

Implementing Trusted Digital Repositories

Reagan W. Moore Richard Marciano Arcot Rajasekar Wayne Schroeder Mike Wan

{moore, schroede, mwan, sekar, marciano}@sdsc.edu

http://www.sdsc.edu/srb http://irods.sdsc.edu/

Topics

- Representation information for preservation environments
 - How can preservation policies and procedures be characterized?
- Rule-based data management systems
 - How do we make assertions about the trustworthiness of a preservation environment?
- Theory of digital preservation
 - What are the components on which a theory could be based?

Digital Preservation

- Preservation is communication with the future
 - How do we incorporate new technology (information syntax, encoding format, storage infrastructure, access protocols) in a preservation environment?
 - SRB Storage Resource Broker data grid provides the interoperability mechanisms needed to manage multiple versions of technology (infrastructure independence)
- Preservation manages communication from the past
 - What information do we need from the past to make assertions about preservation assessment criteria?
 - iRODS integrated Rule-Oriented Data System

Assessment Criteria

Authenticity

 Management of descriptive information about record provenance, record representation information

Integrity

Minimization of the risk of data loss

Chain of custody

Verification of archivist management policies

Respect des fonds

Preservation of the original arrangement of the records

Trustworthiness

RLG/NARA assessment criteria - 174 rules

Controlling Remote Operations

iRODS - integrated Rule-Oriented Data System

Data Management	Conserved	Control	Remote
Environment	Properties	Mehanisms	Operations
Management	Assessment	Management	Capabilities
Functions	Criteria	Policies	
Data Management	Persistent	Rules	Micro-services
Infrætructure	State		
Physical	Database	Rule Engine	Storage
Infrætructure			System

Representation Information for Preservation Environments

- Assessment criteria
 - Mapped to sets of persistent state information
- Management policies
 - Mapped to sets of rules
- Preservation processes
 - Mapped to sets of micro-services
- Rules generate persistent state information by controlling the execution of sets of microservices at remote storage systems

Example Rule

Rule composed of four parts:

nop

- Name | condition | micro-service set | recovery set
- Rule to automate replication of data for a specific collection

```
acPostProcForPut |

$objPath like /tempZone/home/rods/nvo/* |

msiSysRepIDataObj(nvoRepIResc,null) |
```


Infrastructure Independence

Distributed Data Management

- Data virtualization
 - Storage protocol independence
- Trust virtualization
 - Administrative domain independence
- Federation
 - Manage interactions between independent data grids

Rule-based Data Management

- Management virtualization
 - Automating execution of management policies
 - Coupling management policies to assertions about data

Data Virtualization

Access Interface

Standard Access Actions

Data Grid

Standard Micro-services

Storage Protocol

Storage System

Map from the actions requested by the access method to a standard set of micro-services used to interact with the storage system

Micro-services

- Examined Electronic Records Archive capabilities list
 - Identified 174 micro-services for manipulation of data and structured information
 - Identified 212 metadata attributes (persistent state information) across six name spaces
 - Users
 - Files
 - Storage systems
 - Rules
 - Micro-services
 - Persistent state information

Federation Between Data Grids

Data Access Methods (Web Browser, DSpace, OAI-PMH)

Data Collection A

Data Collection B

Data Grid

- Logical resource name space
- Logical user name space
- Logical file name space
- Logical rule name space
- Logical micro-service name

Logical persistent state

Data Grid

- Logical resource name space
- Logical user name space
- Logical file name space
- Logical rule name space
- Logical micro-service name
- Logical persistent state

Theory of Digital Preservation

- Definition of the persistent name spaces
- Definition of the operations that are performed upon the persistent name spaces
- Characterization of the changes to the persistent state information associated with each persistent name space that occur for each operation
- Characterization of the transformations that are made to the records for each operation
- Demonstration that the set of operations is complete, enabling the decomposition of every preservation process onto the operation set.
- Demonstration that the preservation management policies are complete, enabling the validation of all preservation assessment criteria.
- Demonstration that the persistent state information is complete, enabling the validation of assessment criteria.
- The assertion is then: if the operations are reversible, then a future preservation environment can recreate a record in its original form, maintain authenticity and integrity, support access, and display the record.
- A corollary is that such a system would allow records to be migrated between independent implementations of preservation environments, while maintaining authenticity and integrity.

For More Information

Reagan W. Moore
San Diego Supercomputer Center
moore@sdsc.edu

http://www.sdsc.edu/srb/

http://irods.sdsc.edu/

