

Slide 1

Lists

Joan Boone
jpboone@email.unc.edu

INLS 560
Programming for

Information Professionals

mailto:jpboone@email.unc.edu

Slide 2

Part 1: Overview

Part 2: Iteration, functions

Part 3: Reading file contents into a list

Part 4: Concatenation, Slicing, Finding

Part 5: Add, Remove, Copy

Part 6: Example and Exercise

Slide 3

Why simple variables are not enough

● So far we've covered most of the Python language
fundamentals
– Variables and expressions

– Decision structures (if/else)

– Repetition structures (for and while loops)

– Functions

– Files and exceptions

● Data in your programs has been represented by simple
variables

● But more realistic, practical problems usually require more
robust representations of data, often in the form of
collections of data

Slide 4

Python Data Structures
Lists and Dictionaries are most important

List
● Ordered sequence of multiple items: [1, 2, 3]
● Mutable, and often contains homogeneous items (items of same data type)

Tuple
● Similar to lists: (1, 2, 'hello')
● But, contents are immutable, and often heterogeneous

Dictionary
● Unordered set of key-value pairs: {'AAPL':'Apple Inc',

 'AMZN':'Amazon.com Inc.'}
● Keys must be unique

Set
● Unordered collection with no duplicate elements. Often used to remove

duplicates from a list : set([1, 2, 3, 3]) → set([1, 2, 3])

Reference: Python Tutorial on Data Structures

https://docs.python.org/3.12/tutorial/datastructures.html

Slide 5

Lists
● A list is an object that contains multiple items

● May contain items of different types, but usually the items
 all have the same type, and are ordered

● Lists are mutable (unlike tuples) which means their
contents can be changed

● There are many operations available to manipulate the
contents of a list: indexing, slicing, add, remove, sort, etc.

● How to create lists of

– numbers: temps = [45.6, 33.0, 78.5, 54.0]

– strings: planets = ['Mars', 'Saturn', 'Venus']

– or both: course = ['Proposal Development', 781, 1.5]

Slide 6

Part 1: Overview

Part 2: Iteration, functions

Part 3: Reading file contents into a list

Part 4: Concatenation, Slicing, Finding

Part 5: Add, Remove, Copy

Part 6: Example and Exercise

Slide 7

Iterating over a list with a for loop

temps = [45.6, 33.0, 78.5, 54.0]
total = 0

for temp in temps:
 total = total + temp
 print(temp)

print('Total temps:', total)

Output

45.6
33.0
78.5
54.0
Total temps: 211.1

● As in every programming language, there are multiple ways to do
the same thing...

● ...the accumulator for loop can be replaced by a simple call to
the built-in sum function

 print('Total temps:', sum(temps))

● Recall the list of built-in Python functions
list_iteration.py

https://docs.python.org/3/library/functions.html

Slide 8

Useful List Functions:
sum(), max(), min(), len()

temps = [45.6, 33.0, 78.5, 54.0]

print('Total temps:', sum(temps))
print('Max temp:', max(temps))
print('Min temp:', min(temps))
print('Length:', len(temps))

average = sum(temps) / len(temps)
print('Average temp:', average)

sum(temps) returns the sum of all items in the list

max(temps) returns the largest item in a list

min(temps) returns the smallest item in a list

len(temps) returns the length of a list

Output

Total temps: 211.1
Max temp: 78.5
Min temp: 33.0
Length: 4
Average temp: 52.775

list_sum_max_min_len.py

Slide 9

Using indexes to access
individual list items

temps = [45.6, 33.0, 78.5, 54.0]

print(temps[0], temps[1], temps[2], temps[3])

● Indexing starts at 0, i.e., the first item is 0
● Index of the last item is 1 less than the number of items in the list

temps = [45.6, 33.0, 78.5, 54.0]

index = 0
while index < len(temps):
 print(temps[index])
 index = index + 1

Using a loop to print all items in a list
Output

45.6
33.0
78.5
54.0

list_iteration.py

Slide 10

Part 1: Overview

Part 2: Iteration, functions

Part 3: Reading file contents into a list

Part 4: Concatenation, Slicing, Finding

Part 5: Add, Remove, Copy

Part 6: Example and Exercise

Slide 11

Reading File Contents into a List
using a for loop

Use a for loop to read each line in the file, and append to the list.

def main():
 city_list = [] # Initialize list

 city_file = open('cities.txt', 'r')

 # Read the contents of the file and append each line
 # as an item to the list. Use strip() to remove '\n'
 for city in city_file:
 city_list.append(city.strip())

 city_file.close()

 print(city_list)

main()

Source: Starting Out with Python by Tony Gaddis

['Chicago', 'Boise', 'Toledo', 'Tampa', 'Santa Fe']

read_list_with_for_loop.py

Slide 12

Exercise: Rainfall Summary using a List

● Write a program that reads the contents of rain_data.txt and
creates a list with the rain amounts

● Start with the draft version of the program, rain_stats_draft.py

● Calculate the total, average, maximum, and minimum rainfall

● Display the list of rain amounts, total, average, max, and min:

 Rain data:

 [2.5, 3.0, 5.6, 3.1, 2.0, 4.1, 0.5, 1.2, 3.2, 6.6, 7.2, 2.8]

 Total rainfall: 41.80

 Average rainfall: 3.48

 Maximum rainfall: 7.20

 Minimum rainfall: 0.50

rain_stats_draft.py, rain_data.txt

Slide 13

Part 1: Overview

Part 2: Iteration, functions

Part 3: Reading file contents into a list

Part 4: Concatenation, Slicing, Finding

Part 5: Add, Remove, Copy

Part 6: Example and Exercise

Slide 14

Many, many List operations
● Concatenation
● Slicing
● Finding items in a list
● Copying lists
● Built-in methods to

– append and insert items

– remove and del items

– Find index of an item

– sort items

– reverse the order of items

Python Tutorial: Lists, More on Lists

https://docs.python.org/3.12/tutorial/introduction.html#lists
https://docs.python.org/3.12/tutorial/datastructures.html#more-on-lists

Slide 15

Concatenating and Slicing Lists
● Concatenating lists: use + operator

 list1 = ['a', 'b', 'c']
 list2 = [1, 2, 3, 4]
 list2 = list1 + list2 ['a', 'b', 'c', 1, 2, 3, 4]

● List slicing selects a range of items from a list

 list_name[start : end]

 returns a list containing a copy of list_name from start index,
 up to, but not including, end index

 days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday']
 weekdays = days[1:6]

 Other variations:

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

somedays = days[:2]
somedays = days[4:]
somedays = days[:]

Slide 16

Finding items using index method
● Use the index method when you want to know whether an item is in

the list and where it is located

● Returns the index of the first item that is equal to the argument

● ValueError exception is occurs if the item is not found

def main():
 # Create a list of cities
 cities = ['Chicago', 'Boise', 'Toledo', 'Tampa']

 # Prompt a city to search for.
 city_name = input('Enter a city: ')

 # Determine whether the city is in the list
 try:
 city_index = cities.index(city_name)
 print(search, 'is item #', city_index+1, ' in the list.')
 except ValueError:
 print(city_name, 'was not found in the list.')

main()

index_list.py

Slide 17

Finding items in a list using in operator
● Use the in operator to determine whether an item is contained

in a list: item in list
● Returns a boolean value of True or False

def main():
 # Create a list of cities
 cities = ['Chicago', 'Boise', 'Toledo', 'Tampa']

 # Get a city to search for.
 city_name = input('Enter a city: ')

 # Determine whether the city is in the list.
 if city_name in cities:
 print(city_name, 'was found in the list.')
 else:
 print(city_name, 'was not found in the list.')

main()

in_list.py

Slide 18

Part 1: Overview

Part 2: Iteration, functions

Part 3: Reading file contents into a list

Part 4: Concatenation, Slicing, Finding

Part 5: Add, Remove, Copy

Part 6: Example and Exercise

Slide 19

Adding items to a list
append(item) adds an item to the end of a list

insert(index, item)inserts an item into the list at a
specified index

cities = ['Chicago', 'Boise', 'Toledo', 'Tampa']

cities.append('Santa Fe')

['Chicago', 'Boise', 'Toledo', 'Tampa', 'Santa Fe']

cities = ['Chicago', 'Boise', 'Toledo', 'Tampa']

cities.insert(2,'Santa Fe')

['Chicago', 'Boise', 'Santa Fe', 'Toledo', 'Tampa']

Slide 20

Removing items from a list

remove(item) removes the first occurrence of an item
from a list

del(index)removes an element from a specific index

cities = ['Chicago', 'Boise', 'Toledo', 'Tampa']

cities.remove('Boise')

['Chicago', 'Toledo', 'Tampa']

cities = ['Chicago', 'Boise', 'Toledo', 'Tampa']

del cities[2]

['Chicago', 'Boise', 'Tampa']

Slide 21

Copying Lists: 2 techniques
Using a loop to append items from one list to another

Original list
cities = ['Chicago', 'Boise', 'Toledo', 'Tampa']
Create an empty list
new_cities = []

Copy elements from cities to new_cities
for item in cities:
 new_cities.append(item)

Using concatenation to append one list to an empty list

Original list
cities = ['Chicago', 'Boise', 'Toledo', 'Tampa']

Create a copy of the list
new_cities = [] + cities

Note: you cannot copy a list by assignment, i.e., list2 = list1

Slide 22

Part 1: Overview

Part 2: Iteration, functions

Part 3: Reading file contents into a list

Part 4: Concatenation, Slicing, Finding

Part 5: Add, Remove, Copy

Part 6: Example and Exercise

Slide 23

Example with multiple list functions
def main():
 menu = ['Salad', 'Pizza', 'Pie', 'Tea', 'Shrimp', 'Spaghetti', 'BBQ']
 print("What's on the menu:", menu)

 item = input('Add a new item:')
 menu.append(item)
 print("Updated menu:", menu)

 item = input('\nFind an item on the menu:')
 if item in menu:
 print(item, 'is on the menu')
 item_index = menu.index(item)
 print(item, ' is item #', item_index+1, ' on the menu', sep='')
 else:
 print(item, 'is not on the menu')

 print('\n',menu[0], ' is the first item on the menu', sep='')
 menu.sort()
 print("Sorted menu:", menu)
 print(menu[0], ' is now the first item on the menu', sep='')

 item = input('\nRemove an item:')
 try:
 menu.remove(item)
 print("Updated menu:", menu)
 except ValueError:
 print('That item was not found on the list')

main()
multiple_list_functions.py

Slide 24

Exercise: NCAA Basketball Champions
● The NCAA_BB_Champions.txt file contains a chronological list of

the team names that won the championship from 1939 through 2021.

● Write a program that prompts the user for a team name, and then
displays the number of times that team has won the championship.

Enter the name of a team: North Carolina
North Carolina won the NCAA Basketball Championship 6 times
between 1939 and 2022.

Enter the name of a team: Duke
Duke won the NCAA Basketball Championship 5 times between 1939
and 2022.

Enter the name of a team: North Carolina State
North Carolina won the NCAA Basketball Championship 2 times
between 1939 and 2022.

Enter the name of a team: ucla
ucla never won a NCAA Basketball Championship.

NCAA_BB_Champions_draft.py, NCAA_BB_Champions.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

