user is looking for hotel information in Biloxi, Mississippi.

28. how to remove glue from fabric: The user is looking for tips on how to remove glue
from fabric.

29. hurricane earl path: The user is looking for forecast information on Hurricane Earl.

30. ihop nutritional facts: The user is looking for nutritional information for menu
items in the restaurant IHOP.

31. instrument stores houston tx: The user is looking for stores that sell musical instru-
ments in Houston, TX.

32. intel: The user would like to learn more about Intel’s plan to acquire McAfee.

168



33. james lee discovery channel: The user is looking for information on "James Lee",
responsible for the hostage incident at the Discovery Channel headquarters.

34. kitchen photos: The user is looking for images of kitchens.

35. learn to play the banjo: The user is looking for general information about learning
to play the banjo.

36. local weather petoskey mi: The user is looking for weather information for Petoskey,
MI.

37. machete race war: The user is looking for information on the controversial movie
"Machete".

38. map of london england: The user is looking for a map of London, England.

39. map of wyoming: The user is looking for a map of Wyoming.

40. marbella spain weather: The user is looking for weather information for Marbella,
Spain.

41. mariner energy: The user is looking for information on the recent explosion on the
"Mariner Energy" oil rig.

42. marvin sapp wife dies: The user is looking for information on the recent death of
the wife of singer Marvin Sapp.

43. miami above ground pool stores: The user is looking for stores that sell "above
ground" swimming pools in Miami, FL.

44. michael jordan baseball stats: The user is looking for statistics on Michael Jordan’s
brief Baseball career.

45. miss universe 2010: The user would like to find information about the "miss uni-
verse 2010" beauty contest.

46. new ipod nano: The user is looking for reviews and pricing information for Apple’s
new iPod Nano.

47. nikon cool pix: The user plans to purchase a Nikon Cool Pix camera and is looking
for product and pricing information.

48. nissan dealerships in albuquerque: The user is looking for Nissan dealerships in
Albuquerque, New Mexico.

49. no time to die book: The user is considering purchasing the book "No Time to Die"

50. organic gardening pest: The user is looking for information on pest-control in
organic farming.

169



51. photography books: The user is looking for books on photography.

52. pictures of bread: The user is looking for images of bread.

53. piranha 3d preview: The user would like to view a trailer for the movie: "Pirahna
3D".

54. politics in the philippines: The user is looking for information on the historical and
current political situation in the Philippines.

55. pot roast cooking time in oven: The user is looking for instructions on how to cook
pot roast.

56. pressure cooker: The user would like to purchase a pressure cooker.

57. robert de niro photos: The user is looking for images of the actor Robert De Niro.

58. san bruno fire: The user is looking for information on the recent fire in San Bruno,
CA.

59. southern home cooking: The user is looking for recipes of southern cuisine.

60. sports bars downtown chicago: The user is looking for a sports bar in downtown
Chicago, IL.

61. tampa thai restraurants: The user is looking for Thai restaurants in Tampa, FL.

62. target super stores: The user is looking for Target stores in Pittsburgh, PA.

63. texas tax free weekend: The user would like to learn more about Texas’ tax-free
weekend sale.

64. tilapia fish recipes: The user is for recipes for Tilapia.

65. tom brady car accident: The user is looking for informaton on quaterback Tom
Brady’s recent car accident.

66. toyota auto parts: The user is looking for places to purchase Toyota auto parts.

67. true blood rolling stone cover: The user wants to know the public’s general reaction
to the new cover of "Rolling Stone" magazine, featuring the cast of TV show "True
Blood".

68. ups plane crash: The user is looking for information on the recent UPS plane crash
in Dubai.

69. us open fight: The user is looking for information on the recent fight that broke out
between spectators at the US Open.

70. vera zvonareva: The user is looking for information on tennis player Vera Zvonareva’s
recent performance at the US Open.
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71. watch true blood season 3 episode 10: The user would like to see a preview of the
10th episode of the 3rd season of the TV show True Blood.

72. world trade center: The user is looking for information on the latest construction
plans for the future World Trade Center Memorial Site.
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