Policy-driven Distributed Data Management (iRODS)

Richard Marciano marciano unc.edu

- Professor @ SILS / UNC
- Chief Scientist for Persistent Archives and Digital Preservation @ RENCI
- Director of the Sustainable Archives & Library Science Lab @ DICE Center

iRODS: integrated Rule-Oriented Data System

- It is adaptive middleware that provides a flexible, extensible and customizable data grid architecture.
- It supports extensibility and customizability by encoding operations into sequences of micro-services.
- It is a data grid software system developed by the Data Intensive Cyber Environments (DICE) group and collaborators.
- It introduces management policies (sets of assertions that communities make about their digital collections) which are implemented as machine-actionable rules and state information.
- At its core, a Rule Engine interprets the rules to decide how the system is to respond to various requests and conditions.
- It is open source under a BSD license.

Data Management Applications (What do they have in common?)

- Data grids
 - Share data organize distributed data as a collection
- Digital libraries
 - Publish data support browsing and discovery
- Persistent archives
 - Preserve data manage technology evolution
- Real-time sensor systems
 - Federate sensor data integrate across sensor streams
- Workflow systems
 - Analyze data integrate client- & server-side workflows

Evolution of Data Grid Technology

Shared collections

- Enable researchers at multiple institutions to collaborate on research by sharing data
- Focus was on performance, scalability

Digital libraries

- Support provenance information and discovery
- Integrated with digital library front end services

Preservation environments

- Support preservation policies
- Build rule-based data management system
- Differ in choice of management policies

Using a Data Grid - Details

- User asks for data
- Data request goes to iRODS Server
- Server looks up information in catalog
- Catalog tells which iRODS server has data
- 1st server asks 2nd for data
- The 2nd iRODS server applies rules

Generic Infrastructure

- Data grids manage data distributed across multiple types of storage systems
 - File systems, tape archives, object ring buffers
- Data grids manage collection attributes
 - Provenance, descriptive, system metadata
- Data grids manage technology evolution
 - At the point in time when new technology is available, both the old and new systems can be integrated

Data Grids

Data virtualization

- Provide the persistent, global identifiers needed to manage distributed data
- Provide standard operations for interacting with heterogeneous storage system
- Provide standard actions for interacting with clients

Trust virtualization

- Manage authentication and authorization
- Enable access controls on data, metadata, storage

Federation

- Controlled sharing of name spaces, files, and metadata between independent data grids
- Data grid chaining / Central archives / Master-slave data grids / Peer-to-Peer data grids

Observations of Production Data Grids

- Each community implements different management polices
 - Community specific preservation objectives
 - Community specific assertions about properties of the shared collection
 - Community specific management policies
- Need a mechanism to support the socialization of shared collections
 - Map from assertions made by collection creators to expectations of the users

Preservation Rules

Authenticity

- Rules that quantify required descriptive metadata
- Rules that verify descriptive metadata is linked to records
- Rules that govern creation of AIPs

Integrity

- Rules that verify records have not been corrupted
- Rules that manage replicas
- Rules that recover from corruption instances
- Rules that manage data distribution

Chain of custody

- Persistent identifiers for archivists, records, storage
- Rules to verify application of access controls
- Rules to track storage location of records

Rule Execution Modes

- Immediate Execution
 - acCreateUser, acDeleteUser (see core.irb for others)
- Delayed and Periodic Execution
 - acPostProcForPut||delayExec((<PLUSET>1h</PLUSET>,msiSysChksumDataObj,nop)|nop
- Remote Execution ('for parking micro-services')
 - remoteExec(yellow.unc.edu, null, msiDataObjChksum(*OjbName,verifyChecksum,*Status),nop)
- Future Execution Modes (to be specified)
 - Parallel execution (e.g. a checksum and a replication)
 - Broadcast execution
 - Mixing modes
- General Syntax of delayExec:
 - delayExec
 - Hints
 - Micro-service-chains,
 - · Recovery-micro-service-chains

Rationale for a "Delayed Execution Service"

Post-processing operations

Synchronization of replicas

 After changing one of the copies... a "dirty bit" is turned on to indicate that all further reads and writes should be done to the modified copy. A synchronization command can be executed at a future time to update all of the replicas.

Validation of checksums

 Even after a file has been stored successfully, it may become corrupted. Thus, checksums must be continually revalidated to ensure integrity, preferably at a frequency that is four times faster than the expected degradation rate. A timestamp is needed for each object for when the checksum was last validated.

Placement of files within a distributed storage environment

 A logical resource name can be used to identify the locations of the multiple storage systems where the copies will reside. If a new physical resource is added to the logical resource name, then a copy would need to be created at the new location. A change flag is needed to denote that the replication operation should be executed

Extraction of metadata

Metadata can be extracted upon ingest or in a deferred way

Conversion of formats

A service that would detect obsolescence could trigger differed conversion services

Date	5/17/02		6/30/04			11/29/07		
Project	GBs of data stored	1000Õs o	GBs of data stored	1000Õs o files	# Curators	GBs of data stored	1000Õs o files	# Curators
Data Grid								
NSF / NVO	17,800	5,139	51,380	8,690	80	88,216	14,550	100
NSF / NPACI	1,972	1,083	17,578	4,694	380	39,697	7,590	380
Hayden	6,800	41	7,201	113	178		161	227
Pzone	438	31	812	47	49	28,799	17,640	
NSF / LDAS-SALK	239	1	4,562	16		207,018	169	
NSF / SLAC-JCSG	514	77	4,317	563	47	23,854		
NSF / TeraGrid			80,354	685	2,962	282,536	7,257	3,267
NIH / BIRN			5,416	3,366	148	_		
NCAR						70,334		
LCA						3,787	77	2
Digital Library								
NSF / LTER	158	3	233		35		42	
NSF / Portal	33	5					53	
NIH / AfCS	27	4	462	49	21	733	94	
NSF / SIO Explorer	19	1	1,734	601	27	2,750	1,202	
NSF / SCEC			15,246	1,737	52	168,931	3,545	
LLNL						18,934	2,338	
CHRON						12,863	6,443	5
Persistent Archive								
NARA	7	2	63	81	58	5,023		
NSF / NSDL			2,785					
UCSD Libraries			127	202	29	5,205	1,328	
NHPRC / PAT						2,576	966	
RoadNet						3,557		30
UCTV						7,140	2	5
LOC						6,644		
Earth Sci						6,136		
TOTAL	28 TB	6 mil	194 TB	40 mil	4,635	1,023 TB	200 mil	5,539

Data Virtualization

Data Access Methods (C library, Unix, Web Browser)

Data Collection

Storage Repository

- Storage location
- User name
- File name
- File context (creation date,...)
- Access controls

Data Grid

- Logical resource name space
- Logical user name space
- Logical file name space
- Logical context (metadata)
- Access constraints

Data is organized as a shared collection

Policy Virtualization

Data Access Methods (Web Browser, DSpace, OAI-PMH)

Data Collection

Storage Repository

- Storage location
- User name
- File name
- File context (creation date,...)
- Access controls

Data Grid

- Logical resource name space
- Logical user name space
- Logical file name space
 - Logical persistent state
 - Logical rule name space
 - Logical micro-service name

iRODS Rule Syntax

Event | Condition | Action-set | Recovery-set

Event - triggered by synchronous operation or

asynchronous operations, or queued rule, or

periodic rule

Condition - composed from tests on any attributes in

the persistent state information

Action-set - server-side workflow composed from both

micro-services and rules

Recovery-set - recovery workflow used to ensure transaction

semantics and consistent state information

iRODS Rules

- Rule condition is a test on any metadata attribute
- Action set generates metadata from tracking remote operations
- Recovery set enforces consistency of metadata
- In distributed environment, must periodically verify compliance of system with desired properties

Types of Rules

Authenticity

- Extract required descriptive metadata and register into iCAT
- Verify presence of required descriptive metadata

Integrity

- Automate resource selection and data distribution
- Automate creation of replicas
- Verify records have not been corrupted
- Automate retention and disposition policy

Chain of custody

- Periodically parse audit trails for compliance with policy
- Monitor storage utilization
- Time-dependent access controls

Federation

- Set of policies that govern interactions between independent data grids
 - Sharing of name spaces
 - Control of procedures that remote users may invoke
 - Tracking of application of procedures (which data grid holds the resulting state information)

