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Text Processing 

Many applications involve some form of text processing
● Data and text mining

● Natural language processing

● Indexing

● Metadata generation

● Data interchange

● Re-purposing content, e.g., data visualization, to improve 
understanding and interpretation of data

With the proliferation of big data and open data, these 
applications become increasingly important.
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Text data takes many forms
Unstructured text

● Similar to the e-book text files found on the Project Gutenberg site 

● Published content, data generated from speech, tweets 

● Processing often requires Natural Language Processing (NLP) tools that 
work with human language data to categorize words, classify text and 
analyze sentence structure and meaning

Tabular data (semi-structured)
● Typically organized in rows and columns

● Examples: spreadsheets, CSV files, log data

Structured data
● Organized in a specific format that describes and defines data

● Examples: JSON and XML data formats
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Unstructured Text
Project Gutenberg 

collection of free e-books 

http://www.gutenberg.org/ebooks/search/?sort_order=downloads
https://www.gutenberg.org/ebooks/120
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Processing Tabular Data (semi-structured)

"AA",39.48,"6/11/2019","9:36am",-0.18,181800
"AIG",71.38,"6/11/2019","9:36am",-0.15,195500
"AXP",62.58,"6/11/2019","9:36am",-0.46,935000
"BA",98.31,"6/11/2019","9:36am",+0.12,104800
"C",53.08,"6/11/2019","9:36am",-0.25,360900
"CAT",78.29,"6/11/2019","9:36am",-0.23,225400

stockfile = open('stocks.csv', 'r')
for line in stockfile:
    line = line.strip()
    column = line.split(',')
    print(column[0], "closed at ", column[1], 
          "with", column[4], "change")
stockfile.close()

Spreadsheet viewCSV view (stocks.csv)

"AA" closed at  39.48 with -0.18 change
"AIG" closed at  71.38 with -0.15 change
"AXP" closed at  62.58 with -0.46 change
"BA" closed at  98.31 with +0.12 change
"C" closed at  53.08 with -0.25 change
"CAT" closed at  78.29 with -0.23 change

Output
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Web Access Logs are Tabular Data
Web access.log

access.log in CSV format
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Analysis and Visualization of Web Logs

Searching for Art Records:
A Log Analysis of the
Ackland Art Museum's
Collection Search System 
by Meredith Hale

Google Analytics 
for a website
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Web Analytics:
Application of Web Log Analysis

Open Web Analytics

https://www.openwebanalytics.com/


  

Slide 10

Structured Data
Standardized Formats: XML and JSON
<employees>

    <employee>

        <firstName>John</firstName> <lastName>Doe</lastName>

    </employee>

    <employee>

        <firstName>Anna</firstName> <lastName>Smith</lastName>

    </employee>

    <employee>

        <firstName>Peter</firstName> <lastName>Jones</lastName>

    </employee>

</employees>

{"employees":[

    {"firstName":"John", "lastName":"Doe"},

    {"firstName":"Anna", "lastName":"Smith"},

    {"firstName":"Peter", "lastName":"Jones"}

]}

JSON 

XML 
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Python Support for Text Processing

Many built-in and third party libraries 
● NLTK for natural language processing

● Sci-kit for machine learning

● lxml for processing XML and HTML

● Beautiful Soup,  Scrapy.org for screen-scraping

● NumPy, pandas  for scientific computing and data analysis

Common text processing techniques for structured data
● Regular expressions

● XML parsing

● JSON parsing

http://www.nltk.org/
http://scikit-learn.org/stable/
http://lxml.de/
https://www.crummy.com/software/BeautifulSoup/
https://scrapy.org/
http://www.numpy.org/
http://pandas.pydata.org/
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XML Data Format
● eXtensible Markup Language (XML) is a set of rules for 

encoding documents in machine-readable form

● Some popular uses
– Data interchange: sharing information in a standardized and 

descriptive format, often among heterogeneous applications

– Publication, re-purposing: database content can be exported 
as XML and then converted to HTML for inclusion in websites

– Content syndication: websites that frequently update their 
content (news websites or blogs) often provide an XML feed 
that other programs can use

● Parsing XML data is a common task for many kinds of 
applications
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XML Example: RSS Feeds
● RSS (Really Simple Syndication) allows easy syndication of website content

● Useful for websites that are updated frequently, e.g., news sites, blogs,  
calendars. Examples: Wired, ESPN, NPR

● Written in XML. No official standard, but there is a specification (RSS 2.0) 
that defines the syntax rules.

<channel> element 
describes the RSS feed and 
has 3 required child elements

<item> elements define 
articles in the RSS feed and 
have 3 required child elements: 
<title>, <link>, and 
<description>

Source:  w3schools XML RSS 

https://www.wired.com/about/rss-feeds/
https://www.espn.com/espn/news/story?page=rssinfo
https://blog.feedspot.com/npr_rss_feeds/
http://www.w3schools.com/xml/xml_rss.asp
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JSON Data Format
JavaScript Object Notation (JSON) is a standard text format for 
representing structured data.

Similarities with XML
● Human/machine-readable and self-describing 
● Hierarchical data format
● Language-independent (although the syntax is derived from that used 

by JavaScript to create objects)
● Parsers are available with many programming languages
● Used for data interchange, e.g., sending data from a server to a client 

based on a request

Some benefits of JSON over XML
● Lightweight, less verbose, simpler syntax
● Maps more directly to data structures of programming languages, e.g., 

JavaScript and Python

https://www.json.org/json-en.html
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Why Python + JSON
● The proliferation of data, especially open data, creates 

opportunities for analysis, and for the extraction of information 
and insights from this data

● Much of this data is available in JSON format

● Python is an excellent programming language for analyzing 
structured data in many formats, including JSON

● Python can also be used to re-purpose data so that it is easier to 
understand, and to derive insights and trends.  For example, 
rendering content in a more meaningful way on a web page, or 
visualizing patterns in charts

● But first, you need to parse the data to extract the information 
you want...
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JSON Data Format

JSON is built on two structures:
● A collection of name/value pairs (like a Python dictionary) delimited by { }

● An ordered list of values (like a Python list) delimited by [ ]

Syntax is important!
● JSON requires double quotes to be used around strings and property names. 

Single quotes are not valid.

● Validation is important – a single misplaced comma or colon, or a mis-matched 
bracket, will make the JSON text impossible to parse.

JSONLint is a useful tool for validating and formatting JSON

{"employees":[
    {"firstName":"John", "lastName":"Doe"},

    {"firstName":"Anna", "lastName":"Smith"},

    {"firstName":"Peter", "lastName":"Jones"}

   ]
}

w3schools: Python JSON

https://jsonlint.com/
https://www.w3schools.com/python/python_json.asp
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Basic Lists and Dictionaries in Python
word_list 

['my', 
'father', 
'kept', 
'the', 
'admiral', 
'benbow', 
'inn', 
'and', 
'the', 
'brown', 
'old',

 ...
]

word_frequency_dictionary

{'man': 232, 
'captain': 208, 
'silver': 201, 
'doctor': 159, 
'time': 130, 
'good': 123, 
'hand': 119, 
'long': 113, 
'back': 106, 
'cried': 103,
'hands': 102, 
'sir': 101,

 ...
}
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Parsing Employee Data in JSON Format 

{"employees":[

    {"firstName":"John", "lastName":"Doe"},

    {"firstName":"Anna", "lastName":"Smith"},

    {"firstName":"Peter", "lastName":"Jones"}

   ]

}

employee.json

parse_employee_json.py

John Doe
Anna Smith
Peter Jones

● Read input file

● Parse contents to produce Python dictionary and list

● Loop through list to print employee names 

Output
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Python uses Dictionaries and Lists to 
represent JSON data

{"employees":[
    {"firstName":"John", "lastName":"Doe"},

    {"firstName":"Anna", "lastName":"Smith"},

    {"firstName":"Peter", "lastName":"Jones"}

   ]
}

"employees" LIST

"firstName" "John"

"lastName" "Doe"

"firstName" "Peter"

"lastName" "Jones"

"firstName" "Anna"

"lastName" "Smith"

KEY                     VALUE

DICTIONARY

DICTIONARY

DICTIONARY

LIST  item

LIST  item

LIST  item

KEY                     VALUE
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Parsing Employee JSON Data

import json
…

input_file = open('employee.json', 'r')
employee_info = input_file.read()
input_file.close()

# Parse the json data
employee_dictionary = json.loads(employee_info)

# Get the list of dictionaries
employee_list = employee_dictionary['employees']

# Loop through each dictionary, extract names
for employee in employee_list:
    firstName = employee['firstName']
    lastName = employee['lastName']
    print(firstName, lastName)
...

loads converts a string 
containing JSON text into 
a Python dictionary

parse_employee_json.py,   employee.json

The dictionary has one entry where 
   key = 'employees' and 
   value = a list of items that are         
                dictionaries 
               

Each employee is a dictionary 
with keys for  'firstName' 
and 'lastName', 
   

Import the module 
for the JSON parser

w3schools:  Python JSON

John Doe
Anna Smith
Peter Jones

Output

https://www.w3schools.com/python/python_json.asp
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Jeopardy Data in JSON Format

200,000+ Jeopardy! Questions contains an unordered 
list of questions where each question is defined by

● 'category' : the question category, e.g. "HISTORY"

● 'value' : $ value of the question as string, e.g. "$200"

● 'question' : text of question

● 'answer' : text of answer

● 'round' : one of "Jeopardy!","Double Jeopardy!","Final Jeopardy!" or 
"Tiebreaker"

● 'show_number' : string of show number, e.g '4680'

● 'air_date' : the show air date in format YYYY-MM-DD

https://www.reddit.com/r/datasets/comments/1uyd0t/200000_jeopardy_questions_in_a_json_file/
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Jeopardy Data in JSON Format
[{

"category": "HISTORY",
"air_date": "2004-12-31",
"question": "'For the last 8 years of his life, Galileo was under house        

                 arrest for espousing this man's theory'",
"value": "$200",
"answer": "Copernicus",
"round": "Jeopardy!",
"show_number": "4680"

}, {
"category": "ESPN's TOP 10 ALL-TIME ATHLETES",
"air_date": "2004-12-31",
"question": "'No. 2: 1912 Olympian; football star at Carlisle Indian School;   

                 6 MLB seasons with the Reds, Giants & Braves'",
"value": "$200",
"answer": "Jim Thorpe",
"round": "Jeopardy!",
"show_number": "4680"

}, {
"category": "EVERYBODY TALKS ABOUT IT...",
"air_date": "2004-12-31",
"question": "'The city of Yuma in this state has a record average of 4,055     

                  hours of sunshine each year'",
"value": "$200",
"answer": "Arizona",
"round": "Jeopardy!",
"show_number": "4680"

},
. . .
] 

jeopardy.json contains 15 Jeopardy questions,
a very small subset of the original file.  

https://ils.unc.edu/courses/2024_summerII/inls560_001/Examples/Text-Processing/jeopardy.json
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Exercise: Parse Jeopardy JSON Data

Category:  HISTORY
Question:  'For the last 8 years of his life, Galileo was under house arrest for espousing   
            this man's theory'
Answer:  Copernicus

Category:  ESPN's TOP 10 ALL-TIME ATHLETES
Question:  'No. 2: 1912 Olympian; football star at Carlisle Indian School; 6 MLB seasons     
            with the Reds, Giants & Braves'
Answer:  Jim Thorpe
. . .
Category:  EVERYBODY TALKS ABOUT IT...
Question:  'On June 28, 1994 the nat'l weather service began issuing this index that rates   
            the intensity of the sun's radiation'
Answer:  the UV index

15 questions in this file Sample Output

● Read and parse the contents of jeopardy.json, like this:
       jeopardy_questions = input_file.read()
    question_list = json.loads(jeopardy_questions)

● NOTE: this JSON file is list of dictionaries, unlike the employee JSON 
file which is a little more complex (a dictionary of lists that contain 
dictionaries)

● Extract and display the Category, Question, and Answer

https://ils.unc.edu/courses/2024_summerII/inls560_001/Examples/Text-Processing/jeopardy.json
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