Persistent Preservation Challenge: Experience and Recommendations

Donald Sawyer/VIE Inc.
3 April 2009
National Space Science Data Center (NSSDC)

• 45 years of operation
 – Over 2300 digital collections from 1300+ space flight instruments on 370+ spacecraft yielding 25+Terabytes
 – Over 1000 collection-supporting documents, many originally on paper or film and often addressing multiple collections
• Dramatic changes seen
• Also expect dramatic changes over next 45 years
NSSDC Storage Media Evolution

- 7-track, 200 bpi magnetic tape, documentation on paper
- 9-track, 800 bpi magnetic tape
- 12” optical disks
- 3480 cartridges
- Floppy disks, small cartridges of various types
- CD-ROMs
- Digital Linear Tape (DLT) jukebox
NSSDC’s Hardware Evolution

- PDP-11, programs on paper tape
- IBM 7094 with six 7-track drives; software/control from key-punch cards
- Replaced by MODCOMP IV with 0.5MB memory and four 50MB drives
- VAX 11/780, VAX 8650, VAX 6410, VAX 9410, MicroVAXes
- MODCOMP Classic
- Britton-Lee IDM 700 data base server
- DEC, SUN, and SGI UNIX workstation
NSSDC’s System Evolution

- Received media became storage media
 - Duplication for security and for distribution
 - Software written to manage digital information about data and operations
- Many file types established to hold different categories of management information
- Electronic data distribution service using relational database, staged data to disk for anonymous FTP pickup
- Established OAIS Archival Information Package (AIP) implementation; moved from VAX to UNIX for major processing and storage functions
- Currently moving all data to AIP and writing to DLTs
NSSDC’s Process Evolution

• Well documented manual procedures for information entry
 – Key-punch operators digitized information from paper forms
• Dump of received data in hex characters for manual comparison with documentation
• Migration from 7-track to 9-track to 3480 using copy and stacking to higher density media
• Adopted OAIS concepts for migration, preservation, and reporting to Management
NSSDC’s Evolution Impact on its Preservation Function

• Over 45 year, tremendous changes
 – Technology
 – Expectations of user communities

• Supported processes and procedures changed dramatically

• Should not be surprising some digital information lost or corrupted
 – Some additional loss probably unknown until files requested by users

• Fundamental reason?
The Persistent Preservation Challenge

• Preservation systems sometimes (and eventually will) APPEAR to function properly while ACTUALLY losing or corrupting information
 – Human data-entry errors
 – Hardware/software errors
 – Organizational response to Workload versus Resource Mismatch

• Expect same challenge over next 45 years!
Human Data-Entry Errors

- NSSDC found human data entry errors of 1-3%
 - Key punch verifiers used to REDUCE error rate
- Recent migration-process analysis found operator errors could sometimes result in unrecognized tape misidentification
 - Established parallel operations to REDUCE error rate
- All full service archives/repositories will have human input
 - What level of risk is acceptable?
Hardware/software Errors

• Recent Migration software also performed an analysis and repair of certain past ingest artifacts
 – Very well tested, used for 2 years, millions of AIPs
 – Nevertheless, eventually found thousands of file truncations had still occurred on one particular type of data
 – Traced to low level read routine error in underlying “VAX/VMS” operating system (WHO CAN YOU TRUST?)

• Even widely used complex software likely to have ‘bugs’ that eventually leads to hard-to-recognize information loss
Workload vs. Resource Mismatch

- NSSDC experienced times with significant budget cuts and increasing workloads
 - Operations staff adopted various ‘shortcuts’
 - Reduced fidelity to existing procedures
 - Reduce reliability of supporting information
 - Not recognized until subsequent migration years later

- Reduced double-checking of human entry is easy target to address workload/resource mismatch

- Adequate attention to detail over long periods is difficult to maintain
Recommended Mitigating Approaches

- Reduce human involvement where practical
 - Perform risk analysis on impact of inevitable human-generated errors
 - Take error reduction steps as appropriate to risk tolerance

- Attempt to add independent and automated checking of processing results
 - E.g., characterize expected results and check

- Using risk analysis, highlight to Administration and Management the potential for information loss due to workload/resource mismatches