Jaime Arguello

INLS 613: Text Data Mining

jarguell@email.unc.edu

Outline

Basic Probability and Notation

Bayes Law and Naive Bayes Classification

Class Prior Probabilities

Naive Bayes Classification

Smoothing

Summary

Crash Course in Basic Probability

Discrete Random Variable

- A is a discrete random variable if:
 - A describes an event with a finite number of possible outcomes (discrete vs continuous)
 - A describes an event whose outcomes have some degree of uncertainty (random vs. pre-determined)

Discrete Random Variables Examples

- A = the outcome of a coin-flip
 - outcomes: heads, tails
- A = it will rain tomorrow
 - outcomes: rain, no rain
- A = you have the flu
 - outcomes: flu, no flu

Discrete Random Variables Examples

- A = the color of a ball pulled out from this bag
 - outcomes: RED, BLUE, ORANGE

Probabilities

- Let P(A=X) denote the probability that the outcome of event A equals X
- For simplicity, we often express P(A=X) as P(X)
- Ex: P(RAIN), P(NO RAIN), P(FLU), P(NO FLU), ...

Probability Distribution

- A probability distribution gives the probability of each possible outcome of a random variable
- P(RED) = probability of pulling out a red ball
- P(BLUE) = probability of pulling out a blue ball
- P(ORANGE) = probability of pulling out an orange ball

Probability Distribution

- For it to be a probability distribution, two conditions must be satisfied:
 - the probability assigned to each possible outcome must be between 0 and 1 (inclusive)
 - the <u>sum</u> of probabilities assigned to all outcomes must equal 1

```
0 \le P(RED) \le I
0 \le P(BLUE) \le I
0 \le P(ORANGE) \le I
P(RED) + P(BLUE) + P(ORANGE) = I
```

Probability Distribution Estimation

- Let's estimate these probabilities based on what we know about the contents of the bag
- P(RED) = ?
- P(BLUE) = ?
- **P(ORANGE)** = ?

Probability Distribution estimation

- Let's estimate these probabilities based on what we know about the
 - contents of the bag
- P(RED) = 10/20 = 0.5
- P(BLUE) = 5/20 = 0.25
- P(ORANGE) = 5/20 = 0.25
- P(RED) + P(BLUE) + P(ORANGE) = 1.0

Probability Distribution

assigning probabilities to outcomes

- Given a probability distribution, we can assign probabilities to different outcomes
- I reach into the bag and pull out an orange ball. What is the probability of that happening?
- I reach into the bag and pull out two balls: one red, one blue.
 What is the probability of that happening?
- What about three orange balls?

P(RED) = 0.5 P(BLUE) = 0.25P(ORANGE) = 0.25

What can we do with a probability distribution?

- If we assume that each outcome is independent of previous outcomes, then the probability of a <u>sequence</u> of outcomes is calculated by <u>multiplying</u> the individual probabilities
- Note: we're assuming that when you take out a ball, you put it back in the bag before taking another

```
P(RED) = 0.5

P(BLUE) = 0.25

P(ORANGE) = 0.25
```


What can we do with a probability distribution?

- P() = ??
- P() = ??
- P() = ??
- $P(\bigcirc \bigcirc \bigcirc) = ??$
- P() = ??

$$P(RED) = 0.5$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$

What can we do with a probability distribution?

- $P(\bigcirc) = 0.25 \times 0.25 \times 0.25$
- $P(\bigcirc \bigcirc \bigcirc) = 0.25 \times 0.25 \times 0.25$
- $P(\bigcirc \bigcirc \bigcirc) = 0.25 \times 0.50 \times 0.25$
- P($) = 0.25 \times 0.50 \times 0.25 \times 0.50$

$$P(RED) = 0.5$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$

Conditional Probability

- P(A,B): the probability that event A <u>and</u> event B both occur
- P(A|B): the probability of event A occurring given prior knowledge that event B occurred

Conditional Probability

$$P(RED) = 0.50$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$

- P(| A) = ??

•
$$P(\bigcirc) = ??$$

$$P(RED) = 0.50$$

 $P(BLUE) = 0.00$
 $P(ORANGE) = 0.50$

•
$$P(| B) = ??$$

Conditional Probability

$$P(RED) = 0.50$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$

•
$$P(- | A) = 0.50$$

•
$$P(\bigcirc) = 0.016$$

$$P(RED) = 0.50$$

 $P(BLUE) = 0.00$
 $P(ORANGE) = 0.50$

•
$$P(- | B) = 0.25$$

$$P(| A) ?= P(| A)$$

$$P(| A) ?= P(| A)$$

$$P(\bullet | A) = P(\bullet)$$

Outline

Basic Probability and Notation

Bayes Law and Naive Bayes Classification

Class Prior Probabilities

Naive Bayes Classification

Smoothing

Summary

Bayes' Law

Bayes' Law

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Derivation of Bayes' Law

$$P(A,B) = P(A,B)$$

Always true!

$$P(A|B) \times P(B) = P(B|A) \times P(A)$$
 Chain Rule!

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Divide both sides by P(B)!

example: positive/negative movie reviews

Bayes Rule

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Confidence of POS prediction given instance D

$$P(POS|D) = \frac{P(D|POS) \times P(POS)}{P(D)}$$

Confidence of NEG prediction given instance D

$$P(NEG|D) = \frac{P(D|NEG) \times P(NEG)}{P(D)}$$

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

$$P(POS|D) \ge P(NEG|D)$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

$$\frac{P(D|POS) \times P(POS)}{P(D)} \ge \frac{P(D|NEG) \times P(NEG)}{P(D)}$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

$$P(D|POS) \times P(POS) \ge P(D|NEG) \times P(NEG)$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

 Our next goal is to estimate these parameters from the training data!

example: positive/negative movie reviews

- Our next goal is to estimate these parameters from the training data!
- P(NEG) = % of training set documents that are NEG
- P(POS) = % of training set documents that are POS
- **P(D|NEG)** = ??
- P(D|POS) = ??

Remember Conditional Probability?

$$P(RED) = 0.50$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$

- P(| A) = 0.50

•
$$P(| A) = 0.25$$

$$P(RED) = 0.50$$

 $P(BLUE) = 0.00$
 $P(ORANGE) = 0.50$

•
$$P(- | B) = 0.50$$

•
$$P(| B) = 0.50$$

example: positive/negative movie reviews

Training Instances

Positive Training Instances

Negative Training Instances

$$P(D|POS) = ??$$

$$P(D|NEG) = ??$$

example: positive/negative movie reviews

w_I	w_2	w_3	w_4	w_5	w_6	w_7	w_8		w_n	sentiment
I	0	I	0	-	0	0	Ι	•••	0	positive
0	I	0	-	I	0	I	I	•••	0	positive
0	I	0	I	I	0	I	0	•••	0	positive
0	0	Ι	0	I	I	0	Ι	•••	I	positive
:	•		•	•	•			•••	•	•
I	I	0	I	I	0	0	I	•••	l	positive

example: positive/negative movie reviews

We have a problem! What is it?

Training Instances

Positive Training Instances

$$P(D|POS) = ??$$

Negative Training Instances

$$P(D|NEG) = ??$$

- We have a problem! What is it?
- Assuming n binary features, the number of possible combinations is 2ⁿ
- $2^{1000} = 1.071509e + 301$
- And in order to estimate the probability of each combination, we would require multiple occurrences of each combination in the training data!
- We could never have enough training data to reliably estimate P(D|NEG) or P(D|POS)!

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature <u>is independent of</u> the value of other features
- In other words, the value of a particular feature is only dependent on the class value

w_I	w_2	w_3	w_4	w_5	w_6	w_7	w_8		w_n	sentiment
Ι	0	Ι	0	Ι	0	0	Ι	•••	0	positive
0	I	0	I	I	0	I	I	•••	0	positive
0	Ι	0	Ι	Ι	0	I	0	•••	0	positive
0	0	I	0	I	I	0	I	•••	I	positive
•	•	•	•	•	•	•	•	•••	:	:
I	I	0	I	I	0	0	I	•••	I	positive

example: positive/negative movie reviews

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature <u>is independent of</u> the value of other features
- Example: we have <u>seven</u> features and D = [0][0][
- P(I0II0II|POS) =

```
P(w_1=I|POS) \times P(w_2=0|POS) \times P(w_3=I|POS) \times P(w_4=I|POS) \times P(w_5=0|POS) \times P(w_6=I|POS) \times P(w_7=I|POS)
```

P(I0II0II|NEG) =

$$P(w_1=I|NEG) \times P(w_2=0|NEG) \times P(w_3=I|NEG) \times P(w_4=I|NEG) \times P(w_5=0|NEG) \times P(w_6=I|NEG) \times P(w_7=I|NEG)$$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1 = | POS)$?

w_I	w_2	w_3	w_4	w_5	w_6	w_7	w_8		w_n	sentiment
I	0		0	-	0	0	I	•••	0	positive
0	-	0	I	ı	0	I	I	•••	0	negative
0	_	0	I	I	0	I	0	•••	0	negative
0	0	I	0	I	I	0	I	•••	I	positive
÷	÷	•	•	•••			•	•••	:	•
ı	١	0	ı	ı	0	0	l	•••	ı	negative

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1 = | POS)$?

	POS	NEG
w₁ = I	a	b
w ₁ = 0	C	d

$$P(w_1=I|POS) = ??$$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1 = | POS)$?

	POS	NEG
w₁ = I	a	Ь
w ₁ = 0	C	d

$$P(w_1 = I | POS) = a / (a + c)$$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1=1/0|POS/NEG)$?

	POS	NEG
w₁ = I	a	Ь
w ₁ = 0	C	d

$$P(w_1=1|POS) = a / (a + c)$$
 $P(w_1=0|POS) = ??$
 $P(w_1=1|NEG) = ??$
 $P(w_1=0|NEG) = ??$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1=1/0|POS/NEG)$?

	POS	NEG
w₁ = I	a	Ь
w ₁ = 0	C	d

$$P(w_1=1|POS) = a / (a + c)$$

$$P(w_1=0|POS) = c / (a + c)$$

$$P(w_1 = I | NEG) = b / (b + d)$$

$$P(w_1=0|NEG) = d / (b + d)$$

example: positive/negative movie reviews

Question: How do we estimate P(w₂=1/0|POS/NEG)?

	POS	NEG	$P(w_2 = POS) = a / (a + c)$
w ₂ = [a	b	$P(w_2=0 POS) = c / (a + c)$
			$P(w_2=I NEG) = b / (b + d)$
$\mathbf{w}_2 = 0$	С	d	$P(w_2=0 NEG) = d / (b + d)$

• The value of a, b, c, and d would be different for different features w₁, w₂, w₃, w₄, w₅,, w_n

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$P(D|POS) \times P(POS) \ge P(D|NEG) \times P(NEG)$$

example: positive/negative movie reviews

• Given instance **D**, predict positive (**POS**) if:

$$P(POS) \times \prod_{i=1}^{n} P(w_i = D_i | POS) \ge P(NEG) \times \prod_{i=1}^{n} P(w_i = D_i | NEG)$$

example: positive/negative movie reviews

• Given instance D = [0][0][, predict positive (POS) if:

```
P(w_1=I|POS) \times P(w_2=0|POS) \times P(w_3=I|POS) \times P(w_4=I|POS) \times P(w_5=0|POS) \times P(w_6=I|POS) \times P(w_7=I|POS) \times P(POS)
```

 \geq

$$P(w_1=I|NEG) \times P(w_2=0|NEG) \times P(w_3=I|NEG) \times P(w_4=I|NEG) \times P(w_5=0|NEG) \times P(w_6=I|NEG) \times P(w_7=I|NEG) \times P(NEG)$$

example: positive/negative movie reviews

We still have a problem! What is it?

example: positive/negative movie reviews

• Given instance D = [0][0][, predict positive (POS) if:

```
P(w_1=I|POS) \times P(w_2=0|POS) \times P(w_3=I|POS) \times P(w_4=I|POS) \times P(w_5=0|POS) \times P(w_6=I|POS) \times P(w_7=I|POS) \times P(POS) \times P(POS)
```

 $P(w_1=I|NEG) \times P(w_2=0|NEG) \times P(w_3=I|NEG) \times P(w_4=I|NEG) \times P(w_5=0|NEG) \times P(w_6=I|NEG) \times P(w_7=I|NEG) \times P(NEG)$

Otherwise, predict negative (NEG)

What if this never happens in the training data?

Smoothing Probability Estimates

- When estimating probabilities, we tend to ...
 - Over-estimate the probability of observed outcomes
 - Under-estimate the probability of unobserved outcomes
- The goal of smoothing is to ...
 - Decrease the probability of observed outcomes
 - Increase the probability of unobserved outcomes
- It's usually a good idea
- You probably already know this concept!

Smoothing Probability Estimates

- YOU: Are there mountain lions around here?
- YOUR FRIEND: Nope.
- YOU: How can you be so sure?
- YOUR FRIEND: Because I've been hiking here five times before and have never seen one.
- YOU: ?????

Smoothing Probability Estimates

- YOU: Are there mountain lions around here?
- YOUR FRIEND: Nope.
- YOU: How can you be so sure?
- YOUR FRIEND: Because I've been hiking here five times before and have never seen one.
- MOUNTAIN LION: You should have learned about smoothing by taking INLS 613. Yum!

Add-One Smoothing

• Question: How do we estimate $P(w_2=1/0|POS/NEG)$?

	POS	NEG
w ₂ = [a	b
$\mathbf{w}_2 = 0$	C	d

$$P(w_2=I|POS) = a / (a + c)$$
 $P(w_2=0|POS) = c / (a + c)$
 $P(w_2=I|NEG) = b / (b + d)$

 $P(w_2=0|NEG) = d / (b + d)$

Add-One Smoothing

• Question: How do we estimate $P(w_2=1/0|POS/NEG)$?

	POS	NEG	$P(w_2= POS) = ??$
$w_2 = \blacksquare$	a + 1	b + I	$P(w_2=0 POS) = ??$
	_		$P(w_2 = I NEG) = ??$
$w_2 = 0$	c +	d + I	$P(w_2=0 NEG) = ??$

Add-One Smoothing

• Question: How do we estimate P(w₂= 1/0 | POS/NEG)?

	POS	NEG
w ₂ =	a + I	b + I
$\mathbf{w}_2 = 0$	c +	d + I

$$P(w_2=I|POS) = (a + I) / (a + c + 2)$$

 $P(w_2=0|POS) = (c + I) / (a + c + 2)$

$$P(w_2=I|NEG) = (b + I) / (b + d + 2)$$

$$P(w_2=0|NEG) = (d + 1) / (b + d + 2)$$

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$P(POS) \times \prod_{i=1}^{n} P(w_i = D_i | POS) \ge P(NEG) \times \prod_{i=1}^{n} P(w_i = D_i | NEG)$$

- Naive Bayes Classifiers are simple, effective, robust, and very popular
- Assumes that feature values are conditionally independent given the target class value
- This assumption does not hold in natural language
- Even so, NB classifiers are very powerful
- Smoothing is necessary in order to avoid zero probabilities