Implementing Trusted Digital Repositories

Reagan W. Moore
Richard Marciano
Arcot Rajasekar
Wayne Schroeder
Mike Wan

{moore, Schroede, mwan, sekar, marciano}@sdsc.edu

http://www.sdsc.edu/srb
http://irods.sdsc.edu/
Topics

• Representation information for preservation environments
 • How can preservation policies and procedures be characterized?

• Rule-based data management systems
 • How do we make assertions about the trustworthiness of a preservation environment?

• Theory of digital preservation
 • What are the components on which a theory could be based?
• Preservation is communication with the future
 • How do we incorporate new technology (information syntax, encoding format, storage infrastructure, access protocols) in a preservation environment?
 • SRB - Storage Resource Broker data grid provides the interoperability mechanisms needed to manage multiple versions of technology (infrastructure independence)
• Preservation manages communication from the past
 • What information do we need from the past to make assertions about preservation assessment criteria?
 • iRODS - integrated Rule-Oriented Data System
Assessment Criteria

• **Authenticity**
 • Management of descriptive information about record provenance, record representation information

• **Integrity**
 • Minimization of the risk of data loss

• **Chain of custody**
 • Verification of archivist management policies

• **Respect des fonds**
 • Preservation of the original arrangement of the records

• **Trustworthiness**
 • RLG/NARA assessment criteria - 174 rules
Controlling Remote Operations

iRODS - integrated Rule-Oriented Data System

<table>
<thead>
<tr>
<th>Data Management Environment</th>
<th>Conserved Properties</th>
<th>Control Mechanisms</th>
<th>Remote Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Functions</td>
<td>Assessment Criteria</td>
<td>Management Policies</td>
<td>Capabilities</td>
</tr>
<tr>
<td>Data Management Infrastructure</td>
<td>Persistent State</td>
<td>Rules</td>
<td>Micro-services</td>
</tr>
<tr>
<td>Physical Infrastructure</td>
<td>Database</td>
<td>Rule Engine</td>
<td>Storage System</td>
</tr>
</tbody>
</table>
Representation Information for Preservation Environments

• Assessment criteria
 • Mapped to sets of persistent state information

• Management policies
 • Mapped to sets of rules

• Preservation processes
 • Mapped to sets of micro-services

• Rules generate persistent state information by controlling the execution of sets of micro-services at remote storage systems
Example Rule

• Rule composed of four parts:
 • Name | condition | micro-service set | recovery set

• Rule to automate replication of data for a specific collection

```plaintext
acPostProcForPut | $objPath like /tempZone/home/rods/nvo/* | msiSysReplDataObj(nvoReplResc,null) | nop
```
Infrastructure Independence

- Distributed Data Management
 - Data virtualization
 - Storage protocol independence
 - Trust virtualization
 - Administrative domain independence
 - Federation
 - Manage interactions between independent data grids

- Rule-based Data Management
 - Management virtualization
 - Automating execution of management policies
 - Coupling management policies to assertions about data
Data Virtualization

Access Interface

Standard Access Actions

Data Grid

Standard Micro-services

Storage Protocol

Storage System

Map from the actions requested by the access method to a standard set of micro-services used to interact with the storage system.
Micro-services

• Examined Electronic Records Archive capabilities list
 • Identified 174 micro-services for manipulation of data and structured information
 • Identified 212 metadata attributes (persistent state information) across six name spaces
 • Users
 • Files
 • Storage systems
 • Rules
 • Micro-services
 • Persistent state information
Federation Between Data Grids

Data Grid
- Logical resource name space
- Logical user name space
- Logical file name space
- Logical rule name space
- Logical micro-service name
- Logical persistent state

Data Access Methods (Web Browser, DSpace, OAI-PMH)

Data Collection A

Data Collection B

Data Grid
- Logical resource name space
- Logical user name space
- Logical file name space
- Logical rule name space
- Logical micro-service name
- Logical persistent state
Theory of Digital Preservation

• Definition of the persistent name spaces
• Definition of the operations that are performed upon the persistent name spaces
• Characterization of the changes to the persistent state information associated with each persistent name space that occur for each operation
• Characterization of the transformations that are made to the records for each operation
• Demonstration that the set of operations is complete, enabling the decomposition of every preservation process onto the operation set.
• Demonstration that the preservation management policies are complete, enabling the validation of all preservation assessment criteria.
• Demonstration that the persistent state information is complete, enabling the validation of assessment criteria.
• The assertion is then: if the operations are reversible, then a future preservation environment can recreate a record in its original form, maintain authenticity and integrity, support access, and display the record.
• A corollary is that such a system would allow records to be migrated between independent implementations of preservation environments, while maintaining authenticity and integrity.
For More Information

Reagan W. Moore
San Diego Supercomputer Center
moore@sdsc.edu

http://www.sdsc.edu/srb/
http://irods.sdsc.edu/