Naive Bayes Text Classification

Jaime Arguello
INLS 613: Text Data Mining
jarguell@email.unc.edu

Outline

Basic Probability and Notation
Bayes Law and Naive Bayes Classification
Class Prior Probabilities
Naive Bayes Classification
Smoothing
Summary

Crash Course in Basic Probability

Discrete Random Variable

- A is a discrete random variable if:
- A describes an event with a finite number of possible outcomes (discrete vs continuous)
- A describes an event whose outcomes have some degree of uncertainty (random vs. pre-determined)

Discrete Random Variables

Examples

- $\mathrm{A}=$ the outcome of a coin-flip
- outcomes: heads, tails
- $\mathrm{A}=$ it will rain tomorrow
- outcomes: rain, no rain
- $A=$ you have the flu
- outcomes: flu, no flu

Discrete Random Variables Examples

- $\mathrm{A}=$ the color of a ball pulled out from this bag - outcomes: RED, BLUE, ORANGE

Probabilities

- Let $P(A=X)$ denote the probability that the outcome of event A equals X
- For simplicity, we often express $P(A=X)$ as $P(X)$
- Ex: $\mathrm{P}(\mathrm{RAIN}), \mathrm{P}(\mathrm{NO}$ RAIN $), \mathrm{P}(\mathrm{FLU}), \mathrm{P}(\mathrm{NO}$ FLU), \ldots

Probability Distribution

- A probability distribution gives the probability of each possible outcome of a random variable
- $P($ RED $)=$ probability of pulling out a red ball
- $P($ BLUE $)=$ probability of pulling out a blue ball
- $P($ ORANGE $)=$ probability of pulling out an orange ball

Probability Distribution

- For it to be a probability distribution, two conditions must be satisfied:
- the probability assigned to each possible outcome must be between 0 and 1 (inclusive)
- the sum of probabilities assigned to all outcomes must equal 1

$$
\begin{gathered}
0 \leq \mathrm{P}(\text { RED }) \leq \mathrm{I} \\
0 \leq \mathrm{P}(\text { BLUE }) \leq \mathrm{I} \\
0 \leq \mathrm{P}(\text { ORANGE }) \leq \mathrm{I} \\
\mathrm{P}(\text { RED })+\mathrm{P}(\mathrm{BLUE})+\mathrm{P}(\text { ORANGE })=\mathrm{I}
\end{gathered}
$$

Probability Distribution

Estimation

- Let's estimate these probabilities based on what we know about the contents of the bag
- $P($ RED $)=$?
- $P(B L U E)=$?
- $P($ ORANGE $)=$?

Probability Distribution estimation

- Let's estimate these probabilities based on what we know about the contents of the bag
- $P($ RED $)=10 / 20=0.5$
- $P(B L U E)=5 / 20=0.25$
- $P($ ORANGE $)=5 / 20=0.25$
- $P($ RED $)+P(B L U E)+P($ ORANGE $)=1.0$

Probability Distribution assigning probabilities to outcomes

- Given a probability distribution, we can assign probabilities to different outcomes
- I reach into the bag and pull out an orange ball. What is the probability of that happening?
- I reach into the bag and pull out two balls: one red, one blue. What is the probability of that happening?
- What about three orange balls?

What can we do with a probability distribution?

- If we assume that each outcome is independent of previous outcomes, then the probability of a sequence of outcomes is calculated by multiplying the individual probabilities
- Note: we're assuming that when you take out a ball, you put it back in the bag before taking another
$P($ RED $)=0.5$
$\mathrm{P}($ BLUE $)=0.25$
$\mathrm{P}($ ORANGE $)=0.25$

What can we do with a probability distribution?

- $\mathrm{P}(\bigcirc)=$??
- $\mathrm{P}(\mathrm{O})=$? ?
- $\mathrm{P}(\bigcirc \bigcirc)=$? ?
$P($ RED $)=0.5$
$\mathrm{P}($ BLUE $)=0.25$
$\mathrm{P}($ ORANGE $)=0.25$

What can we do with a probability distribution?

- $\mathrm{P}(\bigcirc)=0.25$
- $P(\bigcirc)=0.5$
$P($ RED $)=0.5$
$\mathrm{P}($ BLUE $)=0.25$
- $\mathrm{P}(\bigcirc)=0.25 \times 0.25 \times 0.25$
$\mathrm{P}($ ORANGE $)=0.25$
- $\mathrm{P}(\bigcirc \bigcirc)=0.25 \times 0.25 \times 0.25$
- $\mathrm{P}(\bigcirc)=0.25 \times 0.50 \times 0.25$
- $\mathrm{P}(\bigcirc)=0.25 \times 0.50 \mathrm{x}$ 0.25×0.50

Conditional Probability

- $P(A, B)$: the probability that event A and event B both occur
- $P(A \mid B)$: the probability of event A occurring given prior knowledge that event B occurred

Conditional Probability

Conditional Probability

Independence

Independence

Independence

Independence

Outline

Basic Probability and Notation
Bayes Law and Naive Bayes Classification
Class Prior Probabilities
Naive Bayes Classification
Smoothing
Summary

Bayes' Law

Bayes' Law

$$
P(A \mid B)=\frac{P(B \mid A) \times P(A)}{P(B)}
$$

Derivation of Bayes' Law

$$
P(A, B)=P(A, B)
$$

Always true!

$$
\begin{array}{cc}
P(A \mid B) \times P(B)=P(B \mid A) \times P(A) & \text { Chain Rule! } \\
P(A \mid B)=\frac{P(B \mid A) \times P(A)}{P(B)} & \begin{array}{l}
\text { Divide both } \\
\text { sides by P(B)! }
\end{array}
\end{array}
$$

Naive Bayes Classification

 example: positive/negative movie reviewsBayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) \times P(A)}{P(B)}
$$

Confidence of POS prediction given instance D

$$
P(P O S \mid D)=\frac{P(D \mid P O S) \times P(P O S)}{P(D)}
$$

Confidence of NEG prediction given instance D

$$
P(N E G \mid D)=\frac{P(D \mid N E G) \times P(N E G)}{P(D)}
$$

Naive Bayes Classification example: positive/negative movie reviews

- Given instance D, predict positive (POS) if:

$$
P(P O S \mid D) \geq P(N E G \mid D)
$$

- Otherwise, predict negative (NEG)

Naive Bayes Classification example: positive/negative movie reviews

- Given instance D, predict positive (POS) if:

$$
\frac{P(D \mid P O S) \times P(P O S)}{P(D)} \geq \frac{P(D \mid N E G) \times P(N E G)}{P(D)}
$$

- Otherwise, predict negative (NEG)

Naive Bayes Classification example: positive/negative movie reviews

- Given instance D, predict positive (POS) if:

$$
\begin{aligned}
& \quad \frac{P(D \mid P O S) \times P(P O S)}{P(D)} \geq \frac{P(D \mid N E G) \times P(N E G)}{P(D)} \\
& \text { Otherwise, predict negative (NEG) }
\end{aligned} \begin{aligned}
& \text { Are these } \\
& \text { necessary? }
\end{aligned}
$$

Naive Bayes Classification example: positive/negative movie reviews

- Given instance D, predict positive (POS) if:

$$
P(D \mid P O S) \times P(P O S) \geq P(D \mid N E G) \times P(N E G)
$$

- Otherwise, predict negative (NEG)

Naive Bayes Classification example: positive/negative movie reviews

- Our next goal is to estimate these parameters from the training data!
- $\mathrm{P}(\mathrm{NEG})=$? ?
- $P(P O S)=$? ? Easy!
- $P(D \mid N E G)=? ?$

Not so easy!

- $P(\mathrm{D} \mid \mathrm{POS})=$??

Naive Bayes Classification example: positive/negative movie reviews

- Our next goal is to estimate these parameters from the training data!
- $P(N E G)=\%$ of training set documents that are NEG
- $P(P O S)=\%$ of training set documents that are POS
- $\quad \mathrm{P}(\mathrm{D} \mid \mathrm{NEG})=$??
- $\mathrm{P}(\mathrm{D} \mid \mathrm{POS})=$??

Remember Conditional Probability?

Naive Bayes Classification

 example: positive/negative movie reviews

$$
\mathrm{P}(\mathrm{D} \mid \mathrm{POS})=\text { ?? } \quad \mathrm{P}(\mathrm{D} \mid \mathrm{NEG})=? ?
$$

Naive Bayes Classification

 example: positive/negative movie reviews| w_l | w_2 | w_3 | w_4 | w_5 | w_6 | w_7 | w_8 | ... | w_n | sentiment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | ... | 0 | positive |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | ... | 0 | positive |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | ... | 0 | positive |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | ... | 1 | positive |
| \vdots | \vdots | ! | \vdots | \vdots | \vdots | \vdots | \vdots | ... | \vdots | \vdots |
| 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | ... | 1 | positive |

Naive Bayes Classification example: positive/negative movie reviews

- We have a problem! What is it?

Naive Bayes Classification example: positive/negative movie reviews

- We have a problem! What is it?
- Assuming n binary features, the number of possible combinations is 2^{n}
- $2^{1000}=1.071509 \mathrm{e}+301$
- And in order to estimate the probability of each combination, we would require multiple occurrences of each combination in the training data!
- We could never have enough training data to reliably estimate $\mathrm{P}(\mathrm{D} \mid \mathrm{NEG})$ or $\mathrm{P}(\mathrm{D} \mid \mathrm{POS})$!

Naive Bayes Classification example: positive/negative movie reviews

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature is independent of the value of other features
- In other words, the value of a particular feature is only dependent on the class value

Naive Bayes Classification

 example: positive/negative movie reviews| w_I | w_2 | w_3 | w_4 | w_5 | w_6 | w_7 | w_8 | ... | w_n | sentiment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | \ldots | 0 | positive |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | ... | 0 | positive |
| 0 | 1 | 0 | 1 | 1 | 0 | I | 0 | ... | 0 | positive |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | ... | 1 | positive |
| \vdots | ... | \vdots | \vdots |
| 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | ... | 1 | positive |

Naive Bayes Classification example: positive/negative movie reviews

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature is independent of the value of other features
- Example: we have seven features and $D=\|0\|\| \| \|$
- $\mathrm{P}(10110 \| \mid \mathrm{POS})=$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{w}_{1}=\| \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{2}=0 \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{3}=\| \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{4}=1 \mid\right. \\
& \mathrm{POS}) \times \mathrm{P}\left(\mathrm{w}_{5}=0 \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{6}=1 \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{7}=1 \mid \mathrm{POS}\right)
\end{aligned}
$$

- $\mathrm{P}(101 \mathrm{lO} \mathrm{\| l} \| \mathrm{NEG})=$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{w}_{1}=\| \mid \text { NEG }\right) \times \mathrm{P}\left(\mathrm{w}_{2}=0 \mid \text { NEG }\right) \times \mathrm{P}\left(\mathrm{w}_{3}=\| \mid \text { NEG }\right) \times \\
& \mathrm{P}\left(\mathrm{w}_{4}=\| \text { NEG }\right) \times \mathrm{P}\left(\mathrm{w}_{5}=0 \mid \text { NEG }\right) \times \mathrm{P}\left(\mathrm{w}_{6}=\| \mid \text { NEG }\right) \times \\
& \mathrm{P}\left(\mathrm{w}_{7}=\| \mid N E G\right)
\end{aligned}
$$

Naive Bayes Classification example: positive/negative movie reviews

- Question: How do we estimate $\mathrm{P}\left(\mathrm{w}_{\mathrm{l}}=\| \mid \mathrm{POS}\right)$?

Naive Bayes Classification

 example: positive/negative movie reviews| w_{-} | $w_{-} 2$ | $w_{-} 3$ | $w_{-} 4$ | $w_{-} 5$ | $w_{-} 6$ | $w_{-} 7$ | $w_{-} 8$ | \cdots | $w_{-} n$ | sentiment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 0 | I | 0 | I | 0 | 0 | I | \ldots | 0 | positive |
| 0 | I | 0 | I | I | 0 | I | I | \ldots | 0 | negative |
| 0 | I | 0 | I | I | 0 | I | 0 | \cdots | 0 | negative |
| 0 | 0 | I | 0 | I | I | 0 | I | \cdots | I | positive |
| \vdots | \cdots | \vdots | \vdots |
| I | I | 0 | I | I | 0 | 0 | I | \cdots | I | negative |

Naive Bayes Classification example: positive/negative movie reviews

- Question: How do we estimate $\mathrm{P}\left(\mathrm{w}_{\mathrm{l}}=\| \mid \mathrm{POS}\right)$?

Naive Bayes Classification example: positive/negative movie reviews

- Question: How do we estimate $\mathrm{P}\left(\mathrm{w}_{1}=\| \mid \mathrm{POS}\right)$?

Naive Bayes Classification

 example: positive/negative movie reviews- Question: How do we estimate $\mathrm{P}\left(\mathrm{w}_{\mathrm{l}}=\mathrm{I} / 0 \mid \mathrm{POS} / \mathrm{NEG}\right)$?

$$
\begin{aligned}
& \text { POS NEG } \\
& \mathrm{P}\left(\mathrm{w}_{\mathrm{l}}=\| \mid \mathrm{POS}\right)=\mathrm{a} /(\mathrm{a}+\mathrm{c}) \\
& P\left(w_{1}=0 \mid P O S\right)=? ? \\
& P\left(w_{1}=\| \mid N E G\right)=? ? \\
& P\left(w_{l}=0 \mid N E G\right)=? ?
\end{aligned}
$$

Naive Bayes Classification

 example: positive/negative movie reviews- Question: How do we estimate $\mathrm{P}\left(\mathrm{w}_{\mathrm{l}}=\mathrm{I} / 0 \mid \mathrm{POS} / \mathrm{NEG}\right)$?

| $w_{1}=1$ | OS | NEG | $\begin{aligned} & \mathrm{P}\left(\mathrm{w}_{\mathrm{l}}=\\| \mid \mathrm{POS}\right)=\mathrm{a} /(\mathrm{a}+\mathrm{c}) \\ & \mathrm{P}\left(\mathrm{w}_{1}=0 \mid \mathrm{POS}\right)=\mathrm{c} /(\mathrm{a}+\mathrm{c}) \end{aligned}$ | |
|---|---|---|---|---|---|
| | a | b | |
| | | | $\mathrm{P}\left(\mathrm{w}_{\mathrm{l}}=\\| \\|\right.$ NEG $)=\mathrm{b} /(\mathrm{b}+\mathrm{d})$ |
| $\mathrm{w}_{1}=0$ | c | d | $P\left(w_{l}=0 \mid N E G\right)=d /(b+d)$ |

Naive Bayes Classification example: positive/negative movie reviews

- Question: How do we estimate $\mathrm{P}\left(\mathrm{w}_{2}=\mathrm{I} / 0 \mid \mathrm{POS} / \mathrm{NEG}\right)$?

$\mathrm{w}_{2}=1$	OS	NEG	$\begin{aligned} & \mathrm{P}\left(\mathrm{w}_{2}=\mathrm{l} \mid \mathrm{POS}\right)=\mathrm{a} /(\mathrm{a}+\mathrm{c}) \\ & \mathrm{P}\left(\mathrm{w}_{2}=0 \mid \mathrm{POS}\right)=\mathrm{c} /(\mathrm{a}+\mathrm{c}) \end{aligned}$	
	a	b		
			$\mathrm{P}\left(\mathrm{w}_{2}=\\|\right.$ NEG $)=\mathrm{b} /(\mathrm{b}+\mathrm{d})$	
$\mathrm{w}_{2}=0$	c	d	$\mathrm{P}\left(\mathrm{w}_{2}=0 \mid\right.$ NEG $)=\mathrm{d} /(\mathrm{b}+\mathrm{d})$	

- The value of a, b, c, and d would be different for different features $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, \ldots ., w_{n}$

Naive Bayes Classification example: positive/negative movie reviews

- Given instance D, predict positive (POS) if:

$$
P(D \mid P O S) \times P(P O S) \geq P(D \mid N E G) \times P(N E G)
$$

- Otherwise, predict negative (NEG)

Naive Bayes Classification example: positive/negative movie reviews

- Given instance D, predict positive (POS) if:

$$
P(P O S) \times \prod_{i=1}^{n} P\left(w_{i}=D_{i} \mid P O S\right) \geq P(N E G) \times \prod_{i=1}^{n} P\left(w_{i}=D_{i} \mid N E G\right)
$$

- Otherwise, predict negative (NEG)

Naive Bayes Classification example: positive/negative movie reviews

- Given instance $\mathrm{D}=\mathbf{1 0 | l | l | l}$, predict positive (POS) if:

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{w}_{1}=\| \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{2}=0 \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{3}=\| \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{4}=1 \mid\right. \\
& \mathrm{POS}) \times \mathrm{P}\left(\mathrm{w}_{5}=0 \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{6}=1 \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{7}=1 \mid \mathrm{POS}\right) \times \\
& \mathrm{P}(\mathrm{POS})
\end{aligned}
$$

$$
\geq
$$

$P\left(w_{1}=\| \mid N E G\right) \times P\left(w_{2}=0 \mid N E G\right) \times P\left(w_{3}=\| \mid N E G\right) \times P\left(w_{4}=\|\right.$ NEG) $\times \mathrm{P}\left(\mathrm{w}_{5}=0 \mid\right.$ NEG $) \times \mathrm{P}\left(\mathrm{w}_{6}=\mathrm{I} \mid\right.$ NEG $) \times \mathrm{P}\left(\mathrm{w}_{7}=\mathrm{I} \mid\right.$ NEG $) \times$ P(NEG)

- Otherwise, predict negative (NEG)

Naive Bayes Classification example: positive/negative movie reviews

- We still have a problem! What is it?

Naive Bayes Classification example: positive/negative movie reviews

- Given instance $\mathrm{D}=\mathbf{1 0 \|} \mathbf{\|} \mathbf{\| l}$ I, predict positive (POS) if:

$$
P\left(w_{1}=1 \mid P O S\right) \times P\left(w_{2}=0 \mid P O S\right) \times P\left(w_{3}=\| \mid P O S\right) \times P\left(w_{4}=\| \mid\right.
$$

$$
\mathrm{POS}) \times \mathrm{P}\left(\mathrm{w}_{5}=0 \mid \mathrm{POS}\right) \times \mathbf{P}\left(\mathrm{w}_{6}=\| \mid \mathrm{POS}\right) \times \mathrm{P}\left(\mathrm{w}_{7}=\| \mid \mathrm{POS}\right) \times
$$ $P(P O S)$

$\mathrm{P}\left(\mathrm{w}_{1}=\|\right.$ |NEG $) \times \mathrm{P}\left(\mathrm{w}_{2}=0 \mid\right.$ NEG $) \times \mathrm{P}\left(\mathrm{w}_{3}=\right.$ NEG $) \times \mathrm{P}\left(\mathrm{w}_{4}=1 \mid\right.$ NEG) $\times P\left(w_{5}=0 \mid N E G\right) \times P\left(w_{6}=\| \| N E G\right) \times P\left({ }^{\prime}=\| \| N E G\right) \times$ P(NEG)

- Otherwise, predict negative (NEG)

What if this never happens in the training data?

Smoothing Probability Estimates

- When estimating probabilities, we tend to ...
- Over-estimate the probability of observed outcomes
- Under-estimate the probability of unobserved outcomes
- The goal of smoothing is to ...
- Decrease the probability of observed outcomes
- Increase the probability of unobserved outcomes
- It's usually a good idea
- You probably already know this concept!

Smoothing Probability Estimates

- YOU: Are there mountain lions around here?
- YOUR FRIEND: Nope.
- YOU: How can you be so sure?
- YOUR FRIEND: Because I've been hiking here five times before and have never seen one.

- YOU: ????

Smoothing Probability Estimates

- YOU: Are there mountain lions around here?
- YOUR FRIEND: Nope.
- YOU: How can you be so sure?
- YOUR FRIEND: Because I've been hiking here five times before and have never seen one.

- MOUNTAIN LION: You should have learned about smoothing by taking INLS 613. Yum!

Add-One Smoothing

- Question: How do we estimate $\mathrm{P}\left(\mathrm{w}_{2}=\mathrm{I} / 0 \mid \mathrm{POS} / \mathrm{NEG}\right)$?

| $\mathrm{w}_{2}=1$ | OS | NEG | $\begin{aligned} & \mathrm{P}\left(\mathrm{w}_{2}=\\| \mid \mathrm{POS}\right)=\mathrm{a} /(\mathrm{a}+\mathrm{c}) \\ & \mathrm{P}\left(\mathrm{w}_{2}=0 \mid \mathrm{POS}\right)=\mathrm{c} /(\mathrm{a}+\mathrm{c}) \end{aligned}$ | |
|---|---|---|---|---|---|
| | a | b | |
| | | | $\mathrm{P}\left(\mathrm{w}_{2}=\\| \\| \mathrm{NEG}\right)=\mathrm{b} /(\mathrm{b}+\mathrm{d})$ |
| $\mathrm{w}_{2}=0$ | c | d | $\mathrm{P}\left(\mathrm{w}_{2}=0 \mid\right.$ NEG $)=\mathrm{d} /(\mathrm{b}+\mathrm{d})$ |

Add-One Smoothing

- Question: How do we estimate $\mathrm{P}\left(\mathrm{w}_{2}=\mathrm{I} / 0 \mid \mathrm{POS} / \mathrm{NEG}\right)$?

	POS	NEG	$\mathrm{P}\left(\mathrm{w}_{2}=\\|\right.$ POS $)=$? ${ }^{\text {a }}$
$\mathrm{w}_{2}=1$	$a+1$	$\mathrm{b}+\mathrm{l}$	$\mathrm{P}\left(\mathrm{w}_{2}=0 \mid \mathrm{POS}\right)=?$?
			$\mathrm{P}\left(\mathrm{w}_{2}=\\|\right.$ \| NEG$)=$? ?
$\mathrm{w}_{2}=0$	$\mathrm{c}+\mathrm{l}$	d + I	$\mathrm{P}\left(\mathrm{w}_{2}=0 \mid\right.$ NEG $)=? ?$

Add-One Smoothing

- Question: How do we estimate $\mathrm{P}\left(\mathrm{w}_{2}=\mathrm{I} / 0 \mid \mathrm{POS} / \mathrm{NEG}\right)$?

$\mathrm{w}_{2}=1$	POS	NEG	$\begin{aligned} & \mathrm{P}\left(\mathrm{w}_{2}=\mathrm{I} \mid \mathrm{POS}\right)=(\mathrm{a}+\mathrm{I}) /(\mathrm{a}+\mathrm{c}+2) \\ & \mathrm{P}\left(\mathrm{w}_{2}=0 \mid \mathrm{POS}\right)=(\mathrm{c}+\mathrm{I}) /(\mathrm{a}+\mathrm{c}+2) \end{aligned}$
	$a+1$	$b+1$	
$\mathrm{w}_{2}=\mathbf{0}$	$\mathrm{c}+1$	d + I	$\begin{aligned} & P\left(w_{2}=1 \mid \text { NEG }\right)=(b+l) /(b+d+2) \\ & P\left(w_{2}=0 \mid \text { NEG }\right)=(d+I) /(b+d+2) \end{aligned}$

Naive Bayes Classification example: positive/negative movie reviews

- Given instance D, predict positive (POS) if:

$$
P(P O S) \times \prod_{i=1}^{n} P\left(w_{i}=D_{i} \mid P O S\right) \geq P(N E G) \times \prod_{i=1}^{n} P\left(w_{i}=D_{i} \mid N E G\right)
$$

- Otherwise, predict negative (NEG)

Naive Bayes Classification

- Naive Bayes Classifiers are simple, effective, robust, and very popular
- Assumes that feature values are conditionally independent given the target class value
- This assumption does not hold in natural language
- Even so, NB classifiers are very powerful
- Smoothing is necessary in order to avoid zero probabilities

