

Slide 1

Strings

Joan Boone
jpboone@email.unc.edu

INLS 560
Programming for

Information Professionals

mailto:jpboone@email.unc.edu

Slide 2

Part 1
● Basic string operations

Part 2
● Modify, search, replace, and splitting

strings

Slide 3

Strings are text
Most applications work with text in some format

● Google Docs, word processors

● Email

● Social media

● Search engines

● Databases

● Data and text mining analyze text by deriving patterns and trends

Some familiar Python examples
● resting_HR = input('Enter your resting heart rate: ')

● print('You qualify for the loan.')

● steps_file = open('steps.txt', 'r')

Slide 4

Basic String Operations: Iteration
 Very similar to list and dictionary iteration: use a for loop

Count the number of times a letter occurs in a string

def main():
 # Define a counter
 count = 0

 # Get a string from the user.
 input_string = input('Enter a sentence: ')

 # Count occurrences of letter E or e
 for letter in input_string:
 if letter == 'E' or letter == 'e':
 count = count + 1

 print('The letter E appears', count, 'times.')

main()

letter_counter.py

Slide 5

Basic String Operations: Indexing

'Innovation is serendipity'

text = 'Innovation is serendipity'
print(text[3], text[12], text[24])

IndexError Exception occurs if an index is out of range for a string.

0 … 11 ... 14 ... 24

o s y

index = 0
while index < 30:
 print(text[index])
 index = index + 1

index = 0
while index < len(text):
 print(text[index])
 index = index + 1

Common error:
 looping beyond end of a string How to avoid:

string_indexing.py

Slide 6

Basic String Operations: Concatenation

first_name = 'Monty'
last_name = 'Python'
full_name = first_name + last_name
print(full_name)
MontyPython

full_name = first_name + ' ' + last_name
print(full_name)
Monty Python

Using concatenation in the input prompt

Concatenation is a common operation where one string is
concatenated, or appended, to the end of another string

for month in range(1, 13):
 inches = float(input('Enter rainfall for month ' + str(month) + ': '))
 total = total + inches

Enter rainfall for month 1: 5
Enter rainfall for month 2: 10
...

Slide 7

Strings are Immutable
(so are integers and floats)

● In Python, strings cannot be modified once they are created. Some
operations appear to modify a string, but they do not.

Source: Starting Out with Python by Tony Gaddis

● Takeaway: you cannot use an expression in the form string[index] on the
left side of an assignment operator, i.e., you cannot modify a character in a string
using an index.

 text = 'Innovation is serendipity'
 text[14] = 'S'

 text = 'Innovation is Serendipity'

TypeError: 'str' object does not support item assignment

Correct way to modify string

Slide 8

Basic String Operations: Slicing

Very similar to list slicing

days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday']

weekdays = days[1:6]

python_author = 'Guido van Rossum'
first_name = python_author[:5]
last_name = python_author[6:]
print(first_name, last_name)

Guido van Rossum

String slicing: string[start : end]

String slices select a subset of characters in a string.

A string slice is also called a substring.

Slide 9

Testing Strings with in and not in
 in and not in operators return True or False

Other String Operations using Methods
● Testing for values of strings

● Performing various modifications

● Searching for sub-strings and replacing sequences of
characters

Source: Starting Out with Python by Tony Gaddis

opening_text = 'It was a dark and stormy night'

if 'stormy' in opening_text:
 print('The string “stormy” was found')
else:
 print('The string "stormy" was not found')

Slide 10

Methods for Testing Values of Strings
Each method returns True or False, and assumes the string
contains at least one character

Method Description

isalnum() Returns true if string contains only alphabetic letters or digits

isalpha() Returns true if string contains only alphabetic letters

islower() Returns true if all of the alphabetic letters in the string are lowercase

isupper() Returns true if all of the alphabetic letters in the string are uppercase

isnumeric() Returns true if all characters are numeric (0-9)

isspace() Returns true if the string contains only whitespace characters, e.g.,
newlines (\n) and tabs (\t)

Python documentation for String methods

https://docs.python.org/3.12/library/stdtypes.html#string-methods

Slide 11

Testing Values of Strings for
Input Validation

To validate an input string, often there are several requirements
that must be met for validation to be successful. Here's a general
algorithm that uses String methods for validation.

● Use boolean variables to specify whether a validation requirement
has been met (is it True or False?), e.g, is the string numeric, at least
8 characters long, etc.

● Initially, set all of these variables to False, i.e., assume the validation
will fail. If a validation requirement is met, then set its variable to True

● Loop through each character of the string, and determine if the
requirements are met.

● After evaluating the string, check to see if all of the boolean variables
have been set to True

– If all are true, then the input string is valid

– If one or more are false, the input string is invalid

https://docs.python.org/3.11/library/stdtypes.html#string-methods

Slide 12

Example:
Password
Validation

Prompts for a password, and
validates it according to these
rules:

● at least 7 characters in
length

● contains at least one
uppercase letter

● contains at least one
lowercase letter

● contains at least one digit

validate_password.pySource: Starting Out with Python by Tony Gaddis

def valid_password(password):
 # Set the Boolean variables to false.
 correct_length = False
 has_uppercase = False
 has_lowercase = False
 has_digit = False

 # Validate length first
 if len(password) >= 7:
 correct_length = True

 # Test each character
 for character in password:
 if character.isupper():
 has_uppercase = True
 if character.islower():
 has_lowercase = True
 if character.isdigit():
 has_digit = True

 # Are requirements met?
 if correct_length and has_uppercase and
 has_lowercase and has_digit:
 is_valid = True
 else:
 is_valid = False

 # Return the is_valid variable.
 return is_valid

Slide 13

EXERCISE:
Password
Validation

Add another validation rule:
the first character must be
alphabetic.

Prompts for a password, and
validates it according to these
rules:

● at least 7 characters in length
● contains at least one

uppercase letter
● contains at least one

lowercase letter
● contains at least one digit

validate_password.pySource: Starting Out with Python by Tony Gaddis

def valid_password(password):
 # Set the Boolean variables to false.
 correct_length = False
 has_uppercase = False
 has_lowercase = False
 has_digit = False

 # Validate length first
 if len(password) >= 7:
 correct_length = True

 # Test each character
 for character in password:
 if character.isupper():
 has_uppercase = True
 if character.islower():
 has_lowercase = True
 if character.isdigit():
 has_digit = True

 # Are requirements met?
 if correct_length and has_uppercase and
 has_lowercase and has_digit:
 is_valid = True
 else:
 is_valid = False

 # Return the is_valid variable.
 return is_valid

Slide 14

Part 1
● Basic string operations

Part 2
● Modify, search, replace, and splitting

strings

Slide 15

Methods to Modify Strings

Method Description

lower() Returns a copy of string with all alphabetic letters converted to lowercase

upper() Returns a copy of string with all alphabetic letters converted to
uppercase

lstrip() Returns a copy of string with all leading whitespace characters removed

lstrip(char) Returns a copy of string with all instances of char that appear at the
beginning of the string removed

rstrip() Returns a copy of string with all trailing whitespace characters removed

rstrip(char) Returns a copy of string with all instances of char that appear at the end
of the string removed

strip() Returns a copy of string with all leading and trailing whitespace
characters removed

strip(char) Returns a copy of string with all instances of char that appear at the
beginning and the end of the string removed

Python documentation for String methods

https://docs.python.org/3.12/library/stdtypes.html#string-methods

Slide 16

Example: Case-insensitive Comparison

This program makes a case-insensitive comparison
of a user's response to a prompt

again = 'y'
while again.lower() == 'y':
 print('Hello')
 print('Do you want to see that again?')
 again = input('y = yes, anything else = no: ')

This program makes a case-insensitive comparison
of a user's response to a prompt

again = 'y'
while again.upper() == 'Y':
 print('Goodbye')
 print('Do you want to see that again?')
 again = input('y = yes, anything else = no: ')

Source: Starting Out with Python by Tony Gaddis

Slide 17

Methods to Search and Replace Strings

Method Description

find(substring) The substring argument is a string. The method returns
the lowest index in the string where substring is found.
If substring is not found, the method returns -1.

replace(old, new) The old and new arguments are both strings. The
method returns a copy of the string with all instances of
old replaced by new.

startswith(substring) The substring argument is a string. The method
returns true if the string starts with substring.

endswith(substring) The substring argument is a string. The method
returns true if the string ends with substring.

Python documentation for String methods

https://docs.python.org/3.12/library/stdtypes.html#string-methods

Slide 18

Splitting a String to create a List
● split method returns a list containing words in the string

● By default, the method uses spaces as separators

● To specify a different separator, pass as an argument:

def main():
 # Create a string with multiple words.
 my_string = 'One two three four'

 # Split the string.
 word_list = my_string.split()

 print(word_list)

main()
['One', 'two', 'three', 'four']

Source: Starting Out with Python by Tony Gaddis

 date_string = '10/08/2019'
 date_list = date_string.split('/')
 print(date_list)

['10', '08', '2019']

Slide 19

Example: Parsing email addresses

● Suppose you have a list or file of email addresses and you
 want to extract the domain part of each address

● One approach is to use string slicing:

● Is there a better approach?

email_addr = 'newhire@startup.com'

local_part = email_addr[0:7]

domain_part = email_addr[8:]

print(domain_part)

email_addresses.py

mailto:'newhire@startup.com

Slide 20

Example: Phone Number Translator
Exercise 5, Chapter 8

Many companies use phone numbers like 555-GET-FOOD so
the number is easier to remember. On a standard phone, the
alphabetic letters are mapped to numbers.

How to write a program that
prompts user for a phone number
in XXX-XXX-XXXX format and
translates any alphabetic
characters to numeric?

Enter the phone number in the format XXX-XXX-XXXX: 555-GET-FOOD
The phone number is 555-438-3663

phone_number_translator.py

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

