Chapter 1

Aggregated Search

1.1 Introduction

Modern search portals such as Google, Bing, and Yahoo! provide access
to wide range of search services in addition to Web search. These search
services, commonly referred to as wverticals, include highly-specialized search
engines that focus on a particular type of media (e.g., images, video), search
engines that focus on a particular type of search task (e.g., news, local), and
applications that return a specific type of information (e.g., weather, stock
quotes). In the most general sense, aggregated search is the task of providing
integrated access to all these different vertical search services, and to the core
Web search engine, within a common search interface—a single query box and
a unified presentation of results.

Given a user’s query, an aggregated search system must make a number
of predictions. As one might expect, not every vertical is relevant to every
query. If a user issues the query “nyc pizza restaurant locations”, it is almost
certain that the user wants local business information and not images. Thus,
an important step for an aggregated search system is to present those verticals
most likely to be relevant and to suppress those most likely to be non-relevant.
Moreover, queries are often ambiguous in terms of the user’s actual intent.
For example, if a user issues the query “new york style pizza” (Figure 1.1),
it is unclear whether the user wants to find a place to eat (in which case
local business results might be relevant) or wants to learn to cook New York
style pizza (in which case recipes, how-to videos, and/or images might be
relevant). Thus, another important step of an aggregated search engine is to
resolve contention between verticals and to present those more likely to be
relevant in a more salient way.

While aggregated search might seem like a new technology, it has its roots
in a fairly mature subfield of information retrieval called federated search,
where the goal is to provide automated search across multiple distributed
collections or search engines. And, like most methods for federated search,
most aggregated search methods approach the task in two subsequent steps:
(1) predicting which verticals to present (vertical selection) and (2) predicting
where to present them (vertical presentation). Vertical selection refers to the
problem of selecting a subset of relevant verticals given a query. One way to

4 CHAPTER 1. AGGREGATED SEARCH

new york style pizza

New York-style pizza - Wikipedia, the free encyclopedia
.wikipedia.org New_York-s i

New York-style pizza originated in New York City in the early 1900s, and in 1905, the first pizza establishment in

the United States was opened in New York's Little ...

New York Style Pizza | Serious Eats : Recipes

seriouseat: m/recipes/2010/10/ne «)i htm|
1 hour before baking, adjust oven rack with pizza stone to middle position and preheat oven to 500°F. Turn single
dough ball out onto lightly flour surface.

' New York Style Pizza near North Carolina 27599

. NY Pizza - (XxX) XXX-XXXX
6458 Tryon Rd, Cary
Directions - Menu

local

. NY Pizza - (xxX) XXX-XXXX
1831 N Harrison Ave, Cary
Directions - Menu

New York Style Pizza Recipe - Allrecipes.com

1"‘his i; a no‘fri‘lls ‘Qe‘v‘u York Pi‘zz‘; v‘vith h‘eaps‘ of mozzarella cheese and fresh basil. Use it as a base and add your
favorite pizza...

New York Style Pizza & Pasta

New v«;rk S‘t‘yle‘ P‘i‘z‘za &‘Pas(a was established in 1991. Since then the restaurant has won restaurateur of the year

awards five times and many other excellence awards.

" Images for new york style pizza

images

New york style pizza

: hefind_desc=n rk+style+pizza&find_loc=N
Reviews on New york style pizza in New York: Rosa's Pizza, Lombardi's Pizza, Grimaldi's, John's Pizzeria, Keste
Pizza & Vino, Bleecker Street Pizza, Joe's Pizza ...

* News for new york style pizza
Photo Of The Day: New York Pizza
1 - 16 hours ago
news There's lots of good food to be had in New York City. So much, in fact, that visitors must not forget to try...
NY man hopes to make world's fastest pizza
St Journal = 16 hours ago

FIGURE 1.1: Given the query “new york style pizza”’, an aggregated search
system decides to blend results from the local, images, and news into the core
web results.

think about this is as the classification of verticals according to whether or
not they should appear on the results page at all. Vertical presentation refers
to the problem of interleaving this subset of verticals with the web results.!
In this chapter, we provide an overview of aggregated search techniques and
methods for evaluation. As mentioned above, an aggregated search system
must make predictions about which vertical(s) are more likely to be relevant
to a user’s query. State-of-the-art approaches combine multiple types of ev-
idence to make these decisions. Section 1.2 provides an overview of features
used in aggregated search and Section 1.3 provides an overview of machine

IThis decomposition is primarily motivated by economics. Getting results from a vertical
search engine oftentimes incurs some cost. This cost might be monetary if the aggregator is
paying for access to a closed service. In the case of cooperative vertical search engines, this
cost may be in computational if the vertical search engine cannot support portal traffic.
Therefore, vertical selection can be a method for reducing the overhead of an aggregator.

1.2. SOURCES OF EVIDENCE)

learning methods for combining features in order to make aggregated search
predictions. Section 1.4 focuses on methods for evaluation and covers methods
for test collection evaluation and on-line evaluation . Finally, Section 1.5 cov-
ers special topics in aggregated search. Among these, we focus on methods for
sharing training data among verticals and methods for eliciting and exploiting
implicit user feedback to improve future aggregated search predictions.

1.2 Sources of Evidence

There are many ways in which an aggregated search system might be able
to determine that a vertical is relevant to a query. Consider, for example, the
task of predicting when to present the news vertical in response to a user’s
request. If the query contains the term “news”, this is a strong indication
that the news vertical is relevant. That said, not every newsworthy query
will contain the term “news”. Consider for example, the query “presidential
debates”. If many of the news articles currently in the news index contain
these two query terms (or terms that are semantically related), this might also
indicate news-vertical intent. In this case, the underlying assumption is that
content supply (i.e., an abundance of query-related content in the underlying
vertical collection) can help predict content demand. A system might also
consider content demand directly. In many cases, users can navigate and
issue queries directly to a particular vertical search engine. In a cooperative
environment, the aggregated search system might have access to this vertical-
specific query stream. Thus, another source of evidence is the number of
similar queries issued to the vertical in the recent past. Finally, if a vertical is
presented in response to a query, the aggregated search system can keep track
of the user’s actions. While implicit user feedback is subject to different types
of bias, by averaging across many users, a system may be able to generate
useful evidence for future impressions of the same query or similar queries.

Prior work shows that no single source of evidence can be used to predict
that a particular vertical is relevant to a query [5, 3, 30]. Thus, state-of-
the-art approaches to vertical selection and vertical presentation use machine
learning to combine multiple types of predictive evidence as features. In this
section, we provide an overview of different types of features used in prior
work.

1.2.1 Types of Features

In learning about different types of features, it helps to be aware of their
similarities and differences. Broadly speaking, features can be organized along
two dimensions. The first dimension relates to whether the value of the fea-

6 CHAPTER 1. AGGREGATED SEARCH

ture depends only on the query (is the same for all verticals), only on the
vertical (is the same for all queries), or is unique to the vertical-query pair.
The second dimension relates to whether the feature value can be generated
without issuing the query to the vertical; must be generated after issuing the
query to the vertical, but before the vertical is presented to a user; or must
be generated after the vertical is presented to a user.

With respect to the first dimension (i.e., the source of the feature value),
there are three categories. Query features are generated from the query string
and their values are independent of the candidate vertical. Examples may in-
clude whether the query contains a particular term (e.g., “news”, “pics”, or
“weather”) or a particular named entity type (e.g., a person, location, or or-
ganization). Vertical features are generated from the candidate vertical and
their values are independent of the query. Examples may include the number
of new documents added to the vertical collection or the number of queries
issued directly to the vertical search engine in the recent past. Vertical fea-
tures typically quantify bursts in vertical content supply or demand. Finally,
vertical-query features are a function of both the query and the vertical in
question. Examples may include the number of hits in the vertical collection
or the similarity between the query the vertical’s query stream.

¢pre—ret
q,Y0

pre-ret post-ret
Por - g

¢pre—ret
q,Vk—1

<bpre-ret — ¢post—ret — ¢post—pres

q,Vk q,Vk q,Vk

FIGURE 1.2: Feature availability during different stages of decision-making.
Pre-retrieval features, ¢gf§-ret, are easy to compute, available to all verticals,
and help with vertical selection decisions. Post-retrieval features, ¢g?jt‘r8t7 are
computed only for those verticals which we request results from and are useful
for making final presentation decisions. Post-presentation features, d)gf’vst‘pres,
are available only after the presentation decision has been made and is useful
for evaluating performance and predicting the values of post-presentation fea-
tures for future issuances of ¢q. Features in gray are not computed or logged
during an individual search session because of upstream decisions.

1.2. SOURCES OF EVIDENCE 7

With respect to the second dimension (i.e., the stage at which the feature
value can be generated), there are also three categories. Pre-retrieval fea-
tures can be generated without ever issuing the query to the vertical. Query
features (generated from the query, independently from the vertical) and verti-
cal features (generated from the vertical, independently from the query) tend
to be pre-retrieval features. In most commercial environments, it is either
impractical or impossible to issue every query to every vertical in order to
decide which verticals to present and where. Thus, pre-retrieval features have
received considerable attention in prior work. Post-retrieval features must be
generated by issuing the query to the vertical. Examples may include the
average recency of the vertical’s top results or the average retrieval score of
the vertical’s top results. Post-retrieval features are motivated by the fact a
vertical can be ultimately suppressed in light of poor post-retrieval evidence.
For instance, if a vertical search engine retrieves an unusually low number of
results, this may indicate that it is non-relevant. Finally, post-presentation
features are observed after the vertical is presented to a user and are typ-
ically derived from actions taken by the user. Post-presentations features
typically consist of implicit feedback signals such as clicks and skips on the
vertical results, which are thought to be positively or negatively correlated
with vertical relevance. Post-presentation features are retrospective. As such,
they allow self-assessment of presentation decisions and can be used to inform
predictions during future impressions of the same query or similar queries.
Figure 1.2 depicts the availability of different features at different stages of
decision-making.

Defining features as being pre-retrieval, post-retrieval, or post-presentation
deserves additional clarification. One could imagine, for example, a system
that caches post-retrieval and post-presentation features for future impres-
sions of a query (Figure 1.3). Caching feature values is particularly useful for
head queries, which are seen over and over. Caching post-retrieval and post-
presentation feature values enables their use without having to issue the query
to the vertical or having to present the vertical to the user. However, based
on the terminology used in this chapter, cached features are still considered
post-retrieval and post-presentation features. The distinction lies in whether
it is necessary to issue the query to the vertical or present the vertical to the
user in order to generate the exact feature value for the current query. Vertical
collections, vertical query-streams, and vertical click behaviors are dynamic.
Thus, while post-retrieval and post-presentation features can be cached for
future impressions of a query, their values are likely to require periodic, and
possibly online, updating.

1.2.2 Query Features

Query features are generated from the query string and not from any re-
source associated with a candidate vertical. As described in more detail in
Section 1.3, a predictive relationship between query features and the relevance

8 CHAPTER 1. AGGREGATED SEARCH

I pre-ret
(*)‘Iv Yo

(pre-ret / post-ret L post-pres
Py 7 Pqo T Py ppretet
: : : q.v0

N N DOST-Te
. PP
gpreret 7,00
7,01
pre-ret post-ret gpreret
Pt = Db 9.1

7 pOST-Tet post-ret
(')q.m — ¢q.v1

post-pres
Py,

pre-ret post-ret
P~ O

pre-ret
pre-ret post-ret (b} Uk
op = o 2=
U1 \U1
- N (/)prc—m(
ppre-ret q.0k
Yq,up-1 DOSt-TGT | post-ret post-pres
D[P i,
- . . post-pres
@s,)ﬁ‘el N @Il)ﬁ;l—zet N ¢53;L—pxes Pg,vr

(a) cached feature values (b) runtime feature values

FIGURE 1.3: Feature caching. The left subfigure represents the logged fea-
tures computed for previous issuances of ¢, including post-presentation fea-
tures. The right subfigure represents the availability of cached feature values
(red, in boxes) during runtime at the pre-retrieval stage. Note that these are
approximations to downstream feature values and may be sensitive to corpus
change or user differences.

of a particular vertical must be either hardwired manually or learned using
supervised machine learning.

Prior work has experimented with different types of query features. These
include features that indicate the presence of a particular term (e.g., “photo”,
“weather”, “stocks”) [5, 26], a particular named entity type (e.g., the name of
a person, location, organization) [5], or a particular entry in a look-up table
(e.g., a valid zip code or a valid ticker symbol) [5]. Such query features are
typically binary-valued and implemented using rule-based triggers.

Query-term features such as those described above capitalize on the fact
that certain keywords confidently predict vertical intent. The keyword “pics”
suggests that the user wants images, the keyword “showtimes” suggests that
the user wants movie times, and the keyword “directions” suggests that the
user wants driving directions. Sometimes, however, a query may not have an
explicit keyword. Thus, another type of query feature measures the degree
of co-occurrence between the query terms and a set of manually-identified
vertical-specific keywords [3]. Co-occurrence statistics can be derived from
the aggregated search system’s own query-log. So, for example, given the
query “eiffel tower”, the system might consider presenting the images vertical
because “eiffel tower” tends to co-occur with terms such as “pics”, “pictures”,
and “photos” in the system’s query-log.

1.2. SOURCES OF EVIDENCE 9

Among the most successful query features investigated in prior work are
query-category features, which measure the query’s affinity to a set of pre-
defined semantic categories [5, 30]. Query-category features have been suc-
cessful for several reasons. First, many verticals investigated in prior work
have been topically focused, for example travel, health, games, music, autos,
and sports [5]. Second, query-classification has been widely studied for pur-
poses other than aggregated search (see, for example, [37, 38, 21]). Thus,
aggregated search techniques can capitalize on these well-tested approaches
for the purpose of feature generation. Finally, while general-purpose query-
categorization may require making a binary decision about the query’s mem-
bership to a category, for the goal of aggregated search, this is not required.
Query-category features can be real-valued and be associated with the clas-
sifier’s confidence values across the set of target categories. This gives the
aggregated search model the flexibility of focusing on other types of features
when query-category confidence values are uniformly low.

Query categorization is challenging because state-of-the-art classifiers tend
to use a bag-of-words representation and queries are usually terse. However,
a simple and effective solution is to categorize the query indirectly. That is,
to issue the query to a search engine containing manually or even automati-
cally labeled documents, and to categorize the query based on the categories
assigned to the top-ranked results [37, 38]. Let C denote a set of predefined
semantic categories (e.g., travel, health, sports, arts, movies, etc.). Given
query ¢, the confidence value assigned to category ¢ € € can be computed
based on the average confidence value associated with the top-N results (Ry)
weighted by their retrieval score,

P(clq) = % Z P(c|d) x score(d, q) (1.1)
deERN

where P(c|d) is the confidence value that document d belongs to category c,
score(d, q) is the retrieval score given to d in response to ¢, and normalizer

Z = ZcEGP(c\q)'

1.2.3 Vertical Features

Vertical features are generated from the vertical, independent of the query.
Therefore, their values are the same for all queries. There are two motivations
for using vertical features in a model. First, some verticals are more popular
than others either because they satisfy a wider range of information needs
(news vs. stock quotes) or because they satisfy more frequently occurring
information needs (weather vs. calculator). Second, user demand for the same
vertical is dynamic. A popular news event may trigger a burst in demand for
the news vertical, unusual weather may trigger a burst in demand for the
weather vertical, and a viral video may trigger a bursts in demand for the
video vertical.

10 CHAPTER 1. AGGREGATED SEARCH

As described in more detail later in Section 1.3, there are two ways that
a model can learn to favor some verticals irrespective of the query. The
first way is to learn different models for different verticals. Most machine
learning algorithms harness information about the target class distribution in
the training data. The second way is to learn a single model for all verticals,
but to add a set of features that signal the identity of the vertical in question.
This can be done, for example, by adding one binary feature per candidate
vertical. Then, given a query and a particular candidate vertical, the binary
feature corresponding to that candidate can be set to ‘1’ and the features
corresponding to the other verticals can be set of ‘0.

In general, modeling bursts in vertical demand can be done in two ways.
One way is to generate features directly correlated with vertical demand. To
this end, one might generate features from the vertical’s direct query traffic
(provided, of course, that the vertical has direct search capabilities), or from
clicks on recent presentations of the vertical (provided, of course, that the
vertical is click-able). Detecting “bursty states” in a stream of events is a
well-studied problem (see, for example, Kleinberg [22]) and such methods can
be used to generate features that quantify the current demand for a particular
vertical. The other method for modeling content demand is to model content
supply, which may be correlated with demand. Such features might include
the number of new results added to the vertical collection (e.g., news) or
whether the vertical contains up-to-date information (e.g., weather).

1.2.4 Vertical-Query Features

Vertical-query features measure relationships between the vertical and the
query and are therefore unique to the vertical-query pair. Vertical-query fea-
tures can be classified into pre-retrival, post-retrieval, and post-presentation
features.

1.2.4.1 Pre-retrieval Vertical-Query Features

Though it may seem counter intuitive, it is possible to generate vertical-
query features without actually issuing the query to the vertical. One alter-
native is to generate vertical-query features from the vertical’s query traffic.
Such features consider the similarity between the query and those issued di-
rectly to the vertical by users. A simple similarity measure that has been
effective in prior work is the query generation probability given the vertical’s
query-log language model [5, 16, 6]. Let §4°¢ denote a language model con-
structed from vertical v’s query-log. The query generation probability is given
by,

P(ql03®) =] P(wlos>) (1.2)

weq

1.2. SOURCES OF EVIDENCE 11

Because queries have different lengths, it becomes important to normalize this
value by Z = 3" .y, P(q|63°%).

The above approach measures the similarity between the query and those
issued to the vertical. A simpler alternative is to require an exact match.
Diaz [15] used features that considered the proportion of vertical query-traffic
that corresponded to query q.

Other pre-retrieval features consider the similarity between the query and
content from the vertical. As previously mentioned, aggregated search is re-
lated to federated search, where the objective is to provide integrated search
across multiple text-based collections. It is oftentimes impractical to issue the
query to every collection. Thus, the goal of resource selection, which is anal-
ogous to vertical selection, is to predict the existence of query-related content
in a particular collection without issuing the query to the collection. Many
different resource selection methods have been proposed in prior work. Two
highly successful ones, which have been used as features during aggregated
search, are CORI [9] and ReDDE [40].

Both resource selection methods use sampled documents. In our case, if a
particular vertical collection is accessible only via a search interface, query-
based sampling [10] can be used. Query-based sampling is the iterative process
of issuing a random query to the search engine, sampling documents from the
results, selecting a new term from the current document sample to be used as
new sampling query, and continuing until a large enough sample is collected.
Usually, between 300-1000 documents are sampled from each collection.

Of the two methods, CORI is perhaps the simplest. Let v; denote the set of
documents sampled from vertical v. Given k candidate verticals, CORI first
constructs an index of k large documents, where the large document associated
with vertical v is a concatenation of all documents in vs. Then, given query g,
CORI scores each vertical v according to the retrieval score associated with its
large document. So, for example, under the query-likelihood retrieval model,
the CORI score given to v in response to ¢ would be,

o = 11 P(wl6.) (1.3)

weq

where 0, is the language model associated with v;.

CORI tends to favor collections with the greatest proportion of query-
related documents (presumably reflected in the sampled set). However, what
we really want are the verticals with the greatest absolute number of query-
related documents. ReDDE directly estimates the absolute number of query-
related documents in a collection. Instead of turning each set v, into a large
document, ReDDE constructs an index of all individual documents within all
sets of samples. This is referred to as the centralized sample index. Then,
given query ¢, ReDDE conducts a retrieval from this index and scores vertical

12 CHAPTER 1. AGGREGATED SEARCH

v according to,

vedde = L Y " 9(d € wy) (1.4)
S deRN

where Ry denotes the top IV results retrieved from the centralized sample in-
dex in response to q. ReDDE has an intuitive interpretation. Every document
within Ry that originates from v, represents % unobserved query-related
documents in v. Thus, the summation corresponds the estimated total num-

ber of query-related documents in v.

1.2.4.2 Post-retrieval Vertical-Query Features

In contrast with CORI and ReDDE, which predict the existence of relevant
content without issuing the query to the vertical, post-retrieval features focus
on the quality of the actual vertical results. Within IR, retrieval effectiveness
prediction is the task of assessing the quality of a retrieval without human
intervention, for example, based on observable properties of the top-ranked
documents. Several methods for retrieval effectiveness prediction have been
proposed. Such methods can be used to produce features that predict the
quality of the vertical results. Based on these features, if the vertical results
are predicted to be bad, a system might decide to suppress.

Prior work on aggregated search investigated a retrieval effectiveness mea-
sure known as Clarity [13]. Clarity makes the assumption that in an effec-
tive retrieval, the top results should look different from the “average” docu-
ment within the collection. Based on this assumption, Clarity [13] uses the
Kullback-Leibler divergence to measure the difference between the language
of the top N documents and the language of the entire vertical,

Cla”ty wzeqP (w]6y) log(((wlz))) (1.5)

where 0, and 8, are the query and vertical language models, respectively. The
query language model can be estimated using the top N vertical results,

Plulfy) = 5 S Pl Plal6s), (1.6)

dERN

where P(q|fz) is the query likelihood score given d and Z = ;5 = P(q|0a).
Arguello et al. [5] used Clarity features for vertical selection. Different from
the description above, however, the retrieval from the vertical was produced
locally using sampled documents.

Other, perhaps simpler features that attempt to capture the quality of the
vertical results are possible. A simple heuristic is to include the hit count
(i.e., the number of results retrieved from the vertical). Notice that this is
not necessarily equal to the number of results blended into the web results if

1.2. SOURCES OF EVIDENCE 13

the vertical is presented. A vertical with an unusually low number of results
is probably not relevant. The hit can be particularly informative when the
vertical collection is highly dynamic. In prior work, Diaz [15] use the hit count
as a feature in predicting news vertical relevance.

Alternatively, we can also include features that are highly vertical-specific
and relate to the kinds of things users expect from good results. For instance,
news results should be recent and from a reliable news source, local results
should be about business that are nearby, image results should have a high
picture quality, video results should have lots of views, stock quote and weather
results should be up-to-date, and, finally, shopping results should be priced
attractively. The possibilities are here are vast. For example, any feature used
by a vertical-specific ranker could potentially be included as a post-retrieval
feature. These feature characterize the quality of individual results. Thus, in
cases where a vertical retrieves more than one result (e.g., not weather nor
finance), these features can be compute by taking the average, minimum, and
maximum value from the vertical’s top N results.

Finally, for users to interact with vertical results, they must be perceived
as relevant. Thus, prior work has also considered features generated from the
surrogate representation of the vertical results. Examples include number of
query terms appearing in the surrogate title and the summary snippet or any
other textual element of the surrogate representation [3]. Again, these features
require combining the different values from the multiple results in the blended
display. One possibility is to use the average, maximum and minimum value.

1.2.4.3 Post-presentation Features

Post-presentation features are derived from user actions on previous pre-
sentations of the vertical. These can be derived either from previous presenta-
tions of the vertical for the same query (potentially from other users), previous
presentations of the vertical for similar queries (potentially from other users),
and from previous presentations of the vertical for same-session queries.

The most commonly used post-presentation feature is the vertical-query
click-through rate [31, 29]. Let Cj denote the number of times vertical v
was presented for query ¢ and the user clicked on it, and let Sy denote the
number of times v was presented for ¢ and the user did not click on it. The
vertical-query click-through rate is given by,

click — C;) (1 7)
av :
Cv+ Sy

The main limitation with the above formulation of click-through rate is
that it requires an exact match between the current query and a previously
observed query. Suppose a user issues a previously unseen query “ny style
pizza” and the system needs to decide whether to present local results. While
the current query has no click-through rate, if it did , it would probably have a
click-through rate similar to the query “new york style pizza”. For the purpose

14 CHAPTER 1. AGGREGATED SEARCH

of feature generation, there are two ways to exploit click-through information
from similar queries. One way is to take the average click-through rate from
all previous queries weighted by the query-query similarity,

51m—chck Z sim q q chck (18)

where ¢’ denotes a previously seen query and Z =3 o sim(q, q').

A second way of harnessing click-through evidence from similar queries is
to build a language model from all previous queries associated with a click
on the vertical (allowing duplicates queries) and then to compute the query-
generation probability given this language model [3],

chck Im __ H P w|9°th (19)

weq

where 6k denotes the language model associated with the clicks on vertical
v. Again, because queries have different lengths, it becomes important to
normalize this value by Z =37y [[,¢, P(w|6hex).

Beyond click-through information, mouse movement can also be used as a
source of post-presentation evidence. One challenge behind interpreting click-
through data is that non-clicks do not necessarily indicate non-relevance. It
may be that the user did not notice the vertical. Maybe the vertical was
presented below the fold or maybe the user was satisfied by a result presented
above it. Previous work shows that mouse hovers are correlated with eye
gaze [19]. To date, mouse movement features have not been used in pub-
lished work on vertical selection or presentation. However, one could imagine
features that measure the number of times users hovered over previous pre-
sentations of the vertical, but did not click on it. If effective, this type of
evidence could be also extended to similar queries as described above.

1.2.5 Implementation Details

At this point, it is important to take notice of two nuances associated
aggregated search features. First, not every feature will be available for every
vertical. Consider for example, ReDDE features, which use sampled vertical
content to predict the quantity of query-related content in a vertical collection.
A ReDDE feature does not make sense for a vertical that is not associated
with a document collection (e.g.,calculator). Likewise, some verticals do not
have direct search capabilities (e.g., weather). Thus, these verticals would
not have features derived from the vertical query-stream. As discussed in the
next section, methods for combining evidence must accommodate the fact that
different verticals will be associated with difference sets of features. Second,
some features (particularly query features) are likely to be correlated with
relevance differently for different verticals. Consider, for example, a feature

1.8. COMBINATION OF EVIDENCE 15

that indicates whether the query contains the term “news”. This feature is
likely to be positively predictive of the news vertical, but negatively predictive
for the recipes vertical. Thus, methods for combining evidence are likely to
be more effective if they can learn a vertical-specific relation between features
and vertical relevance.

Aggregated search requires combining many different types of features. In
this section, we considered features derived from the query string, from the
vertical query-log, from sampled vertical content, from the actual vertical re-
sults, and from previous presentations of the vertical. In the next section,
we present an overview of methods for combining features for making predic-
tions.

1.3 Combination of Evidence

In Section 1.2, we described several signals believed to be correlated with
vertical relevance. In this section, we will describe how to combine those
signals to make vertical selection and vertical presentation decisions.

1.3.1 Vertical Selection

The vertical selection task refers to picking those verticals likely to ap-
pear on a good aggregated search results page. We can rephrase the task
as, given a query and a vertical, predict whether should be included on the
search results page. Formally, let V be the set of k£ candidate verticals. We
would like to learn a function that maps a query-vertical pair to relevance,
f:9xV — R. Throughout this section, in order to maintain a general per-
spective, we will remain agnostic about what we mean by functions, queries,
and relevance. Nevertheless, when necessary, we adopt certain definitions
which admit experimentally-supported approaches.

1.3.1.1 Training Data

All of our algorithms require training data encoding examples of relevant
and non-relevant query-vertical pairs, (¢g,v). There are two general methods
for gathering training data. In a laboratory setting, assessors are provided
with detailed relevance guidelines and then asked to judge the relevance of
individual (g, v) pairs. The assessment might be query-driven (e.g. ‘for each
query, request relevance judgments for all verticals’) or vertical-driven (e.g.
‘for each vertical, request relevance judgments for many queries’). In query-
driven assessment, editors are explicitly more aware of competing user intents
and may make judgments different than with vertical-driven assessment. In
either case, query sampling is crucial to training a model which can compute

16 CHAPTER 1. AGGREGATED SEARCH

a reliable relevance grade for individual verticals and a calibrated relevance
grade for comparison across verticals. In order to provide quality control,
(g,v) pairs are usually judged by multiple assessors. Editorial assessment
requires some overhead in terms of time (e.g. recruiting assessors, drafting
guidelines, verifying labels) and money (e.g. paying assessors). Although
crowd-sourcing systems address some of these costs, editorial assessment also
suffers because judgments are requested outside of a search context, resulting
in the relevance judgments only as good as the assessor’s guess of the user
intent. For example, local intent queries almost always require an assessor
with some familiarity about the hypothetical user’s location; a naive crowd-
sourced system may ask for a judgment from an assessor in a different city or
country.

If we have access to a production aggregated search system, we can gather
labels through implicit feedback. For example, if we have access to log data
that includes vertical result presentation, we can hypothesize that a user click
on a vertical result implies relevance. This allows us to collect a large set
of tuples with no editorial cost. Data from implicit feedback carries its own
issues. First, the labels are subject to bias effects from the layout constraints
(i.e. not every vertical can be displayed for every query to the system), po-
sition (i.e. items higher in the page receive more clicks) or presentation (i.e.
presentations such as images attract more clicks than other presentations).
Furthermore, a click does not necessarily imply relevance; a user may have
clicked accidentally or not found what they were looking for from the click.
This effect can be mitigated by the large amount of data gathered in produc-
tion systems.

Regardless of the source of training data, throughout this section, we use
the notation D to refer to the multiset of judged query-vertical pairs. Let
the multisets DT and D~ partition D into relevant and nonrelevant instances
respectively.

1.3.1.2 Basic Models

There are several ways we might construct the function f using D. Perhaps
the most straightforward way would be to manually enumerate which query-
vertical pairs are likely to be relevant,

+
‘Q)(q,’v)
fuLe(g,v) = D] (1.10)
q9,v

where D, .y is the subset of D containing (¢, v). In other words, we are count-
ing the fraction of presentations for that query which resulted in a relevant
judgment with v. We will refer to this as the mazimum likelihood estimate of
relevance for a query-vertical pair. Unfortunately, because we can never judge
every query—even in a production setting—most of the queries we want to
be able to make predictions on will not be in D. Even if we gather a large

1.8. COMBINATION OF EVIDENCE 17

amount of data in a production setting, the skewed query frequency distri-
bution suggests that we will observe only a handful of impressions for most
queries, resulting in a poor estimation of the relevance.

We can improve the coverage of the maximum likelihood estimate by ex-
ploiting the topical similarity between queries. Because queries can be repre-
sented as very sparse term vectors, any of the standard term-based similarity
measures can be used [34]. Queries specifically have been studied in the litera-
ture and admit unique similarity measures [28, 33, 47]. Given such a similarity
measure, we can compare a new query to those queries we have previously
judged. For example, we can define a function,

felev) = > klg,d) aws(dsv) (1.11)

(¢',v)eD

where k(q,¢') is the similarity between two queries. In other words, we are
smoothing the estimates from the maximum likelihood estimate using similar
queries [14]. We refer to this as the kernel estimate of relevance for a query-
vertical pair. In this case, our coverage increases to include similar queries.
However, depending on the robustness of our similarity measure, this may
not be sufficient. For example, assume that we have hired editors to manually
generate a set of relevant queries for an image vertical. If our image vertical
contains a large number of cat pictures but editors did not manage to label
‘cat’ as a relevant query for the image vertical, our feline-inclined users will
not discover these fascinating pictures. Therefore, it is important to under-
stand that the effectiveness of f, is the topical nature of the query similarity.
Nevertheless, techniques based on query similarity have been found to be a
strong baseline [26].

We can address the issues with query similarity by using the signals de-
scribed in Section 1.2. Specifically, our approach will be to learn f as a
function from features of the query-vertical pair to relevance. That is,

fG((LU) :g(¢q,v;0v) (112)

where ¢g,,, is the m x 1 vector of m feature values described earlier and 6, is
a vector model parameters for that specific vertical. We have a set of model
parameters for each vertical because the relationship between a feature and
relevance is likely to be dependent of the vertical (e.g. the feature ‘query
contains picture’ is likely to be positively correlated with the image vertical
but negatively with other verticals). We suspect that similar queries will have
similar feature vectors; therefore, the behavior of f, is preserved. In addition,
though, we can generalize to those queries with similar feature vectors but with
potentially different topics. The function g has two arguments: features and
model parameters. Features are often encoded as a vector of scalar and binary
values according to the definitions in Section 1.2. We might use a subset of
features, for example only the pre-retrieval features, or all features, depending
on the cost or availability. The model parameters represent the knobs used

18 CHAPTER 1. AGGREGATED SEARCH

to tune the model, given some training data. The precise definition of 8,
depends on the functional form of g. If we are using logistic regression for g,
then 6, is a length m vector of feature weights and our functional form is the
inner product between ¢, , and 0,,

_exp(Bg,.00)
1 + exp ((;5;—,1)01,)

Given a functional form, we tune 6, such that classification error on our
training data is minimized. In the case of logistic regression, we minimize the
logistic loss using an iterative technique such as the Newton-Raphson method.
Many other functional forms exist in the machine learning literature. A full
review is beyond the scope of this chapter.

Moving forward, we will adopt probabilistic versions of f. That is, we will
adopt the notation,

glog(¢q,va 91}) (1.13)

p/(Bqﬂ)) = f(qa U) (1'14)

to indicate that a score for a query-vertical pair (¢,v) can be interpreted
as a probability of relevance. More concretely, the probability pMFF is the
maximum likelihood probability of relevance, p” is the kernel density estimate
of relevance, and p? is a parametric model of relevance. In principle, the
techniques in remainder of the chapter can be extended to non-probabilistic
paradigms.

1.3.1.3 Advanced Models

Each of the models presented in the previous section has advantages and
disadvantages: pMF may be effective for judged query-vertical pairs but the
coverage is low, p* does not generalize to topics outside of D, and p? may not
capture topical similarity. In this section, we present one way of combining
these approaches in a single framework [15].

Although pMME suffers from low coverage, for those queries where we have
reliable judgements, performance is strong; Equation 1.10 becomes more ac-
curate with increasing data. On the other hand, our machine learned estimate
p? provides an effective method when there is no data but does not change ob-
served judgments (e.g. if the system presents that vertical to real users). One
way to combine these two method is with Bayesian updating. The intuition
with Bayesian updating is that, in the absence of (enough) data for a specific
query, we can use p? to estimate the relevance; after observing judgments from
editors or from query logs, we can adjust this estimate. So, instead of model-
ing the precise probability of relevance, we are estimating a distribution over
the value of the probability of relevance. Let p® be this distribution. If we
assume that the parametric form of this distribution is the Beta distribution,
then we can define it as,

Dy ~ Beta(a, b) (1.15)

1.8. COMBINATION OF EVIDENCE 19

where we set the Beta parameters such that,

— 0 _ 0
a = pp(gv) b=pu (1 - p(q’v)) (1.16)

where p is a hyperparameter of our model. That is, absent any data, the
distribution over the probability of relevance is strictly a function of the p? av)
and p.

Assume we have observed some positive and negative feedback for a query-
vertical pair. Then, the posterior, given this data is also a Beta distribution,

) (1.17)

'U

p(q U)|D ~ Beta (a + ’iD(q

b+’®

(q,v)

And the posterior mean,

Ag ‘DJr | + Mp?qvv)

1.18
Plgw) = |D(q,v)\ + 1 ()

Note here that we can gain an intuition for . For small values of p, the model
will be very sensitive to early feedback from the user. For large values, the
model will rely on p(») more than feedback.

The hypothesis underlylng the kernel density estimate was that a query’s
probability of being relevant is related to the relevance of topically related
queries. We can incorporate information from related queries as pseudo-
judgments on the candidate query. Specifically, we can define the aggregated
information for a query as,

Dy = Dy +Z w(a,4)DE, (1.19)

D(_Q»U) (qv Jrz kg, q (q v) (1.20)

We can use these modified counts in the same way we used the original counts
in Equation 1.18.

1.3.2 Vertical Presentation

Vertical presentation refers to deciding precisely where to place relevant
verticals on the search results page. For simplicity, we constrain our discussion
to a ranked list of web documents and interleaved with vertical results.

1.3.2.1 Pointwise Interleaving

According to Robertson, any ranked list of results to a user query should
be ordered according each item’s probability of relevance [32]. Since an ag-
gregator interleaves vertical result blocks with web documents, we can assert
that the presentation problem reduces to estimating the probability of vertical

20 CHAPTER 1. AGGREGATED SEARCH

relevance (Section 1.3.1.3). Let p(4 4) be the probability that web document d
is relevant to query ¢. If this probability is defined for all documents and we
use a probabilistic vertical selection algorithm, then we can interleave items
by the probabilities. The rank of v in the interleaved list is,

rank(q’v) = ‘{d eW: D(gq,d) > p(q’v)}’ + ‘{UI ev: Dig,v") > p(q’v)}’ (1.21)

where W is our collection of web documents. Because we are interested in
estimating the probability of relevance of each vertical and document, we
refer to this as pointwise interleaving.

Unfortunately, the assumptions underlying probabilistic interleaving are
rarely satisfied. The scores returned by web rankers are not guaranteed to
be probabilities. For example, many modern ‘learning to rank’ approaches
rank documents by an arbitrary scalar value output by the ranking model.
Even if web document scores are probabilities, the values are unlikely to be
well-calibrated with the vertical selection scores, resulting in poor interleaving
[18].

One strategy for comparing D(qv) tO a document retrieval score is to trans-
form the original document score output by the web search engine to a proba-
bility. If there are relevance labels available for (g, d) pairs, then we can learn
a statistical model to do this transformation [1]. Specifically, we can learn a
logistic regression model in the same way as in Equation 1.13,

exXp (¢:1r,da)

hiog(¢q,a,0) = m

(1.22)

In this case, the features would, at a minimum, include the document score.
Although we can add other features of the document, there is the temptation
to begin adding large numbers of features to this model. There are two reasons
to be cautious with feature addition. First, we want to avoid rebuilding a web
ranking algorithm; we only need to calibrate a score which, conceivably, has
been independently and rigorously tested to predict relevance, albeit on a
different scale. Second, feature computation, especially for web documents
can be expensive if, for example, the value is stored in an index on a separate
server. Furthermore, there is bandwidth overhead for the web ranker to expose
the entire feature vector used for core ranking.

In cases where interleaving decisions need to be made without knowledge of
the web document ranking scores, we can use position-based models to make
interleaving decisions [30]. A position-based interleaving model is similar to
the score transformation described in Equation 1.22 except our only feature
is the position of the document. As a result, we predict a fixed probability of
relevance for each position in the ranking, regardless of the documents or their
scores. Given probabilistic vertical selection scores, the vertical presenter can

1.8. COMBINATION OF EVIDENCE 21

position each vertical according to,

(W

rankg) = Zl(pi > Digw)) T ‘{UI €V :pgw) > p(qﬂ,)}’ (1.23)
=0

where p; is the predicted probability of relevance of rank position i.

1.3.2.2 Pairwise Interleaving

Given an accurate and calibrated probability of relevance for each docu-
ment and vertical, pointwise interleaving should provide an optimal ranking.
In reality, estimating the true probability of relevance is very difficult. In fact,
estimating the probability of relevance may be an inappropriate target if we
are only interested in the relative relevance of verticals and documents. The
user is never exposed to the absolute probability of relevance and is only con-
cerned that more relevant items are places above less relevant items. There-
fore, we may want to focus our modeling effort on predicting the preference
users have between pairs of items given a query. Modeling the order of items
instead of the absolute relevance is precisely the goal of pairwise interleaving.

Although the optimization target for pairwise interleaving is different than
for pointwise interleaving, many of the fundamentals are the same. Specifi-
cally, we are still interested in learning a function firr with two differences.
First, the domain includes the ‘web result’ argument for determining the pref-
erence between a vertical and a web result. This is similar to the task of
estimating p(q.4) in the previous section. Second, for pairwise models, our
range is the set of the reals. That is, we are only interested in a function
that outputs a real value, unconstrained by modeling the exact probability of
relevance. Our objective is to find frrr such that, given a query, the values
for more relevant verticals or documents are larger than the values for less
relevant verticals. The precise training of such models is studied in the field
known as ‘learning to rank’ (LTR) [27].

Casting pairwise interleaving as a learning to rank problem requires training
a single model frrr to predict a item’s rank irrespective of its type (e.g.
image, local, web result). In our situation, this is problematic because different
item-types are associated with different features (i.e., some features may be
specific to a handful of types and some may be unique to a particular one). In
addition, it is problematic because those features that are common to multiple
types (e.g., whether the query contains a city name) may be predictive for
some types more than others, or even predictive for different types in the
opposite direction. Next, we propose three LTR variants which address these
challenges in different ways. Each variant makes a different assumption about
how features may be correlated with item relevance across item-types.

1.3.2.2.1 Equally Correlated Features One alternative is to assume
that each feature is equally predictive of item relevance (in the same direction)

22 CHAPTER 1. AGGREGATED SEARCH

independent of the item-type.

hared pre-ret
; ared — I;Zc;gt_ret shared features (1~24)
q,v

where ¢Ps7°" is a column vector of pre-retrieval features and P9 is a
column vector of post-retrieval features. The feature representation is as
follows. Pre-retrieval features, gjg-fet, are independent of the item. This
model uses a single copy of each pre-retrieval feature. The values of post-
retrieval features are item-specific (i.e., they are generated directly from the
item or the item’s search engine results). As with pre-retrieval features, this
approach also uses a single copy of each post-retrieval feature in the sub-vector

fl’f’jt‘ret. If a item is not associated with a particular post-retrieval feature,
then the feature is zeroed-out in that instance. Consider, for example, our
post-retrieval features which determine the text-similarity between the query
and the summary snippets presented in the item. These features may only be
associated with news and web result items. Therefore, if the item is not one
of these types, all of these features are zeroed-out. This approach assumes
that features are equally correlated with relevance irrespective of the item-
type. Once trained, model firr will apply the same parameters to a feature
independent of the instance’s item-type.

1.3.2.2.2 Uniquely Correlated Features We can also assume that ev-
ery feature—whether it is a pre- or post-retrieval feature—is uniquely corre-
lated with relevance across different item-types. The feature representation
is as follows. We make a separate, item-type-specific copy of each feature.
So, for example, given |V| 4+ 1 item-types, we make |V| + 1 copies of each
pre-retrieval feature (one per item-type). Given an instance, all copies are
zeroed-out except for those corresponding to the instance’s item-type. For
post-retrieval features, we make one copy per item-type for which the feature
is available. That is,

0

0 } non-v features

. pre-ret

disjoint __ q,v

q,v - post-ret
Do

} v features (1.25)

0
0

} non-v features

Consider, for example, our temporal features, which are available for items
from blogs, community Q6 A, news, and twitter. We make 4 copies of each
temporal feature.

1.8. COMBINATION OF EVIDENCE 23

This approach assumes that features are correlated differently with rele-
vance depending on the item-type. Once trained, model frrr will apply a
different 0 subset depending on the instance’s item-type. While this added
flexibility may be advantageous, the increased number of features may intro-
duce predictive noise and result in overfitting. Thus, this LTR variant may
require more training data than the model described in the previous section.

1.3.2.2.3 Equally and Uniquely Correlated Features The previous
two approaches make opposite assumptions: features are either equally corre-
lated or uniquely correlated with relevance for different item-types. A third
alternative is to make neither assumption a priori, but to give the algorithm
the freedom to exploit both types of relationships using training data.

For this approach, we maintain a single copy of each pre- and post-retrieval
feature which is shared across all item-types. As before, if an instance’s item-
type is not associated with a shared feature, the feature is zeroed-out for that
instance. In addition to these shared features, we make one item-type-specific
copy of each pre- and post-retrieval feature. Given an instance, all copies
corresponding to types other than the instance’s item-type are zeroed-out.
That is,

r ¢pre—ret T
past-ret shared features
qv

0
0

Z%nbined — : (126)

} non-v features

¢pré—ret

qsgc;gt—ret }v features

q,v

0
0

} non-v features

The canonical feature representation for this approach is the union of features
used by the previous two approaches.

This approach makes no assumption about how a feature is correlated with
relevance across item-types. If a feature is equally correlated across item-
types, then the algorithm can assign a large (positive or negative) weight to
the copy of the feature which is shared across types. Alternatively, if a feature
is correlated differently for different item-types, then the algorithm can assign
a large positive weight to some copies of the feature and a large negative
weight with to others. Of all three LTR variants, this one has the largest
number of features and may therefore need the most training data to avoid
overfitting.

24 CHAPTER 1. AGGREGATED SEARCH

1.4 Evaluation

Evaluation is essential to all subfields of information retrieval, and the same
is true for aggregated search. In general, the goal of evaluation is to facilitate
the objective comparison between different algorithms, different features, and
different parameter settings. As previously mentioned, aggregated search is
viewed as a two step process: predicting which verticals to present (vertical
selection) and predicting where in the web results to present them (vertical
presentation). In some situations, it is desirable to evaluate the vertical selec-
tion component in isolation. Given a query, the goal for the vertical selection
component to select those verticals that are relevant and suppress those ver-
ticals that are not relevant. In other situations, the goal is to evaluate the
end-to-end aggregated search solution. In this case, the goal for the system
is not only to select the relevant verticals, but to present those verticals that
are more likely to be relevant in a more salient way. In practice, this means
presenting the most relevant verticals higher in the aggregated results. In the
following sections, we present an overview of methods for aggregated search
evaluation. First, we focus on vertical selection evaluation and then we focus
on end-to-end evaluation.

1.4.1 Vertical Selection Evaluation

Vertical selection is the task of deciding which verticals to present along with
the core web results for a given query. From the perspective of evaluation,
the best vertical selection system is the one that selects the relevant verticals
and avoids selecting the non-relevant ones. In this respect, vertical selection
can be evaluated as any other multiclass classification problem, using metrics
such as accuracy, which summarizes performance for all verticals, or precision
and recall, which summarize performance for each vertical independently.

Let Q denote the set of evaluation queries and V denote the set of candi-
date verticals. Vertical selection evaluation requires knowing which verticals
are truly relevant to each evaluation query ¢ € Q. Let V, denote the set of
verticals that are truly relevant to query ¢ and \~7q denote the set of verti-
cals that are predicted relevant to ¢. A commonly-used evaluation metric for
vertical selection evaluation is accuracy. Given a query ¢, a vertical selection
component must make |V| predictions. That is, for each vertical v, it must
decide whether to present the vertical or to suppress it. Accuracy measures
the percentage of correct predictions and is computed as,

|V| |Q‘ZZ< ve@q/\vevq)vJ(vgéf?q/\vgéVq)) (1.27)
qeEQVEV

where J denotes the indicator function (equals 1 if the its argument is true
and 0 otherwise).

1.4. EVALUATION 25

Other measures used in multiclass classification are also possible. For ex-
ample, one can also calculate precision, recall, and f-measure with respect to
each vertical, and then possibly average across candidate verticals to obtain
a single measure. Let Q, denote the set of queries for which vertical v is
truly relevant and Q,, denote the set of queries for which vertical v is predicted
relevant. Precision, recall, and f-measure with respect to vertical v are given
by,

P, = 5 > (g€ Q) (1.28)
9l 5
1 ~
R, = o > Ige Q) (1.29)
9 q€Qy
22X Py xR,

F, = (1.30)

Py + Ry

In prior vertical selection evaluations, Arguello et al. [5] addressed the task
of single vertical selection (a more simplified version of the full vertical se-
lection task). During single vertical selection, the goal is to predict a single
relevant vertical, if one exists, or to predict that no vertical is relevant. Let 9,
denote a system’s single vertical prediction and 9, = () denote the prediction
that no vertical is relevant. In this work, accuracy was measured according
to

3

A:ﬁZ(J(ﬂqEVq/\Vq#(Z))\/J(f)q:@/\Vq:(Z))) (1.31)

qeQ

Li et al. [26] compared approaches to vertical selection by constructing in-
terpolated precision-recall (PR) curves for each candidate vertical. Precision
and recall for a vertical can be computed as described above and different
precision and recall operating points can be derived by sweeping the classi-
fier’s prediction confidence threshold. Usually, the higher the threshold, the
higher the precision and the lower the recall. This evaluation method has
the advantage of providing a more complete picture of the trade off between
precision and recall for different approaches.

As previously mentioned, vertical selection evaluation requires knowing
which verticals are relevant to each query. Arguello et al. [5] and Li et al. [26]
used trained assessors. Assessors with expert knowledge about the different
candidate verticals were given a set of queries (sampled from a commercial
query-log) and were asked to determine which verticals, if any, were likely to
be relevant to each query. This method of assessment has two potential draw-
backs. First, queries are oftentimes ambiguous. Therefore, it may be difficult
for an assessor to determine the user’s actual intent. Second, the assessments

26 CHAPTER 1. AGGREGATED SEARCH

do not consider the vertical’s relevance within the context of the core web
results.

Diaz [15] and Konig et al. [23] evaluated vertical selection for the news ver-
tical in a production environment. The gold standard data was collected using
a commercial system, where a small fraction of query traffic was always pre-
sented the news vertical above the core web results. Relevance judgements
were derived from click-through data, and because the vertical was always
presented, all news clicks and skips were observed. In other words, retrospec-
tively, the data collection included queries for which the news vertical should
not be selected based on observed skips. Features were generated and cached
to allow repeated experimentation after the data collection phase. Evaluation
was conducted using accuracy, defined here as the percentage of correctly
predicted clicks and skips.

1.4.2 End-to-End Evaluation

Vertical selection evaluation is more clearly defined than end-to-end aggre-
gated search evaluation. Consider, for example, the aggregated results shown
in Figure 1.1. The basic end-to-end evaluation questions is: how good are
these results? If the system presented video results instead of image results,
would the presentation be better? And, what about more subtle changes? For
instance, what if the local vertical was presented above the first Web result?
Would this be better? Would it really make a difference?

End-to-end aggregated search evaluation falls under three broad categories:
test collection evaluation, on-line evaluation, and user study evaluation. Test
collection evaluation builds upon the Cranfield IR evaluation paradigm [12].
A test collection typically includes a set of queries, a set of systems (i.e., a set
of verticals and core content providers) with responses to those queries, and a
set of relevance judgements on the vertical and web results. Given these three
components, evaluation measures can be computed on any given aggregation
of results. On-line evaluation focuses on implicit user feedback from real users
in an operational setting. Implicit feedback measures typically focus on clicks
and skips, where clicks are usually treated as positive feedback and skips are
usually treated as negative feedback. Finally, user study evaluation involves
having users perform search tasks with different aggregated search systems
in a controlled environment. Evaluation measures are derived from outcome
measures thought to be correlated with a positive user experience or from
responses to questions given to study participants.

All three evaluation methodologies have advantages and disadvantages and
can be used to answer different types of research questions. Once a test col-
lection is built, evaluation is basically free and results are reproducible. This
makes test collection evaluation an attractive alternative for fine-tuning pa-
rameters. However, test collection evaluation assumes that collections are
static and that relevance judgments from assessors are consistent with those
made by real users. On-line evaluation methods use real users in real sit-

1.4. EVALUATION 27

uations. However, because evaluation measures are computed using implicit
feedback signals, precision can be estimated more accurately than recall. That
is, the operational system can observe false-positive mistakes, but not false-
negative mistakes. Finally, user study evaluation gives the researcher more
control than on-line evaluation. For example, the researcher can learn about
participants’ backgrounds, can manipulate the higher-level search task, and
can manipulate the search context. Such variables cannot be controlled and
cannot be easily identified in an on-line setting. On the other hand, user
studies are expensive and time consuming. For all these reasons, all three
evaluation methodologies are important and all three are necessary to mea-
sure improvement and understand user behavior.

1.4.2.1 Test Collection Evaluation

Test collection evaluation follows the Cranfield evaluation paradigm [12]
and has the following components: a static collection of retrievable items, a
set of queries with topic descriptions that define what should and should not
be considered relevant, a set of relevance judgements for all query-document
pairs, and a suite of evaluation measures that operate on a ranking of known
relevant /non-relevant items. Usually, because collections are large and be-
cause most documents are not relevant, it is unnecessary (and often pro-
hibitively expensive in terms of time and effort) for assessors to judge all
documents for all queries. Instead, assessors typically judge only those doc-
uments most likely to be relevant. These can be determined using a method
known as pooling. The basic idea is to take the union of top results from a
wide range of systems. Documents within this set are judged and documents
outside of this set are automatically assumed to be non-relevant.

With regards to aggregated search, test collection evaluation can deviate
from the general Cranfield method in one respect. Depending on the formu-
lation of the task, pooling results from the different systems being aggregated
(i.e., from the set of candidate verticals and from the core web search engine)
may not be necessary. Most approaches to vertical selection and presentation
assume that the top results from each vertical (those that would be presented
if the vertical were selected) are fixed.

Thus far, two test collection evaluation methodologies have been proposed
for aggregated search. The first was proposed by Arguello et al. [4] and
the second was proposed by Zhou et al. [48]. Both methods have things in
common. First, both impose constraints on the end-to-end aggregation task.
For example, vertical results must be blended into the core web results from
top to bottom (i.e., verticals cannot be stacked horizontally) and, if a vertical
is presented, then its results must be displayed in sequence. Second, both
methods propose ways of collecting assessor relevance judgements on vertical
results and on the core web results for a given query. Finally, both methods
propose evaluation measures that take as input a set of relevant judgements
and can determine the quality of any possible aggregation of results (subject

28 CHAPTER 1. AGGREGATED SEARCH

to the imposed constraints).

The approach from Arguello et al. [4] casts the aggregation task as block
ranking. The first step is to impose a set of layout constraints. Most impor-
tantly, if a vertical is presented, then all its results must be presented together
and they must be presented within a set of predefined slots, for example, above
the first web result, between web results three and four, or below the last web
result. Given such constraints, aggregated search can be viewed as a block
ranking task, where a block is defined as either a sequence of same-vertical
results or a sequence of web results that cannot be split.

Let B, denote the set of blocks associated with query g. B, includes one

block for every vertical v € V that retrieves a minimum number of results and
one block for every sequence of web results that cannot be split. Following
the example constraints from above, Web results 1-3 would form one block
and Web results 4-10 would form another block. Additionally, B, includes an
imaginary “end of SERP” block. Thus, the end-to-end goal for the system is
to produce a ranking of all elements in B, where the blocks ranked below the
imaginary “end of SERP” block are suppressed and effectively tied. Given this
formulation of the aggregated search task, the method proposed Arguello et
al. [4] is to derive an ideal or reference block-ranking for each evaluation query
q and to evaluate alternative block-rankings for ¢ based on their similarity or
distance to the reference.
Given query g, let o denote the ideal block-ranking and o, denote a pre-
dicted block-ranking. Two components are still missing. First, how do we
derive o and, second, how do we measure the similarity between o, and o7
In response the the first question, Arguello et al. [4] collected preference judge-
ments on all block pairs in B, and derived the reference presentation o by
applying the Schulze Voting Method [35] to these preference judgements. In
response to the second question, Arguello et al. [4] used a variant of Kendall’s
7 [24]. While these were the particular solutions used in this work, other ways
to constructing o and other ways of calculating the similarity between o and
o, are also possible.

The evaluation method proposed in Zhou et al. [48] takes a different ap-
proach. The main evaluation metric is defined as wutility. Let o4 still denote
the output predicted by the system in response to query q. The output can
still be viewed as a ranking of web and vertical blocks. Zhou et al. define
utility as the user’s expected gain obtained from reading o, divided by the
expected effort expended in reading oy,

Y beq, E(b) X G(b)
Uoq) = Sveo, BO) < (D) (1.32)

Now, let us consider the different components of the above equation. Let b €
o4 denote a web or vertical block presented in 4. The first component, E(b), is
defined as the probability that a user will examine block b. E(b) can be derived
in different ways, however, it should be a function of the block’s position in

1.4. EVALUATION 29

the ranking as well as its visual salience. So, for example, all else being equal,
a block of results from the images vertical should have a higher examination
probability than a block of results from the news vertical. Image results are
more salient than news results and are therefore more likely to be noticed and
examined.

The second component, G(b), is defined as the user’s gain obtained from
examining block b. One important distinction between this approach and
the one proposed by Arguello et al. [4] is that this approach decouples the
relevance of a system (i.e., the relevance of a vertical or the relevance of
the web search engine) from the relevance of the results retrieved by that
system. Given a query, assessors are first asked judge the relevance of a
particular system independent of any results. This is referred to as the query’s
orientation. Then, assessors are asked to judged the items retrieved by each
system based on topical relevance. Topically relevance is judged independent
of the query’s orientation. Finally, the gain associated with block b is given
by the product of the total topical relevance of items within b (the sum of
topical relevance grades associated the items in b) and the query’s orientation
with respect to the system that produced b.

The third and final component, F'(b), is defined as the amount of effort
required to assess the relevance of b. The idea here is that different types
of results require different amounts of effort. For example, images require
little effort because the surrogate is a faithful representation of the underlying
result. On the other hand, news results require more effort because the user
must read the summary snippet and possibly even navigate to the article.
Finally, video results take a significant amount of effort because the user
may need to view the entire video to assess its relevance. Thus, blocks from
different systems can be assigned different weights based on different heuristics
or assumptions.

The approach from Zhou et al. [48] is fairly general. One can imagine dif-
ferent browsing models for estimating the examination probability associated
with a block (E(b)), different ways of measuring gain (G(b)), and different
assumptions for modeling assessment effort (F(b)).

1.4.2.2 On-line Evaluation

On-line evaluation involves testing a system in an operational setting based
on implicit user feedback. The basic idea is to have different subsets of users
exposed to different systems and to compare between systems based on ob-
servable signals that are thought to be correlated with user satisfaction. To
date, most on-line evaluations have focused on clicks and skips.

On-line evaluation has two main advantages. First, the evaluation is con-
ducted using real users in real situations. This facilitates the evaluation of
methods that provide personalized results to different individuals and meth-
ods that harness evidence from the user’s context, for example, their location.
Second, the evaluation can be conducted using lots of people, ensuring that

30 CHAPTER 1. AGGREGATED SEARCH

results generalize across users and situations.

That said, on-line evaluation also has some challenges. First, and most
importantly, implicit user feedback is noisy. Users tend to click on results that
ranked higher and results that are visually salient, for example, results that
show images. Moreover, when users do click, they do so based on perceived
relevance. The underlying web or vertical result may actually turn out to be
non-relevant. Skips are noisy as well. Users may satisfy their information need
from the summary snippet and, in fact, some verticals (e.g., weather) may not
even be click-able. The second challenge is that on-line experiments are not
repeatable. The users, the collections, and queries will be different. That
is not to say that on-line evaluation results cannot be trusted. The same
comparison between approaches can be conducted multiple times to verify
that the best system is still the best system. However, the exact outcome
measures will be different. The dynamic nature of on-line evaluations make
it difficult to do debugging and error analysis, which often require changing
one thing at a time.

One approach to on-line evaluation is to measure the click-through rate
for each candidate vertical independently. Click-through rate answers the
following question: of the times the vertical was presented, how often was it
clicked? The metric assumes that, if a user did not click on a vertical that
was presented, the vertical should not have been presented, or should have
been presented in a different location. While click-through rate is an intuitive
measure, it paints an incomplete picture. It measures precision, but not recall.
Suppose a system only predicts a vertical relevant when it is very confident
that it relevant. Such a system would probably observe a very high click-
through rate. However, what about the false-negatives? In other words, how
often did the system suppress a vertical that should have been presented?

To address this limitation, an evaluation based on click-through rate should
also consider another measure known as coverage. Coverage measures the per-
centage of queries for which the vertical was presented. Used in conjunction,
a greater coverage and a higher click-through rate can be seen as an im-
provement. It means that the system made fewer false-negative and fewer
false-positive mistakes. While coverage is not equal recall, the measures are
related. High coverage probably means high recall, but low coverage does not
necessarily mean low recall.

Ponnuswami et al. [30] used click-through rate and coverage in conjunction
to evaluate an end-to-end system, where verticals could be slotted into one
of three positions: above the web results, below the web results, and in the
middle. Click-through rate and coverage were measured independently for
each vertical-slot pair.

In addition to the challenges mentioned above, on-line evaluation can also be
time consuming and expensive. If the goal is to fine-tune an existing system,
it may not be possible to conduct an on-line evaluation for every combination
of parameter values. To address this limitation, a few recent studies have
investigated methods for collecting on-line user-interaction data once and us-

1.4. EVALUATION 31

ing this data to perform multiple rounds of off-line testing [29, 25]. These
methods have some of the benefits of test collection evaluation. Namely, once
the data is collected, evaluation is inexpensive and results are reproducible.
The basic idea is to collect the user interaction data in a completely unbi-
ased fashion, where every system output is equally probable. Then, given a
particular model (with a particular parameter configuration), evaluation can
be done by considering only the interaction data (e.g., the clicks and skips)
associated those outputs that are identical to what the system would have
produced given the same query. Results show that metrics computed in this
off-line fashion closely approximate those computed in an on-line setting using
the same experimental system [29, 25].

1.4.2.3 User Study Evaluation

User study evaluation involves exposing study participants to different sys-
tems and measuring their level of task success or satisfaction. Compared to
test collection evaluation and on-line evaluation, user study evaluation has
a few advantages. First, participants can be asked questions that directly
measure their level of satisfaction with the system. The evaluation does not
rely on metrics that may be only weakly correlated with user satisfaction.
Second, user studies can target specific user populations. For example, one
can study differences in search behavior between experienced and inexperi-
enced searchers. Third, because the experiment is conducted in a controlled
setting, user studies can manipulate the higher-level task or the search con-
text. Within aggregated search, user studies have been conducted to answer
two basic questions: “What do users want?” and “What are the factors that
affect their preferences or their behaviors?”.

Both test collection approaches discussed in Section 1.4.2.1 were validated
by conducting user studies [4, 48]. The goal was to compare the value of
the proposed evaluation metric with user preferences between alternative pre-
sentations of aggregated results. The basic assumption is that a ‘good’ met-
ric should be consistent with user preferences. Both user studies consisted
of showing participants pairs of aggregated results and comparing the met-
ric score with the stated preference. Several common trends were observed.
First, agreement between study participants was low. The Fleiss’ Kappa
agreement [17], which corrects for the expected agreement due to random
chance, was about 20%. Given this low level of agreement between people,
it would be unreasonable to expect any metric to agree with a user 100% of
the time. Second, the agreement between the metric and the assessors was
about 65%, Notice that the expected agreement due to random chance is 50%.
Finally, agreement between the metric and the assessors was greater (about
80%) on those presentation pairs where the value of the metric was drastically
different. In other words, the proposed metrics were better at distinguishing
between good and bad presentations than between pairs of good and pairs
of bad presentations. Taken together, these three trends tell us that while

32 CHAPTER 1. AGGREGATED SEARCH

perfect agreement between any metric and users’ preferences is unlikely, there
is room for improvement.

Preference behavior was also studied by Zhu and Carterette [49]. Again,
participants were shown pairs of presentations for a given query and asked
to state a preference. Different from the preference-based studies described
above, however, this work only looked at the blending of the image vertical
in different slots. The study found a strong preference for the image vertical
ranked high for queries likely to have image intent.

Studies have also considered preference behavior over the course of an en-
tire search session, not only on a query-by-query basis. Sushmita et al. [43]
conducted a task-oriented user study with two types of interfaces: a tabbed
interface, where users could only access different verticals using tabs, and an
aggregated interface, where the top results from every vertical were blended
into the core web results. Participants were given a search task and asked
to compile as much relevant content as possible. Two important trends were
observed. First, the aggregated interface was associated with more clicks.
Second, the amount of cross-vertical content compiled by participants was
greater for the aggregated interface. Taken together, these two trends suggest
that user engagement with vertical content is greater when the verticals are
showcased in the main results.

The aggregated interface used in Sushmita et al. [43] was static—verticals
were blended in fixed positions. In a later study, Sushmita et al. [44] investi-
gated search behavior with a dynamic aggregated search interface. This study
found two main results. First, users click more on verticals that are relevant
to the task and verticals that are shown higher in ranking. In other words,
aggregated search is not immune to positional bias. Users click more on ver-
ticals ranked higher, either because they scan results from top-to-bottom or
because they trust that the top results are more relevant. Second, users click
more on verticals that are more visually salient (in the case of this study, the
video vertical). Thus, positional bias is not the only bias that affects clicks
on vertical results.

Thus far, we have focused on user studies that investigate the question
“What do users want?”. Users want a system that combines results from
different sources in the main results and a system that makes the relevant
verticals more salient. Next, we focus on user studies that investigate factors
that might affect user preference and search behavior.

As previously mentioned, an important advantage of user study evaluation
is the ability to manipulate properties of the user’s higher-level goal. Prior
work shows that task complexity influences search behavior [20].2 Among the
differences in search behavior, is the demand for diverse content. That is,
during more complex tasks, users exhibit a greater demand for content that

2Here, task complexity refers to cognitive complexity, which relates to the amount of learn-
ing required for the user to complete the task.

1.4. EVALUATION 33

is more diverse (content from different sources or different types of media).
Motivated by this finding, Arguello et al. [7] investigated the effect of task
complexity on users’ demand for vertical content, operationalized using clicks
on vertical results. The study looked at the interaction between two experi-
mental variables: task complexity and vertical aggregation. Participants were
given search tasks of varying degrees of complexity and used two different
interfaces: a tabbed interface in which vertical content was only indirectly ac-
cessible and an aggregated interface in which vertical results were also blended
into the web results. Results showed a greater number of vertical clicks for
more complex tasks, but only for the aggregated interface. However, the ef-
fect was only marginally significant. This result suggests that properties of
the higher-level task may influence a user’s demand for vertical results. Thus,
session-level evidence, which can provide better hints about the higher-level
task, may need to be considered in order to improve aggregated search.

During vertical selection, a false-negative mistake means that a non-relevant
vertical was presented alongside the core web results. All evaluation meth-
ods for vertical selection and end-to-end aggregated search assume that all
false-negative mistakes are equally bad. In other words, all instances where
the system presents a non-relevant vertical equally hurt the user’s search ex-
perience. However, consider a user that issues the ambiguous query “jaguar”
because they are looking for a list of a places in the world where jaguar can
found in the wild. In this particular scenario, displaying the images verti-
cal can be viewed as a false-negative mistake. The information need is more
likely to be satisfied with web results instead of image results. However, is
the user experience equally affected if the images are all pictures of “jaguar”
the automobile vs. pictures of “jaguar” the animal? Arguello and Capra [2]
studied the effect of the query-senses represented in the blended image results
on user interaction with the web results. They found that given an ambiguous
query (e.g., “jaguar”), user interaction with the web results, operationalized
using web clicks, is greater when the query-senses represented in the image
results (e.g., “jaguar” the animal, or “jaguar” the car) are consistent with the
intended query-sense (e.g., “jaguar” the animal). This result suggests that in
certain situations, a “spill over” effect can occur. In other words, depending
on the vertical results, certain false-negative vertical predictions may have a
stronger negative effect on the user’s perception of other results presented on
the SERP.

Such interaction effects between different components of a SERP, which
include vertical results, but also extend to components like query suggestions
and advertisements, motivate work on whole-page evaluation. The idea be-
hind whole-page evaluation is the relevance of a component may depend on
other components presented on the SERP. For example, a relevant web result
presented at rank five may be less relevant if it contains information that is
redundant with a web result presented at rank one. Likewise, the quality of
the SERP as a whole may be inferior if different components in the SERP
(e.g, the web results, the vertical results, and/or the query-suggestions) focus

34 CHAPTER 1. AGGREGATED SEARCH

on different query-senses. Bailey et al. [8] proposed a whole-page evaluation
methodology referred to as Student Assignment Satisfaction Index (SASI).
The evaluation methodology focuses on eliciting judgments from assessors on
parts of the SERP within the context of the whole SERP. Bailey et al. [8]
show that the SASI-style judgments on the whole page can be done surpris-
ingly fast. A whole SERP can be evaluated in the time it takes an assessor
to make two document-level relevance judgements in a test collection evalu-
ation method. However, the main disadvantage of this evaluation method is
that the judgments are purely retrospective. In other words, the judgements
are based on the system’s output and are therefore not reusable for future
evaluations.

1.5 Special Topics
1.5.1 Dealing with New Verticals

Just as pages are constantly being added to and removed from the web,
verticals themselves appear as new subcollections are curated. Unfortunately,
a new vertical requires training a new vertical selection model and requires
new training data. As mentioned earlier, training data can be expensive to
gather so it would be attractive for a system to be able to exploit training
data from existing verticals when training a new vertical selection model.

Let y,(¢q) denote the true relevance label of vertical v with respect to query
¢.2> In the general vertical selection setting, the goal is to learn a function
f that approximates y. In this section, we focus on the following scenario.
Assume we have a set, 8, of source verticals each with labeled queries. Then,
suppose we are given a new (target) vertical ¢ with no labeled data. The
objective is to learn a function f that approximates y; using only source-
vertical training data. The quality of an approximation will be measured
by some metric that compares the predicted and true query labels. We use
notation,

w(f,ye, Q)

to refer to the evaluation of function f on query set Q. This metric could be
any of those discussed in Section 1.4.

A portable vertical selection model is defined as one that can make ver-
tical relevance predictions with respect to any arbitrary vertical. In other
words, a portable model is not specific to a particular vertical, but rather

|20

3This true label can be derived by thresholding of the training data such as Dol > A
(q,v)

1.5. SPECIAL TOPICS 35

agnostic of the candidate vertical being questioned for relevance. For this
reason, throughout this section, we adopt the shared feature representation
phared (Equation 1.24).

Let us examine the distinction between a portable and non-portable verti-
cal selection model with an example. Consider a single-evidence model that
predicts a vertical relevant based on the number of times the query was is-
sued previously to the vertical by users. This type of evidence is likely to be
positively correlated with the relevance of the vertical in question. In fact,
it is likely to be positively correlated with vertical relevance irrespective of
the particular candidate vertical. On the other hand, consider a model that
predicts a vertical relevant if the query is classified as related to the travel
domain. This model may be effective at predicting the relevance of a vertical
that serves travel-related content. However, it is probably not effective on a
vertical that focuses on a different domain. This model is less portable.

Most existing single-evidence resource selection models can be considered
portable [41, 40, 39, 36, 46]. For example, ReDDE [40] prioritizes resources
for selection based on the estimated number of relevant documents in the
collection. This expectation is a function of the number of documents sampled
from the collection that are predicted relevant and the estimated size of the
original collection. The greater the expectation the greater the relevance
irrespective of the particular resource.

1.5.1.1 Basic Model

The objective of a portable vertical selection model, f,, is to maximize
the average performance across source verticals. Our assumption is that if f,
performs consistently well across 8, then f, will perform well on a new (target)
vertical t. In general, the portability of a model is defined by a metric that
quantifies performance for a vertical s € 8§ and a function that aggregates
performance across verticals in S.

For example, the portability, w, which uses the arithmetic mean of the
metric is defined by,

T8 (fays: Q) = 5 Zu fesys: Qs) (1.33)
SES

where Q is the set of training queries for source s and Qg is the set of those
sets; similarly, ys provides labels for vertical s and ys is the set of these
functions. We refer to the model which optimizes 78 as the basic model.

1.5.1.2 Vertical Balancing

In the basic model’s training set, positive instances correspond to relevant
query-vertical pairs from all source verticals. For this reason, we expect the
basic model to focus on evidence that is consistently predictive of relevance
across source verticals, and hence predictive of the target vertical. In other

36 CHAPTER 1. AGGREGATED SEARCH

words, vertical-specific evidence that is conflicting with respect to the positive
class should be ignored. The challenge, however, is that the positive instances
in the basic model’s training pool may be skewed towards the more popular
source verticals. This is problematic if these verticals are reliably predicted
relevant using vertical-specific evidence, not likely to be predictive of the new
target vertical. To compensate for this, we consider a weighted average of
metrics across verticals. Specifically,

1
ﬂ-WﬁVg(f*’yS)QS) = Ezwsl’é(fhysags) (134)
SES

where Z = > s ws. We use the simple heuristic of weighting a vertical with
the inverse of its prior,
1
Wy = —
Ps
where ps is the prior probability of observing a query with relevant vertical s.
This value is approximated with the training data,

b~ > qe0. Ys(q)
’ Q5]

The goal is to make training instances from minority verticals more influential
and those from majority verticals less.

1.5.1.3 Feature Weighting

An alternative to optimizing for a portable model is to find portable fea-
tures and to train a model using only those. A portable feature is defined as
a feature which is highly correlated with relevance across all verticals. Recall
that, across verticals, all features are identically indexed. Let ¢* be a predic-
tor based only on the value of feature i. In previous work, the effectiveness
of features across verticals was shown to be very dependent on the vertical
being considered. In order to address the expected instability of feature pre-
dictiveness across verticals, we adopt a harmonic average for our aggregation
method.

8]

Whavg((?iays, Q) = 2—1
s€8 u(¢l,ys,9s)

(1.35)

Additionally, features, on their own, are not scaled to the label range, mak-
ing the use of logistic loss difficult. Instead of constructing a mapping from
a feature value to the appropriate range, we adopt a rank-based metric. In
other words, for each feature, we rank queries by feature value and compute
the harmonic mean average precision across verticals. Having computed the
portability of each feature, we build a portable model by restricting our train-
ing to the most portable features.

1.5. SPECIAL TOPICS 37

1.5.1.4 Adaptability

Above, we focus on ways of improving the portability of a model by influ-
encing the model to ignore evidence that is vertical-specific. The argument is
that a model that focuses heavily on vertical-specific evidence will not gener-
alize well to a new target vertical.

Given access to target-vertical training data, previous work reveals two
meaningful trends [5]. First, given a wide-range of input features, most fea-
tures contribute significantly to performance. In Arguello et al. [5], no small
subset of features was solely responsible for effective vertical prediction. Sec-
ond, the features that contributed the most to performance, which character-
ize the domain of the query, seem to be vertical-specific (assuming that verti-
cals focus on different domains). Based on these observations, while ignoring
vertical-specific evidence seems necessary to improve a model’s portability, a
model customized to a particular vertical is likely to benefit from it.

In the context of adaptation for web search, Chen et al. [11] propose several
ways to adapt an already-tuned model given data in a new domain. Their
approach, Tree-based Domain Adaptation (TRADA), essentially consists of
continuing the training process on labeled data from the target domain. Ar-
guello et al. apply this technique to adapt predictions from a portable vertical
selection model to a new vertical [6].

1.5.2 Explore/Exploit

The gathering training data in a production environment is limited by pro-
duction constraints. We cannot show every vertical for every query and expect
to gather training data, much less retain users. At the same time, if a produc-
tion system only gathers data from existing presentation decisions, judgments
on suppressed verticals will not be gathered. This is precisely the problem of
balancing exploration (i.e. gathering training data with good coverage) and
exploitation (i.e. providing users with a satisfying experience). That said,
we may be able to gather a small amount of feedback without devastating
system performance. Specifically, we would like to present a vertical display
for a query even though it is not predicted to be the display with the highest
probability. As a result, our production system combines exploration (i.e.
the random gathering of training data) with exploitation (i.e. the application
of the trained model). Section 1.3 covers methods for exploitation. In this
section, we will discussion two methods for exploration.

Naive exploration suggests randomly altering vertical selection decisions as
queries are submitted to the aggregated search system. Specifically, we can
define a system sampling rate, €, which determines if the system decision will
be perturbed. This approach is referred to as the e-greedy approach [45].

The e-greedy approach while providing a control on the amount of sampling,
does not incorporate any information from a query’s feedback history. We
may want to explore only when we have presented few displays. That is, we

38 CHAPTER 1. AGGREGATED SEARCH

might make € a function of D,). To achieve this, we can exploit the fact
that Equation 1.17 defines a distribution from which we can sample p(g .-
Using a random sample instead of the posterior mean results in a more data-
driven policy than e-greedy exploration. If we have seen few or no samples, the
variance of the posterior will be high, resulting in samples unlike the posterior
mean. As we accumulate samples, this variance falls, ensuring that samples
will converge to the posterior mean. This process is similar to approaches
used in reinforcement learning [42].

1.6 Conclusion

Although aggregated search is relatively new as a research topic, its foun-
dation in distributed information retrieval has allowed rapid development of
sophisticated models. In this chapter, we have outlined the fundamentals
of developing an aggregated search system. These include features based on
the distributed information retrieval literature as well as newer methods for
training vertical selection and presentation systems.

Aggregated search will continue to develop as the online information land-
scape develops. New verticals will almost certainly necessitate revisiting fea-
ture development. At the same time, training algorithms will increasingly
exploit more sophisticated user data to refine presentation decisions. Finally,
as interfaces move away from traditional ranked lists, vertical presentation
and interleaving frameworks will have to be modified.

References

1]

Deepak Agarwal, Evgeniy Gabrilovich, Robert Hall, Vanja Josifovski,
and Rajiv Khanna. Translating relevance scores to probabilities for con-
textual advertising. In Proceedings of the 18th ACM conference on Infor-
mation and knowledge management, CIKM ’09, pages 1899-1902, New
York, NY, USA, 2009. ACM.

Jaime Arguello and Robert Capra. The effect of aggregated search co-
herence on search behavior. In Proceedings of the 21st ACM interna-
tional conference on Information and knowledge management, CIKM
12, pages 1293-1302, New York, NY, USA, 2012. ACM.

Jaime Arguello, Fernando Diaz, and Jamie Callan. Learning to aggregate
vertical results into web search results. In Proceedings of the 20th ACM
international conference on Information and knowledge management,
CIKM ’11, pages 201-210, New York, NY, USA, 2011. ACM.

Jaime Arguello, Fernando Diaz, Jamie Callan, and Ben Carterette. A
methodology for evaluating aggregated search results. In Proceedings
of the 33rd European conference on Advances in information retrieval,
ECIR’11, pages 141-152, Berlin, Heidelberg, 2011. Springer-Verlag.

Jaime Arguello, Fernando Diaz, Jamie Callan, and Jean-Francois Cre-
spo. Sources of evidence for vertical selection. In Proceedings of the 32nd
international ACM SIGIR conference on Research and development in
information retrieval, pages 315-322, 2009.

Jaime Arguello, Fernando Diaz, and Jean-Frangois Paiement. Vertical
selection in the presence of unlabeled verticals. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR 10, pages 691698, New York, NY, USA,
2010. ACM.

Jaime Arguello, Wan-Ching Wu, Diane Kelly, and Ashlee Edwards. Task
complexity, vertical display and user interaction in aggregated search.
In Proceedings of the 35th international ACM SIGIR conference on Re-
search and development in information retrieval, SIGIR '12, pages 435—
444, New York, NY, USA, 2012. ACM.

Peter Bailey, Nick Craswell, Ryen W. White, Liwei Chen, Ashwin Satya-
narayana, and S.M.M. Tahaghoghi. Evaluating whole-page relevance.

39

40

[10]

[11]

[15]

[16]

[17]

[18]

[19]

References

In Proceedings of the 33rd international ACM SIGIR conference on Re-
search and development in information retrieval, SIGIR ’10, pages 767—
768, New York, NY, USA, 2010. ACM.

James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching distributed
collections with inference networks. In Proceedings of the 18th annual
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR 95, pages 21-28, New York, NY, USA,
1995. ACM.

Jamie Callan and Margaret Connell. Query-based sampling of text
databases. ACM Trans. Inf. Syst., 19(2):97-130, 2001.

Keke Chen, Rongqing Lu, C. K. Wong, Gordon Sun, Larry Heck, and
Belle Tseng. Trada: tree based ranking function adaptation. In CIKM
2008, pages 1143-1152. ACM, 2008.

Cyril W. Cleverdon. The aslib cranfield research project on the compar-
ative efficiency of indexing systems. Aslib Proceedings, 12(12):421-431,
1960.

Steve Cronen-Townsend, Yun Zhou, and W. Bruce Croft. Predicting
query performance. In Proceedings of the 25th annual international ACM
SIGIR conference on Research and development in information retrieval,
SIGIR 02, pages 299-306, New York, NY, USA, 2002.

Fernando Diaz. Regularizing ad hoc retrieval scores. In CIKM ’05:
Proceedings of the 14th ACM international conference on Information
and knowledge management, pages 672-679, New York, NY, USA, 2005.
ACM Press.

Fernando Diaz. Integration of news content into web results. In Pro-
ceedings of the Second ACM International Conference on Web Search
and Data Mining, WSDM ’09, pages 182-191. ACM, 2009.

Fernando Diaz and Jaime Arguello. Adaptation of offline vertical se-
lection predictions in the presence of user feedback. In SIGIR 2009,
2009.

J.L. Fleiss. Measuring nominal scale agreement among many raters.
Psychological Bulletin, 76(5):378-382, 1971.

Michael D. Gordon and Peter J. Lenk. When is the probability ranking
principle suboptimal? Journal of the American Society for Information
Science, 43(1):1-14, January 1992.

Jeff Huang, Ryen White, and Georg Buscher. User see, user point: gaze
and cursor alignment in web search. In Proceedings of the 2012 ACM
annual conference on Human Factors in Computing Systems, CHI "12,
pages 1341-1350, New York, NY, USA, 2012. ACM.

[20]

[23]

[26]

[30]

References 41

Bernard J. Jansen, Danielle Booth, and Brian Smith. Using the tax-
onomy of cognitive learning to model online searching. Information
Processing and Management, 45(6):643-663, 2009.

In-Ho Kang and GilChang Kim. Query type classification for web doc-
ument retrieval. In Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval,
SIGIR ’03, pages 64-71, New York, NY, USA, 2003. ACM.

Jon Kleinberg. Bursty and hierarchical structure in streams. In Proceed-
ings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’02, pages 91-101, New York, NY,
USA, 2002. ACM.

Arnd Christian Konig, Michael Gamon, and Qiang Wu. Click-through
prediction for news queries. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information

retrieval, SIGIR ’09, pages 347-354, New York, NY, USA, 2009. ACM.

Ravi Kumar and Sergei Vassilvitskii. Generalized distances between
rankings. In Proceedings of the 19th international conference on World
wide web, WWW 10, pages 571-580, New York, NY, USA, 2010. ACM.

Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased of-
fline evaluation of contextual-bandit-based news article recommendation
algorithms. In Proceedings of the fourth ACM international conference
on Web search and data mining, WSDM ’11, pages 297-306, New York,
NY, USA, 2011. ACM.

Xiao Li, Ye-Yi Wang, and Alex Acero. Learning query intent from
regularized click graphs. In SIGIR ’08: Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 339-346, New York, NY, USA, 2008. ACM.

Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer,
2011.

Donald Metzler, Susan T. Dumais, and Christopher Meek. Similarity
measures for short segments of text. In ECIR, pages 1627, 2007.

Ashok Kumar Ponnuswami, Kumaresh Pattabiraman, Desmond Brand,
and Tapas Kanungo. Model characterization curves for federated search
using click-logs: predicting user engagement metrics for the span of feasi-
ble operating points. In Proceedings of the 20th international conference
on World wide web, WWW "11, pages 67-76, New York, NY, USA, 2011.
ACM.

Ashok Kumar Ponnuswami, Kumaresh Pattabiraman, Qiang Wu, Ran
Gilad-Bachrach, and Tapas Kanungo. On composition of a federated web
search result page: using online users to provide pairwise preference for

42

[31]

[38]

References

heterogeneous verticals. In Proceedings of the fourth ACM international
conference on Web search and data mining, WSDM ’11, pages 715-724,
New York, NY, USA, 2011. ACM.

Ashok Kumar Ponnuswami, Kumaresh Pattabiraman, Qiang Wu, Ran
Gilad-Bachrach, and Tapas Kanungo. On composition of a federated web
search result page: using online users to provide pairwise preference for
heterogeneous verticals. In Proceedings of the fourth ACM international
conference on Web search and data mining, WSDM ’11, pages 715-724,
New York, NY, USA, 2011. ACM.

Stephen Robertson. The probability ranking principle. Journal of Doc-
umentation, 1977.

Mehran Sahami and Timothy D. Heilman. A web-based kernel function
for measuring the similarity of short text snippets. In Proceedings of the
15th international conference on World Wide Web, WWW 06, pages
377-386, New York, NY, USA, 2006. ACM.

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613-620, 1975.

Markus Schulze. A new monotonic, clone-independent, reversal sym-
metric, and condorcet-consistent single-winner election method. Social
Choice and Welfare, 36:267-303, 2011.

Jangwon Seo and Bruce W. Croft. Blog site search using resource selec-
tion. In CIKM 2008, pages 1053-1062. ACM, 2008.

Dou Shen, Rong Pan, Jian-Tao Sun, Jeffrey Junfeng Pan, Kangheng Wu,
Jie Yin, and Qiang Yang. Q2CQUST: Our winning solution to query
classification in KDDCUP 2005. ACM SIGKDD Ezxploration Newsletter,
7:100-110, December 2005.

Dou Shen, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Building bridges
for web query classification. In Proceedings of the 29th annual interna-
tional ACM SIGIR conference on Research and development in infor-
mation retrieval, SIGIR ’06, pages 131-138, New York, NY, USA, 2006.
ACM.

Milad Shokouhi. Central rank based collection selection in uncooperative
distributed information retrieval. In ECIR 2007, pages 160-172, 2007.

Luo Si and Jamie Callan. Relevant document distribution estimation
method for resource selection. In SIGIR 2003, pages 298-305. ACM,
2003.

Luo Si, Rong Jin, Jamie Callan, and Paul Ogilvie. A language modeling
framework for resource selection and results merging. In CIKM 2002,
pages 391-397. ACM, 2002.

[42]

[43]

[44]

[49]

References 43

Malcolm J. A. Strens. A bayesian framework for reinforcement learning.
In ICML °00: Proceedings of the Seventeenth International Conference
on Machine Learning, pages 943-950, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

Shanu Sushmita, Hideo Joho, and Mounia Lalmas. A task-based eval-
uation of an aggregated search interface. In Proceedings of the 16th In-
ternational Symposium on String Processing and Information Retrieval,
SPIRE ’09, pages 322-333, Berlin, Heidelberg, 2009. Springer-Verlag.

Shanu Sushmita, Hideo Joho, Mounia Lalmas, and Robert Villa. Fac-
tors affecting click-through behavior in aggregated search interfaces. In
Proceedings of the 19th ACM international conference on Information
and knowledge management, CIKM ’10, pages 519-528, New York, NY,
USA, 2010. ACM.

Richard Sutton and Andrew Barto. Reinforcement Learning. MIT Press,
1998.

Paul Thomas and Milad Shokouhi. Sushi: Scoring scaled samples for
server selection. In SIGIR 2009. ACM, 2009.

Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. Clustering user
queries of a search engine. In Proceedings of the 10th international con-
ference on World Wide Web, WWW °01, pages 162-168, New York, NY,
USA, 2001. ACM.

Ke Zhou, Ronan Cummins, Mounia Lalmas, and Joemon M. Jose. Eval-
uating aggregated search pages. In Proceedings of the 35th international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’12, pages 115-124, New York, NY, USA, 2012. ACM.

Dongqing Zhu and Ben Carterette. An analysis of assessor behavior
in crowdsourced preference judgements. In SIGIR Workshop on Crowd-
sourcing for Search Fvaluation, pages 21-26, New York, NY, USA, 2010.
ACM.

