

Slide 1

Text Processing

Joan Boone
jpboone@email.unc.edu

INLS 560
Programming for

Information Professionals

mailto:jpboone@email.unc.edu

Slide 2

Part 1: Overview

Part 2: Structured data: XML and JSON

Part 3: Parsing JSON data with Python

Slide 3

Text Processing

Many applications involve some form of text processing
● Data and text mining

● Natural language processing

● Indexing

● Metadata generation

● Data interchange

● Re-purposing content, e.g., data visualization, to improve
understanding and interpretation of data

With the proliferation of big data and open data, these
applications become increasingly important.

Slide 4

Text data takes many forms
Unstructured text

● Similar to the e-book text files found on the Project Gutenberg site

● Published content, data generated from speech, tweets

● Processing often requires Natural Language Processing (NLP) tools that
work with human language data to categorize words, classify text and
analyze sentence structure and meaning

Tabular data (semi-structured)
● Typically organized in rows and columns

● Examples: spreadsheets, CSV files, log data

Structured data
● Organized in a specific format that describes and defines data

● Examples: JSON and XML data formats

Slide 5

Unstructured Text
Project Gutenberg

collection of free e-books

http://www.gutenberg.org/ebooks/search/?sort_order=downloads
https://www.gutenberg.org/ebooks/120

Slide 6

Processing Tabular Data (semi-structured)

"AA",39.48,"6/11/2019","9:36am",-0.18,181800
"AIG",71.38,"6/11/2019","9:36am",-0.15,195500
"AXP",62.58,"6/11/2019","9:36am",-0.46,935000
"BA",98.31,"6/11/2019","9:36am",+0.12,104800
"C",53.08,"6/11/2019","9:36am",-0.25,360900
"CAT",78.29,"6/11/2019","9:36am",-0.23,225400

stockfile = open('stocks.csv', 'r')
for line in stockfile:
 line = line.strip()
 column = line.split(',')
 print(column[0], "closed at ", column[1],
 "with", column[4], "change")
stockfile.close()

Spreadsheet viewCSV view (stocks.csv)

"AA" closed at 39.48 with -0.18 change
"AIG" closed at 71.38 with -0.15 change
"AXP" closed at 62.58 with -0.46 change
"BA" closed at 98.31 with +0.12 change
"C" closed at 53.08 with -0.25 change
"CAT" closed at 78.29 with -0.23 change

Output

Slide 7

Web Access Logs are Tabular Data
Web access.log

access.log in CSV format

Slide 8

Analysis and Visualization of Web Logs

Searching for Art Records:
A Log Analysis of the
Ackland Art Museum's
Collection Search System
by Meredith Hale

Google Analytics
for a website

Slide 9

Web Analytics:
Application of Web Log Analysis

Open Web Analytics

https://www.openwebanalytics.com/

Slide 10

Structured Data
Standardized Formats: XML and JSON
<employees>

 <employee>

 <firstName>John</firstName> <lastName>Doe</lastName>

 </employee>

 <employee>

 <firstName>Anna</firstName> <lastName>Smith</lastName>

 </employee>

 <employee>

 <firstName>Peter</firstName> <lastName>Jones</lastName>

 </employee>

</employees>

{"employees":[

 {"firstName":"John", "lastName":"Doe"},

 {"firstName":"Anna", "lastName":"Smith"},

 {"firstName":"Peter", "lastName":"Jones"}

]}

JSON

XML

Slide 11

Python Support for Text Processing

Many built-in and third party libraries
● NLTK for natural language processing

● Sci-kit for machine learning

● lxml for processing XML and HTML

● Beautiful Soup, Scrapy.org for screen-scraping

● NumPy, pandas for scientific computing and data analysis

Common text processing techniques for structured data
● Regular expressions

● XML parsing

● JSON parsing

http://www.nltk.org/
http://scikit-learn.org/stable/
http://lxml.de/
https://www.crummy.com/software/BeautifulSoup/
https://scrapy.org/
http://www.numpy.org/
http://pandas.pydata.org/

Slide 12

Part 1: Overview

Part 2: Structured data: XML and JSON

Part 3: Parsing JSON data with Python

Slide 13

XML Data Format
● eXtensible Markup Language (XML) is a set of rules for

encoding documents in machine-readable form

● Some popular uses
– Data interchange: sharing information in a standardized and

descriptive format, often among heterogeneous applications

– Publication, re-purposing: database content can be exported
as XML and then converted to HTML for inclusion in websites

– Content syndication: websites that frequently update their
content (news websites or blogs) often provide an XML feed
that other programs can use

● Parsing XML data is a common task for many kinds of
applications

Slide 14

XML Example: RSS Feeds
● RSS (Really Simple Syndication) allows easy syndication of website content

● Useful for websites that are updated frequently, e.g., news sites, blogs,
calendars. Examples: Wired, ESPN, NPR

● Written in XML. No official standard, but there is a specification (RSS 2.0)
that defines the syntax rules.

<channel> element
describes the RSS feed and
has 3 required child elements

<item> elements define
articles in the RSS feed and
have 3 required child elements:
<title>, <link>, and
<description>

Source: w3schools XML RSS

https://www.wired.com/about/rss-feeds/
https://www.espn.com/espn/news/story?page=rssinfo
https://blog.feedspot.com/npr_rss_feeds/
http://www.w3schools.com/xml/xml_rss.asp

Slide 15

JSON Data Format
JavaScript Object Notation (JSON) is a standard text format for
representing structured data.

Similarities with XML
● Human/machine-readable and self-describing
● Hierarchical data format
● Language-independent (although the syntax is derived from that used

by JavaScript to create objects)
● Parsers are available with many programming languages
● Used for data interchange, e.g., sending data from a server to a client

based on a request

Some benefits of JSON over XML
● Lightweight, less verbose, simpler syntax
● Maps more directly to data structures of programming languages, e.g.,

JavaScript and Python

https://www.json.org/json-en.html

Slide 16

Why Python + JSON
● The proliferation of data, especially open data, creates

opportunities for analysis, and for the extraction of information
and insights from this data

● Much of this data is available in JSON format

● Python is an excellent programming language for analyzing
structured data in many formats, including JSON

● Python can also be used to re-purpose data so that it is easier to
understand, and to derive insights and trends. For example,
rendering content in a more meaningful way on a web page, or
visualizing patterns in charts

● But first, you need to parse the data to extract the information
you want...

Slide 17

JSON Data Format

JSON is built on two structures:
● A collection of name/value pairs (like a Python dictionary) delimited by { }

● An ordered list of values (like a Python list) delimited by []

Syntax is important!
● JSON requires double quotes to be used around strings and property names.

Single quotes are not valid.

● Validation is important – a single misplaced comma or colon, or a mis-matched
bracket, will make the JSON text impossible to parse.

JSONLint is a useful tool for validating and formatting JSON

{"employees":[
 {"firstName":"John", "lastName":"Doe"},

 {"firstName":"Anna", "lastName":"Smith"},

 {"firstName":"Peter", "lastName":"Jones"}

]
}

w3schools: Python JSON

https://jsonlint.com/
https://www.w3schools.com/python/python_json.asp

Slide 18

Basic Lists and Dictionaries in Python
word_list

['my',
'father',
'kept',
'the',
'admiral',
'benbow',
'inn',
'and',
'the',
'brown',
'old',

 ...
]

word_frequency_dictionary

{'man': 232,
'captain': 208,
'silver': 201,
'doctor': 159,
'time': 130,
'good': 123,
'hand': 119,
'long': 113,
'back': 106,
'cried': 103,
'hands': 102,
'sir': 101,

 ...
}

Slide 19

Part 1: Overview

Part 2: Structured data: XML and JSON

Part 3: Parsing JSON data with Python

Slide 20

Parsing Employee Data in JSON Format

{"employees":[

 {"firstName":"John", "lastName":"Doe"},

 {"firstName":"Anna", "lastName":"Smith"},

 {"firstName":"Peter", "lastName":"Jones"}

]

}

employee.json

parse_employee_json.py

John Doe
Anna Smith
Peter Jones

● Read input file

● Parse contents to produce Python dictionary and list

● Loop through list to print employee names

Output

Slide 21

Python uses Dictionaries and Lists to
represent JSON data

{"employees":[
 {"firstName":"John", "lastName":"Doe"},

 {"firstName":"Anna", "lastName":"Smith"},

 {"firstName":"Peter", "lastName":"Jones"}

]
}

"employees" LIST

"firstName" "John"

"lastName" "Doe"

"firstName" "Peter"

"lastName" "Jones"

"firstName" "Anna"

"lastName" "Smith"

KEY VALUE

DICTIONARY

DICTIONARY

DICTIONARY

LIST item

LIST item

LIST item

KEY VALUE

Slide 22

Parsing Employee JSON Data

import json
…

input_file = open('employee.json', 'r')
employee_info = input_file.read()
input_file.close()

Parse the json data
employee_dictionary = json.loads(employee_info)

Get the list of dictionaries
employee_list = employee_dictionary['employees']

Loop through each dictionary, extract names
for employee in employee_list:
 firstName = employee['firstName']
 lastName = employee['lastName']
 print(firstName, lastName)
...

loads converts a string
containing JSON text into
a Python dictionary

parse_employee_json.py, employee.json

The dictionary has one entry where
 key = 'employees' and
 value = a list of items that are
 dictionaries

Each employee is a dictionary
with keys for 'firstName'
and 'lastName',

Import the module
for the JSON parser

w3schools: Python JSON

John Doe
Anna Smith
Peter Jones

Output

https://www.w3schools.com/python/python_json.asp

Slide 23

Jeopardy Data in JSON Format

200,000+ Jeopardy! Questions contains an unordered
list of questions where each question is defined by

● 'category' : the question category, e.g. "HISTORY"

● 'value' : $ value of the question as string, e.g. "$200"

● 'question' : text of question

● 'answer' : text of answer

● 'round' : one of "Jeopardy!","Double Jeopardy!","Final Jeopardy!" or
"Tiebreaker"

● 'show_number' : string of show number, e.g '4680'

● 'air_date' : the show air date in format YYYY-MM-DD

https://www.reddit.com/r/datasets/comments/1uyd0t/200000_jeopardy_questions_in_a_json_file/

Slide 24

Jeopardy Data in JSON Format
[{

"category": "HISTORY",
"air_date": "2004-12-31",
"question": "'For the last 8 years of his life, Galileo was under house

 arrest for espousing this man's theory'",
"value": "$200",
"answer": "Copernicus",
"round": "Jeopardy!",
"show_number": "4680"

}, {
"category": "ESPN's TOP 10 ALL-TIME ATHLETES",
"air_date": "2004-12-31",
"question": "'No. 2: 1912 Olympian; football star at Carlisle Indian School;

 6 MLB seasons with the Reds, Giants & Braves'",
"value": "$200",
"answer": "Jim Thorpe",
"round": "Jeopardy!",
"show_number": "4680"

}, {
"category": "EVERYBODY TALKS ABOUT IT...",
"air_date": "2004-12-31",
"question": "'The city of Yuma in this state has a record average of 4,055

 hours of sunshine each year'",
"value": "$200",
"answer": "Arizona",
"round": "Jeopardy!",
"show_number": "4680"

},
. . .
]

jeopardy.json contains 15 Jeopardy questions,
a very small subset of the original file.

https://ils.unc.edu/courses/2024_summerII/inls560_001/Examples/Text-Processing/jeopardy.json

Slide 25

Exercise: Parse Jeopardy JSON Data

Category: HISTORY
Question: 'For the last 8 years of his life, Galileo was under house arrest for espousing
 this man's theory'
Answer: Copernicus

Category: ESPN's TOP 10 ALL-TIME ATHLETES
Question: 'No. 2: 1912 Olympian; football star at Carlisle Indian School; 6 MLB seasons
 with the Reds, Giants & Braves'
Answer: Jim Thorpe
. . .
Category: EVERYBODY TALKS ABOUT IT...
Question: 'On June 28, 1994 the nat'l weather service began issuing this index that rates
 the intensity of the sun's radiation'
Answer: the UV index

15 questions in this file Sample Output

● Read and parse the contents of jeopardy.json, like this:
 jeopardy_questions = input_file.read()
 question_list = json.loads(jeopardy_questions)

● NOTE: this JSON file is list of dictionaries, unlike the employee JSON
file which is a little more complex (a dictionary of lists that contain
dictionaries)

● Extract and display the Category, Question, and Answer

https://ils.unc.edu/courses/2024_summerII/inls560_001/Examples/Text-Processing/jeopardy.json

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

