

Slide 1

Exceptions

Joan Boone
jpboone@email.unc.edu

INLS 560
Programming for

Information Professionals

mailto:jpboone@email.unc.edu

Slide 2

Part 1: Types of exceptions

Part 2: Handling exceptions

Slide 3

Errors and Debugging

3 kinds of errors can occur in a program
● Syntax: Language syntax is incorrect, so the

program won't run

● Runtime: Error occurs after the program
starts running

● Semantic: Program runs successfully, but
produces wrong results

Debugging
● Process of figuring out what went wrong and

fixing it

● Can be both frustrating and interesting

● One of the best ways to learn programming

Source: http://xkcd.com/568/

http://xkcd.com/568/

Slide 4

Many Types of Exceptions

A few of the more common ones are

 SyntaxError: invalid syntax found in program

 ValueError: an operation or function receives an invalid value

 NameError: when a local or global name is not defined

 TypeError: an operation on an object is not appropriate

 OSError: a general exception for input and output errors

 IndexError: a subscript or index is out of range

 Exception: general purpose, non-specific error

Complete list: Python Built-in Exceptions, Exception Class Hierarchy

● Exceptions are errors that occur while a program is running, and
will cause a program to stop where the error occurred.

● Exceptions are not user errors, such as entering invalid input;
they are program errors that you, the developer, must fix

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html#exception-hierarchy

Slide 5

SyntaxError Exception

File "C:/Users/.../average_steps.py", line 5

 steps_file = open('steps.txt', 'r)

 ^

SyntaxError: unterminated string literal
 (detected at line 5)

Process finished with exit code 1

An exit code > 0 usually means the
program terminated with an error

Type of Python exception
and a descriptive message

● Occurs when the Python interpreter encounters a syntax error

● Python will display 'traceback' messages in the Run window that describe
the type of error and where it occurred in your code

● These errors must be fixed; otherwise, your program will not function
correctly

Line number and
statement in error

Slide 6

ValueError Exception

Traceback (most recent call last):

 File "C:/Users/.../average_steps.py", line 24, in <module>

 main()

 File "C:/Users/.../average_steps.py", line 5, in main

 steps_file = open('steps.txt', 'z')

ValueError: invalid mode: 'z'

Process finished with exit code 1

Raised when an operation, or function, receives an argument that
has the right type, but an inappropriate value

Slide 7

NameError Exception

Traceback (most recent call last):

 File "C:/Users/.../average_steps.py", line 24, in <module>

 main()

 File "C:/Users/.../average_steps.py", line 18, in main

 print('The average number of steps taken in', line_count,
 'days was', format(avrage, ',.1f'))

NameError: name 'avrage' is not defined.
 Did you mean: 'average'?

Raised when a local or global name is not found.

Slide 8

TypeError Exception

Traceback (most recent call last):

 File "C:/Users/.../average_steps.py", line 24, in <module>

 main()

 File "C:/Users/.../average_steps.py", line 13, in main

 total_steps = total_steps + line

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Process finished with exit code 1

Raised when an operation, or function, is applied to an object of
inappropriate type.

Slide 9

OSError Exception

Traceback (most recent call last):

 File "C:/Users/.../average_steps.py", line 24, in <module>

 main()

 File "C:/Users/.../average_steps.py", line 5, in main

 steps_file = open('steps*txt', 'r')

OSError: [Errno 22] Invalid argument: 'steps*txt'

Process finished with exit code 1

This exception is raised when a system function returns a system-
related error, including I/O failures such as “file not found” or “disk full”

Slide 10

FileNotFoundError Exception
def main():
 # Open the file.
 steps_file = open('step.txt', 'r')

 # Initialize counters
 total_steps = 0
 line_count = 0

 # Read each line in the file
 for line in steps_file:
 total_steps = total_steps + int(line)
 line_count = line_count + 1

 # Calculate the average and display
 average = total_steps / line_count
 print('The average number of steps taken in',
 line_count, 'days was', format(average, ',.1f'))

 # Close the file.
 steps_file.close()

main()

If you specify a file name that meets the file naming conventions, but
the file does not exist, the following exception occurs:

 FileNotFoundError: [Errno 2] No such file or directory: 'step.txt'

Slide 11

Part 1: Types of exceptions

Part 2: Handling exceptions

Slide 12

Handling Exceptions
● Python, like most programming languages, allows you to handle

exceptions so that your program doesn't abruptly stop

● Define an exception handler with try/except statements

● General format:

How it works:
● If the statements in the try clause do not raise an exception specified by
ExceptionName, then the statements in the except clause are skipped and
execution resumes after the except clause

● If a statement in the try clause does raise an exception specified by
ExceptionName, then the statements in the except clause are executed

● If a statement in the try clause does raise an exception but it is not specified
by ExceptionName, then your program will stop with a traceback message

 try:
 statement1
 statement2
 except ExceptionName:
 statement3
 statement4

 statement5
 statement6

Add statements to handle the
exception inside the
except clause.
For example, display an error
message.

Statements that can
potentially raise an exception
are placed inside the try
clause.

Slide 13

FileNotFoundError Exception Handler
def main():
 filename = 'step.txt'
 try:
 steps_file = open(filename, 'r') # Open the file

 total_steps = 0 # Initialize counters
 line_count = 0

 for line in steps_file: # Read each line in the file
 total_steps = total_steps + int(line)
 line_count = line_count + 1

 # Calculate the average and display
 average = total_steps / line_count
 print('The average number of steps taken in',
 line_count, 'days was', format(average, ',.1f'))

 steps_file.close() # Close the file
 except FileNotFoundError:
 print('Error: cannot find file,', filename)

main()

Slide 14

Handling Multiple Exceptions
● A program can raise several types of exceptions -- it depends on what

the program is doing.

● When reading a file, several types of exceptions could occur

– File does not exist, or the file name is correct but may have been moved
to another directory (FileNotFoundError)

– Invalid file name, i.e., it does not meet platform naming conventions
(OSError)

– Invalid mode for opening the file (ValueError)

– File may contain bad data, i.e., non-numeric data (ValueError)

● It is possible that an exception can be raised that you did not
anticipate. To handle this case, always include a “catch all” exception
that handles any exception not covered by other handlers.

 except Exception:
 print('An unknown error occurred')

Slide 15

Handling Multiple Exceptions

def main():
 filename = 'steps.txt'
 try:
 steps_file = open(filename, 'r') # Open the file
 total_steps = 0 # Initialize counters
 line_count = 0

 for line in steps_file: # Read each record (line) in the file
 total_steps = total_steps + int(line)
 line_count = line_count + 1

 # Calculate the average and display
 average = total_steps / line_count
 print('The average number of steps taken in',
 line_count, 'days was', format(average, ',.1f'))
 steps_file.close() # Close the file
 except FileNotFoundError:
 print('Error: cannot find file,', filename)
 except OSError:
 print('Error: cannot access file,', filename)
 except ValueError:
 print('Error: invalid data found in file', filename)
 except Exception: # catch all error handler
 print('An unknown error occurred')

main()

● Order in which exception handlers are specified can be important

● If an exception occurs, Python will look for the first handler that can handle it

Slide 16

Displaying the Default Error Message
for an Exception

Exceptions are objects, and each object usually has an attribute that
contains a default error message.

● The message is the same as the one displayed at the end of a traceback
when an exception has no handler

● When you write an except clause, you can optionally assign the
exception object to a variable. Pass the variable to the print function
and it will display the Exception's default message.

 except ValueError as err:
 print(err) # ok, but a context-specific message is better
 # Like the message below...
 print('Error: invalid data found in file', filename)

A good place to use this approach is with the 'catch all' except clause,
since the type of error is unknown

 except Exception as err:
 print(err)

Slide 17

Exceptions with Default Messages
Read a file with number of steps taken for each day of the year. Calculate average steps taken
def main():
 filename = 'steps.txt'
 try:
 steps_file = open(filename, 'r') # Open the file

 total_steps = 0 # Initialize counters
 line_count = 0

 for line in steps_file: # Read each record (line) in the file
 total_steps = total_steps + int(line)
 line_count = line_count + 1

 # Calculate the average and display
 average = total_steps / line_count
 print('The average number of steps taken in',
 line_count, 'days was', format(average, ',.1f'))
 steps_file.close() # Close the file
 except FileNotFoundError as err:
 print('Error: cannot find file,', filename)
 print('Error:', err)
 except OSError as err:
 print('Error: cannot access file,', filename)
 print('Error:', err)
 except ValueError as err:
 print('Error: invalid data found in file', filename)
 print('Error:', err)
 except Exception as err: # catch all error handler, if the above handlers do not apply
 print('An unknown error occurred')
 print('Error:', err)

main()

average_steps_exceptions.py

Slide 18

What if my program is not handling
exceptions properly?

There are two ways an exception would not be handled

● No except clause specifying an exception of the right type

● Exception occurred outside of a try clause

In both cases, the exception will cause your program to stop.

To avoid this situation:

● Test your program!!! Try to 'break it' with faulty, or invalid, data.
Add exception handlers for the errors that occur.

● Ensure that the statement causing an exception is inside of a
try clause

● Always include the general purpose except Exception
handler to catch any problems your testing may not have found.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

