

Slide 1

Files

Joan Boone
jpboone@email.unc.edu

INLS 560
Programming for Information

Professionals

mailto:jpboone@email.unc.edu

Slide 2

Part 1: Overview

Part 2: Writing to files

Part 3: Reading from files

Slide 3

Why Use Files?

● Most applications use persistent data, i.e., data stored in files
and databases
– Read existing data from files/databases

– Write (add, update, delete) data to files/databases for future use

● Types of files
– Text files (contain readable text, such as Unicode)
– Binary files (only readable by specific applications)

● Ways to access files
– Direct (or random) access: similar to how video/audio players

work – they can 'jump' directly to any data in the file

– Sequential access: start at the beginning and read to the end of
the file

Slide 4

File Names and File Objects
● Each operating system (Windows, Mac, Linux, etc.) has its

own rules for naming files

– In general, the convention is filename.extension

– Some typical file extensions (or file types)

 my_resume.pdf, screenshot.png,
 class_notes.txt, hello_world.py, python.exe

● File objects are used by programs to access files

– A file object is created for a specific file and is stored in a
variable that represents that object

– The file object variable is used perform any operations on the
file, e.g., to open, read, write, or close a file

Slide 5

Object-oriented View of a File Object

Source: Starting Out with Python by Tony Gaddis

my_file.readline()

my_file.write('some stuff')

my_file.close()

name

mode

encoding

buffer

errors

...

Methods that access the file File attributes

my_file = open(filename, mode)
When a you open a file, the open function returns a file object:

Slide 6

File Modes
● Before you can access a file, you have to open the file

● Use the open function to create a file object that is associated
with a specific file

 my_file = open(filename, mode)

● filename is a string with the file name

● mode specifies how the file is opened

● my_file is the variable that references the file object

● Python file modes:

Source: Python
documentation
for open function

https://docs.python.org/3.11/library/functions.html#open

Slide 7

File Modes
Frequently used file modes:

● 'r' mode opens a file for reading only; the file cannot be changed
or written to

● 'w' mode opens a file for writing

– Important: if the file already exists, its contents are erased and a new
file is created.

– If the file does not exist, it is created

● 'a' mode opens a file for writing

– Data written to the file is appended to the end of the file

– If the file does not exist, it is created

If opening a file in the same directory as your program, you do not
need to specify the path for the file name

 test_file = open('test.txt', 'r')

Slide 8

Files in different directories
If opening a file in a different directory than where your program is
located, you must specify the full directory path with the file name

Mac and Linux

 test_file = open('/Users/Joan/temp/test.txt', 'w')

Windows

● If using forward slashes

 test_file = open('C:/Users/Joan/temp/test.txt', 'w')

● If using backward slashes, 2 ways

– use rawstring r prefix, so that Python interprets everything in the
string as a literal character

 test_file = open(r'C:\Users\Joan\temp\test.txt', 'w')

– or, use double back slash to escape the back slash

 test_file = open('C:\\Users\\Joan\\temp\\test.txt', 'w')

Slide 9

Part 1: Overview

Part 2: Writing to files

Part 3: Reading from files

Slide 10

Writing Data to a File
● Once the file is opened, string data can be written to it

● Use the write function with the file object to be written to

 my_file.write(string_variable)

● Example
 oscars = open('oscar_movies.txt', 'w')

 oscars.write('Wings') # literal string

 movie_name = 'The Broadway Melody'

 oscars.write(movie_name) # variable with string value
● After you have finished writing to the file, close the file:
 oscars.close()

● Failure to close a file can cause a loss in data
– Data is buffered before it is actually written. This improves performance

because writing to memory is faster than writing to disk.
When the buffer is full, it is written to the file (disk)

– Closing the file ensures that any buffered data is written to the file

Slide 11

Writing Data to a File
This program writes three lines of data to a file.
def main():
 # Open a file named oscar_movies.txt.
 oscars = open('oscar_movies.txt', 'w')

 # Write Oscar-winning movie names to the file
 oscars.write('Wings')
 oscars.write('The Broadway Melody')
 oscars.write('All Quiet on the Western Front')

 # Close the file.
 oscars.close()

Call the main function.
main()

Contents of file, oscar_movies.txt:

 WingsThe Broadway MelodyAll Quiet on the Western Front

Slide 12

Writing Data to a File
This program writes three lines of data to a file.
def main():
 # Open a file named oscar_movies.txt.
 oscars = open('oscar_movies.txt', 'w')

 # Write Oscar-winning movie names to the file
 oscars.write('Wings\n')
 oscars.write('The Broadway Melody\n')
 oscars.write('All Quiet on the Western Front\n')

 # Close the file.
 oscars.close()

Call the main function.
main()

file_write.py

File contents: Wings
The Broadway Melody
All Quiet on the Western Front

Use the newline escape sequence, \n , to separate items in the file:

Slide 13

Exercise: Create a simple web page
● Prompt user for name and description
● Create an HTML file
● Write the HTML with the name and description values

webpage_generator_draft.py

Enter your name: Monty Python
Describe yourself: Inspired the name of the Python language.

<html>
<head>
 <title>My Personal Web Page</title>
</head>
<body>
 <h1>Monty Python</h1>
 <hr>
 Inspired the name of the Python language.
 <hr>
</body>
</html>

my_page.html
Displayed in browser

Slide 14

Part 1: Overview

Part 2: Writing to files

Part 3: Reading from files

Slide 15

Reading Data from a File

This program reads the contents of a file
def main():
 # Open a file named oscar_movies.txt.
 oscars = open('oscar_movies.txt', 'r')

 # Read the file's contents
 file_contents = oscars.read()

 oscars.close() # Close the file.

 print(file_contents) # Print the contents

Call the main function.
main()

Output: Wings
The Broadway Melody
All Quiet on the Western Front file_read.py

The read method returns the entire contents of the file as a string

Slide 16

Reading Data from a File, one line at a time

This program uses readline to read the file contents
def main():
 # Open a file named oscar_movies.txt.
 oscars = open('oscar_movies.txt', 'r')

 # Read three lines from the file
 line1 = oscars.readline()
 line2 = oscars.readline()
 line3 = oscars.readline()

 oscars.close() # Close the file.

 print(line1)
 print(line2)
 print(line3)

main()

Output: Wings

The Broadway Melody

All Quiet on the Western Front

file_readline.py

The readline method reads one line at a time from the file as a string

Slide 17

Removing the Newline Character

This program uses rstrip to remove newline
def main():
 oscars = open('oscar_movies.txt', 'r')

 line1 = oscars.readline()
 line2 = oscars.readline()
 line3 = oscars.readline()

 # Strip the \n from each string.
 line1 = line1.rstrip('\n')
 line2 = line2.rstrip('\n')
 line3 = line3.rstrip('\n')

 oscars.close()

 print(line1)
 print(line2)
 print(line3)

main()

Output: Wings
The Broadway Melody
All Quiet on the Western Front

rstrip_newline.py

Use rstrip method to remove \n from the (right) end of the string

Returns a copy of the string with
trailing newline character removed

https://docs.python.org/3/library/stdtypes.html?highlight=rstrip#str.rstrip

Slide 18

Writing Numeric Data to a File

def main():
 outfile = open('numbers.txt', 'w')

 # Get three numbers and calculate the sum
 num1 = float(input('Enter a number: '))
 num2 = float(input('Enter another number: '))
 num3 = float(input('And one more number: '))
 sum = num1 + num2 + num3

 # Write the numbers to the file.
 outfile.write(str(num1) + '\n')
 outfile.write(str(num2) + '\n')
 outfile.write(str(num3) + '\n')

 outfile.close() # Close the file
 print('Sum =', format(sum,'.2f')) # Print the sum

main()

write_numbers.py

● Strings can be written directly to a text file, but numbers must be
converted to strings before they can be written to a file.

● Built-in function, str, converts a value to a string.

Slide 19

Reading Numeric Data from a File

This program reads numbers from a file,
converts them to numbers and calculates product

def main():
 infile = open('numbers.txt', 'r')

 # Read three numbers from the file.
 num1 = int(infile.readline())
 num2 = int(infile.readline())
 num3 = int(infile.readline())

 infile.close()

 # Multiply the three numbers.
 product = num1 * num2 * num3

 # Display the numbers and their total.
 print('The numbers are:', num1, num2, num3)
 print('Their product is:', product)

main()

read_numbers.py

● When reading numbers from a file, you must convert them from strings to
numbers before you can use them in arithmetic expressions

● Built-in functions, int and float, convert strings to numbers

Slide 20

Using Loops to Write to a File

def main():
 total_sales = 0

 # Get the number of days.
 num_days = int(input('For how many days do you have sales? '))

 # Open the file for writing
 sales_file = open('sales.txt', 'w')

 # Get the sales amount and write to the file
 for count in range(1, num_days + 1):
 # Get the sales for a day, and add to running total
 sales = float(input('Enter the sales for day #' + str(count) + ': '))
 total_sales = total_sales + sales

 # Write the sales amount to the file.
 sales_file.write(str(sales) + '\n')

 sales_file.close() # Close the file
 print('Total sales is', format(total_sales, '.2f')) # Print total sales

main()

write_sales.py

Files generally contain a lot of data, so programs often use
loops to read and write the contents.

Source: Starting Out with Python by Tony Gaddis

Slide 21

Using for Loop to Read a File
(recommended approach)

Source: Starting Out with Python by Tony Gaddis

This program reads all of the lines in the sales.txt file.
def main():
 sales_file = open('sales.txt', 'r')

 # Read all the lines from the file.
 for line in sales_file:
 # Convert line to a float.
 amount = float(line)
 # Format and display the amount.
 print(format(amount, '.2f'))

 sales_file.close()

main()

read_sales_for_loop.py

● Python also provides a simple approach for looping through a file by
using a for loop that automatically reads a line in a file without checking
any special end-of-file (EOF) conditions

● The loop iterates once for each line in the file

Slide 22

Exercise: Reading Data from a File

● Update the average_steps.py program to read
the numbers from the file, steps.txt. Each
number represents the number of steps taken on
each day of the year.

● Calculate the total number of steps

● Keep a counter of the number of lines (days) read

● Display the average number of steps taken per day.
Output should be:

 The average number of steps taken in 365 days
 was 5,296.8

average_steps_draft.py

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

