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Elementary Concepts in Statistics
Overview of Elementary Concepts in Statistics. In this introduction, we will briefly discuss those
elementary statistical concepts that provide the necessary foundations for more specialized expertise in any area
of statistical data analysis. The selected topics illustrate the basic assumptions of most statistical methods and/or
have been demonstrated in research to be necessary components of one's general understanding of the
"quantitative nature" of reality (Nisbett, et al., 1987).
Because of space limitations, we will focus mostly on the
functional aspects of the concepts discussed and the presentation will be very short. Further information on each
of those concepts can be found in the Introductory Overview and Examples sections of this manual and in
statistical textbooks. Recommended introductory textbooks are: Kachigan (1986), and Runyon and Haber
(1976); for a more advanced discussion of elementary theory and assumptions of statistics, see the classic books
by Hays (1988), and Kendall and Stuart (1979).

What are variables?
Correlational vs. experimental research
Dependent vs. independent variables
Measurement scales
Relations between variables
Why relations between variables are
important
Two basic features of every relation
between variables
What is "statistical significance" (p-
level)
How to determine that a result is "really"
significant
Statistical significance and the number
of analyses performed
Strength vs. reliability of a relation
between variables
Why stronger relations between
variables are more significant

 

Why significance of a relation between variables
depends on the size of the sample
Example: "Baby boys to baby girls ratio"
Why small relations can be proven significant only in
large samples
Can "no relation" be a significant result?
How to measure the magnitude (strength) of relations
between variables
Common "general format" of most statistical tests
How the "level of statistical significance" is calculated
Why the "Normal distribution" is important
Illustration of how the normal distribution is used in
statistical reasoning (induction)
Are all test statistics normally distributed?
How do we know the consequences of violating the
normality assumption?

What are variables. Variables are things that we measure, control, or manipulate in research. They differ in
many respects, most notably in the role they are given in our research and in the type of measures that can be
applied to them.


Correlational vs. experimental research. Most empirical research belongs clearly to one of those two general
categories. In correlational research we do not (or at least try not to) influence any variables but only measure
them and look for relations (correlations) between some set of variables, such as blood pressure and cholesterol
level. In experimental research, we manipulate some variables and then measure the effects of this manipulation
on other variables; for example, a researcher might artificially increase blood pressure and then record
cholesterol level. Data analysis in experimental research also comes down to calculating "correlations" between
variables, specifically, those manipulated and those affected by the manipulation. However, experimental data
may potentially provide qualitatively better information: Only experimental data can conclusively demonstrate
causal relations between variables. For example, if we found that whenever we change variable A then variable
B changes, then we can conclude that "A influences B." Data from correlational research can only be
"interpreted" in causal terms based on some theories that we have, but correlational data cannot conclusively
prove causality.
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Dependent vs. independent variables. Independent variables are those that are manipulated whereas
dependent variables are only measured or registered. This distinction appears terminologically confusing to
many because, as some students say, "all variables depend on something." However, once you get used to this
distinction, it becomes indispensable. The terms dependent and independent variable apply mostly to
experimental research where some variables are manipulated, and in this sense they are "independent" from the
initial reaction patterns, features, intentions, etc. of the subjects. Some other variables are expected to be
"dependent" on the manipulation or experimental conditions. That is to say, they depend on "what the subject
will do" in response. Somewhat contrary to the nature of this distinction, these terms are also used in studies
where we do not literally manipulate independent variables, but only assign subjects to "experimental groups"
based on some pre-existing properties of the subjects. For example, if in an experiment, males are compared with
females regarding their white cell count (WCC), Gender could be called the independent variable and WCC the
dependent variable.


Measurement scales. Variables differ in "how well" they can be measured, i.e., in how much measurable
information their measurement scale can provide. There is obviously some measurement error involved in every
measurement, which determines the "amount of information" that we can obtain. Another factor that determines
the amount of information that can be provided by a variable is its "type of measurement scale." Specifically
variables are classified as (a) nominal, (b) ordinal, (c) interval or (d) ratio.

a. Nominal variables allow for only qualitative classification. That is, they can be measured only in terms of
whether the individual items belong to some distinctively different categories, but we cannot quantify or
even rank order those categories. For example, all we can say is that 2 individuals are different in terms of
variable A (e.g., they are of different race), but we cannot say which one "has more" of the quality
represented by the variable. Typical examples of nominal variables are gender, race, color, city, etc.

b. Ordinal variables allow us to rank order the items we measure in terms of which has less and which has
more of the quality represented by the variable, but still they do not allow us to say "how much more." A
typical example of an ordinal variable is the socioeconomic status of families. For example, we know that
upper-middle is higher than middle but we cannot say that it is, for example, 18% higher. Also this very
distinction between nominal, ordinal, and interval scales itself represents a good example of an ordinal
variable. For example, we can say that nominal measurement provides less information than ordinal
measurement, but we cannot say "how much less" or how this difference compares to the difference
between ordinal and interval scales.

c. Interval variables allow us not only to rank order the items that are measured, but also to quantify and
compare the sizes of differences between them. For example, temperature, as measured in degrees
Fahrenheit or Celsius, constitutes an interval scale. We can say that a temperature of 40 degrees is higher
than a temperature of 30 degrees, and that an increase from 20 to 40 degrees is twice as much as an
increase from 30 to 40 degrees.

d. Ratio variables are very similar to interval variables; in addition to all the properties of interval variables,
they feature an identifiable absolute zero point, thus they allow for statements such as x is two times more
than y. Typical examples of ratio scales are measures of time or space. For example, as the Kelvin
temperature scale is a ratio scale, not only can we say that a temperature of 200 degrees is higher than one
of 100 degrees, we can correctly state that it is twice as high. Interval scales do not have the ratio property.
Most statistical data analysis procedures do not distinguish between the interval and ratio properties of the
measurement scales.

Relations between variables. Regardless of their type, two or more variables are related if in a sample of
observations, the values of those variables are distributed in a consistent manner. In other words, variables are
related if their values systematically correspond to each other for these observations. For example, Gender and
WCC would be considered to be related if most males had high WCC and most females low WCC, or vice versa;
Height is related to Weight because typically tall individuals are heavier than short ones; IQ is related to the
Number of Errors in a test, if people with higher IQ's make fewer errors.
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Why relations between variables are important. Generally speaking, the ultimate goal of every research or
scientific analysis is finding relations between variables. The philosophy of science teaches us that there is no
other way of representing "meaning" except in terms of relations between some quantities or qualities; either
way involves relations between variables. Thus, the advancement of science must always involve finding new
relations between variables. Correlational research involves measuring such relations in the most straightforward
manner. However, experimental research is not any different in this respect. For example, the above mentioned
experiment comparing WCC in males and females can be described as looking for a correlation between two
variables: Gender and WCC. Statistics does nothing else but help us evaluate relations between variables.
Actually, all of the hundreds of procedures that are described in this manual can be interpreted in terms of
evaluating various kinds of inter-variable relations.


Two basic features of every relation between variables. The two most elementary formal properties of
every relation between variables are the relation's (a) magnitude (or "size") and (b) its reliability (or
"truthfulness").

a. Magnitude (or "size"). The magnitude is much easier to understand and measure than reliability. For
example, if every male in our sample was found to have a higher WCC than any female in the sample, we
could say that the magnitude of the relation between the two variables (Gender and WCC) is very high in
our sample. In other words, we could predict one based on the other (at least among the members of our
sample).

b. Reliability (or "truthfulness"). The reliability of a relation is a much less intuitive concept, but still
extremely important. It pertains to the "representativeness" of the result found in our specific sample for
the entire population. In other words, it says how probable it is that a similar relation would be found if the
experiment was replicated with other samples drawn from the same population. Remember that we are
almost never "ultimately" interested only in what is going on in our sample; we are interested in the
sample only to the extent it can provide information about the population. If our study meets some specific
criteria (to be mentioned later), then the reliability of a relation between variables observed in our sample
can be quantitatively estimated and represented using a standard measure (technically called p-level or
statistical significance level, see the next paragraph).

What is "statistical significance" (p-level). The statistical significance of a result is an estimated measure of
the degree to which it is "true" (in the sense of "representative of the population"). More technically, the value of
the p-level (the term first used by Brownlee, 1960) represents a decreasing index of the reliability of a result. The
higher the p-level, the less we can believe that the observed relation between variables in the sample is a reliable
indicator of the relation between the respective variables in the population. Specifically, the p-level represents the
probability of error that is involved in accepting our observed result as valid, that is, as "representative of the
population." For example, a p-level of .05 (i.e.,1/20) indicates that there is a 5% probability that the relation
between the variables found in our sample is a "fluke." In other words, assuming that in the population there was
no relation between those variables whatsoever, and we were repeating experiments like ours one after another,
we could expect that approximately in every 20 replications of the experiment there would be one in which the
relation between the variables in question would be equal or stronger than in ours. (Note that this is not the same
as saying that, given that there IS a relationship between the variables, we can expect to replicate the results 5%
of the time or 95% of the time; when there is a relationship between the variables in the population, the
probability of replicating the study and finding that relationship is related to the statistical power of the design.
See also, Power Analysis). In many areas of research, the p-level of .05 is customarily treated as a "border-line
acceptable" error level.


How to determine that a result is "really" significant. There is no way to avoid arbitrariness in the final
decision as to what level of significance will be treated as really "significant." That is, the selection of some level
of significance, up to which the results will be rejected as invalid, is arbitrary. In practice, the final decision
usually depends on whether the outcome was predicted a priori or only found post hoc in the course of many

https://www.uaq.mx/statsoft/gloss.html#Statistical%20Power
https://www.uaq.mx/statsoft/stpowan.html
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analyses and comparisons performed on the data set, on the total amount of consistent supportive evidence in the
entire data set, and on "traditions" existing in the particular area of research. Typically, in many sciences, results
that yield p �.05 are considered borderline statistically significant but remember that this level of significance
still involves a pretty high probability of error (5%). Results that are significant at the p� �.01 level are
commonly considered statistically significant, and p� �.005 or p� �.001 levels are often called "highly"
significant. But remember that those classifications represent nothing else but arbitrary conventions that are only
informally based on general research experience.


Statistical significance and the number of analyses performed. Needless to say, the more analyses you
perform on a data set, the more results will meet "by chance" the conventional significance level. For example, if
you calculate correlations between ten variables (i.e., 45 different correlation coefficients), then you should
expect to find by chance that about two (i.e., one in every 20) correlation coefficients are significant at the
p���.05 level, even if the values of the variables were totally random and those variables do not correlate in
the population. Some statistical methods that involve many comparisons, and thus a good chance for such errors,
include some "correction" or adjustment for the total number of comparisons. However, many statistical methods
(especially simple exploratory data analyses) do not offer any straightforward remedies to this problem.
Therefore, it is up to the researcher to carefully evaluate the reliability of unexpected findings. Many examples in
this manual offer specific advice on how to do this; relevant information can also be found in most research
methods textbooks.


Strength vs. reliability of a relation between variables. We said before that strength and reliability are two
different features of relationships between variables. However, they are not totally independent. In general, in a
sample of a particular size, the larger the magnitude of the relation between variables, the more reliable the
relation (see the next paragraph).


Why stronger relations between variables are more significant. Assuming that there is no relation
between the respective variables in the population, the most likely outcome would be also finding no relation
between those variables in the research sample. Thus, the stronger the relation found in the sample, the less
likely it is that there is no corresponding relation in the population. As you see, the magnitude and significance of
a relation appear to be closely related, and we could calculate the significance from the magnitude and vice-
versa; however, this is true only if the sample size is kept constant, because the relation of a given strength could
be either highly significant or not significant at all, depending on the sample size (see the next paragraph).


Why significance of a relation between variables depends on the size of the sample. If there are very
few observations, then there are also respectively few possible combinations of the values of the variables, and
thus the probability of obtaining by chance a combination of those values indicative of a strong relation is
relatively high. Consider the following illustration. If we are interested in two variables (Gender: male/female
and WCC: high/low) and there are only four subjects in our sample (two males and two females), then the
probability that we will find, purely by chance, a 100% relation between the two variables can be as high as one-
eighth. Specifically, there is a one-in-eight chance that both males will have a high WCC and both females a low
WCC, or vice versa. Now consider the probability of obtaining such a perfect match by chance if our sample
consisted of 100 subjects; the probability of obtaining such an outcome by chance would be practically zero.
Let's look at a more general example. Imagine a theoretical population in which the average value of WCC in
males and females is exactly the same. Needless to say, if we start replicating a simple experiment by drawing
pairs of samples (of males and females) of a particular size from this population and calculating the difference
between the average WCC in each pair of samples, most of the experiments will yield results close to 0.
However, from time to time, a pair of samples will be drawn where the difference between males and females
will be quite different from 0. How often will it happen? The smaller the sample size in each experiment, the
more likely it is that we will obtain such erroneous results, which in this case would be results indicative of the
existence of a relation between gender and WCC obtained from a population in which such a relation does not
exist.


Example. "Baby boys to baby girls ratio." Consider the following example from research on statistical
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reasoning (Nisbett, et al., 1987). There are two hospitals: in the first one, 120 babies are born every day, in the
other, only 12. On average, the ratio of baby boys to baby girls born every day in each hospital is 50/50.
However, one day, in one of those hospitals twice as many baby girls were born as baby boys. In which hospital
was it more likely to happen? The answer is obvious for a statistician, but as research shows, not so obvious for a
lay person: It is much more likely to happen in the small hospital. The reason for this is that technically
speaking, the probability of a random deviation of a particular size (from the population mean), decreases with
the increase in the sample size.


Why small relations can be proven significant only in large samples. The examples in the previous
paragraphs indicate that if a relationship between variables in question is "objectively" (i.e., in the population)
small, then there is no way to identify such a relation in a study unless the research sample is correspondingly
large. Even if our sample is in fact "perfectly representative" the effect will not be statistically significant if the
sample is small. Analogously, if a relation in question is "objectively" very large (i.e., in the population), then it
can be found to be highly significant even in a study based on a very small sample. Consider the following
additional illustration. If a coin is slightly asymmetrical, and when tossed is somewhat more likely to produce
heads than tails (e.g., 60% vs. 40%), then ten tosses would not be sufficient to convince anyone that the coin is
asymmetrical, even if the outcome obtained (six heads and four tails) was perfectly representative of the bias of
the coin. However, is it so that 10 tosses is not enough to prove anything? No, if the effect in question were large
enough, then ten tosses could be quite enough. For instance, imagine now that the coin is so asymmetrical that
no matter how you toss it, the outcome will be heads. If you tossed such a coin ten times and each toss produced
heads, most people would consider it sufficient evidence that something is "wrong" with the coin. In other words,
it would be considered convincing evidence that in the theoretical population of an infinite number of tosses of
this coin there would be more heads than tails. Thus, if a relation is large, then it can be found to be significant
even in a small sample.


Can "no relation" be a significant result? The smaller the relation between variables, the larger the sample
size that is necessary to prove it significant. For example, imagine how many tosses would be necessary to prove
that a coin is asymmetrical if its bias were only .000001%! Thus, the necessary minimum sample size increases
as the magnitude of the effect to be demonstrated decreases. When the magnitude of the effect approaches 0, the
necessary sample size to conclusively prove it approaches infinity. That is to say, if there is almost no relation
between two variables, then the sample size must be almost equal to the population size, which is assumed to be
infinitely large. Statistical significance represents the probability that a similar outcome would be obtained if we
tested the entire population. Thus, everything that would be found after testing the entire population would be,
by definition, significant at the highest possible level, and this also includes all "no relation" results.


How to measure the magnitude (strength) of relations between variables. There are very many measures
of the magnitude of relationships between variables which have been developed by statisticians; the choice of a
specific measure in given circumstances depends on the number of variables involved, measurement scales used,
nature of the relations, etc. Almost all of them, however, follow one general principle: they attempt to somehow
evaluate the observed relation by comparing it to the "maximum imaginable relation" between those specific
variables. Technically speaking, a common way to perform such evaluations is to look at how differentiated are
the values of the variables, and then calculate what part of this "overall available differentiation" is accounted for
by instances when that differentiation is "common" in the two (or more) variables in question. Speaking less
technically, we compare "what is common in those variables" to "what potentially could have been common if
the variables were perfectly related." Let us consider a simple illustration. Let us say that in our sample, the
average index of WCC is 100 in males and 102 in females. Thus, we could say that on average, the deviation of
each individual score from the grand mean (101) contains a component due to the gender of the subject; the size
of this component is 1. That value, in a sense, represents some measure of relation between Gender and WCC.
However, this value is a very poor measure, because it does not tell us how relatively large this component is,
given the "overall differentiation" of WCC scores. Consider two extreme possibilities:

a. If all WCC scores of males were equal exactly to 100, and those of females equal to 102, then all
deviations from the grand mean in our sample would be entirely accounted for by gender. We would say
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that in our sample, gender is perfectly correlated with WCC, that is, 100% of the observed differences
between subjects regarding their WCC is accounted for by their gender.

b. If WCC scores were in the range of 0-1000, the same difference (of 2) between the average WCC of males
and females found in the study would account for such a small part of the overall differentiation of scores
that most likely it would be considered negligible. For example, one more subject taken into account could
change, or even reverse the direction of the difference. Therefore, every good measure of relations
between variables must take into account the overall differentiation of individual scores in the sample and
evaluate the relation in terms of (relatively) how much of this differentiation is accounted for by the
relation in question.

Common "general format" of most statistical tests. Because the ultimate goal of most statistical tests is to
evaluate relations between variables, most statistical tests follow the general format that was explained in the
previous paragraph. Technically speaking, they represent a ratio of some measure of the differentiation common
in the variables in question to the overall differentiation of those variables. For example, they represent a ratio of
the part of the overall differentiation of the WCC scores that can be accounted for by gender to the overall
differentiation of the WCC scores. This ratio is usually called a ratio of explained variation to total variation. In
statistics, the term explained variation does not necessarily imply that we "conceptually understand" it. It is used
only to denote the common variation in the variables in question, that is, the part of variation in one variable that
is "explained" by the specific values of the other variable, and vice versa.


How the "level of statistical significance" is calculated. Let us assume that we have already calculated a
measure of a relation between two variables (as explained above). The next question is "how significant is this
relation?" For example, is 40% of the explained variance between the two variables enough to consider the
relation significant? The answer is "it depends." Specifically, the significance depends mostly on the sample size.
As explained before, in very large samples, even very small relations between variables will be significant,
whereas in very small samples even very large relations cannot be considered reliable (significant). Thus, in
order to determine the level of statistical significance, we need a function that represents the relationship between
"magnitude" and "significance" of relations between two variables, depending on the sample size. The function
we need would tell us exactly "how likely it is to obtain a relation of a given magnitude (or larger) from a sample
of a given size, assuming that there is no such relation between those variables in the population." In other
words, that function would give us the significance (p) level, and it would tell us the probability of error involved
in rejecting the idea that the relation in question does not exist in the population. This "alternative" hypothesis
(that there is no relation in the population) is usually called the null hypothesis. It would be ideal if the
probability function was linear, and for example, only had different slopes for different sample sizes.
Unfortunately, the function is more complex, and is not always exactly the same; however, in most cases we
know its shape and can use it to determine the significance levels for our findings in samples of a particular size.
Most of those functions are related to a general type of function which is called normal.


Why the "Normal distribution" is important. The "Normal distribution" is important because in most cases,
it well approximates the function that was introduced in the previous paragraph (for a detailed illustration, see
Are all test statistics normally distributed?). The distribution of many test statistics is normal or follows some
form that can be derived from the normal distribution. In this sense, philosophically speaking, the Normal
distribution represents one of the empirically verified elementary "truths about the general nature of reality," and
its status can be compared to the one of fundamental laws of natural sciences. The exact shape of the normal
distribution (the characteristic "bell curve") is defined by a function which has only two parameters: mean and
standard deviation.

A characteristic property of the Normal distribution is that 68% of all of its observations fall within a range of
�1 standard deviation from the mean, and a range of �2 standard deviations includes 95% of the scores. In
other words, in a Normal distribution, observations that have a standardized value of less than -2 or more than +2
have a relative frequency of 5% or less. (Standardized value means that a value is expressed in terms of its
difference from the mean, divided by the standard deviation.) If you have access to STATISTICA (see University
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site licenses), you can explore the exact values of probability associated with
different values in the normal
distribution using the interactive Probability Calculator tool; for example, if you enter the Z value (i.e.,
standardized value) of 4, the associated probability computed by STATISTICA will be less than .0001, because in
the normal distribution almost all observations (i.e., more than 99.99%) fall within the range of �4 standard
deviations. The animation below shows the tail area associated with other Z values.

Illustration of how the normal distribution is used in statistical reasoning (induction). Recall the
example discussed above, where pairs of samples of males and females were drawn from a population in which
the average value of WCC in males and females was exactly the same. Although the most likely outcome of such
experiments (one pair of samples per experiment) was that the difference between the average WCC in males
and females in each pair is close to zero, from time to time, a pair of samples will be drawn where the difference
between males and females is quite different from 0. How often does it happen? If the sample size is large
enough, the results of such replications are "normally distributed" (this important principle is explained and
illustrated in the next paragraph), and thus knowing the shape of the normal curve, we can precisely calculate the
probability of obtaining "by chance" outcomes representing various levels of deviation from the hypothetical
population mean of 0. If such a calculated probability is so low that it meets the previously accepted criterion of
statistical significance, then we have only one choice: conclude that our result gives a better approximation of
what is going on in the population than the "null hypothesis" (remember that the null hypothesis was considered
only for "technical reasons" as a benchmark against which our empirical result was evaluated). Note that this
entire reasoning is based on the assumption that the shape of the distribution of those "replications" (technically,
the "sampling distribution") is normal. This assumption is discussed in the next paragraph.


Are all test statistics normally distributed? Not all, but most of them are either based on the normal
distribution directly or on distributions that are related to, and can be derived from normal, such as t, F, or Chi-
square. Typically, those tests require that the variables analyzed are themselves normally distributed in the
population, that is, they meet the so-called "normality assumption." Many observed variables actually are
normally distributed, which is another reason why the normal distribution represents a "general feature" of
empirical reality. The problem may occur when one tries to use a normal distribution-based test to analyze data
from variables that are themselves not normally distributed (see tests of normality in Nonparametrics or
ANOVA/MANOVA). In such cases we have two general choices. First, we can use some alternative
"nonparametric" test (or so-called "distribution-free test" see, Nonparametrics); but this is often inconvenient
because such tests are typically less powerful and less flexible in terms of types of conclusions that they can
provide. Alternatively, in many cases we can still use the normal distribution-based test if we only make sure that
the size of our samples is large enough. The latter option is based on an extremely important principle which is
largely responsible for the popularity of tests that are based on the normal function. Namely, as the sample size
increases, the shape of the sampling distribution (i.e., distribution of a statistic from the sample; this term was
first used by Fisher, 1928a) approaches normal shape, even if the distribution of the variable in question is not
normal. This principle is illustrated in the following animation showing a series of sampling distributions
(created with gradually increasing sample sizes of: 2, 5, 10, 15, and 30) using a variable that is clearly non-
normal in the population, that is, the distribution of its values is clearly skewed.

http://www.statsoft.com/colleges.html
https://www.uaq.mx/statsoft/glosn.html#Normal%20Distribution
https://www.uaq.mx/statsoft/gloss.html#Student's%20t%20Distribution
https://www.uaq.mx/statsoft/glosf.html#F%20Distribution
https://www.uaq.mx/statsoft/glosc.html#Chi-square%20Distribution
https://www.uaq.mx/statsoft/stnonpar.html
https://www.uaq.mx/statsoft/stanman.html
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However, as the sample size (of samples used to create the sampling distribution of the mean) increases, the
shape of the sampling distribution becomes normal. Note that for n=30, the shape of that distribution is "almost"
perfectly normal (see the close match of the fit). This principle is called the central limit theorem (this term was
first used by P�lya, 1920; German, "Zentraler Grenzwertsatz").


How do we know the consequences of violating the normality assumption? Although many of the
statements made in the preceding paragraphs can be proven mathematically, some of them do not have
theoretical proofs and can be demonstrated only empirically, via so-called Monte-Carlo experiments. In these
experiments, large numbers of samples are generated by a computer following predesigned specifications and the
results from such samples are analyzed using a variety of tests. This way we can empirically evaluate the type
and magnitude of errors or biases to which we are exposed when certain theoretical assumptions of the tests we
are using are not met by our data. Specifically, Monte-Carlo studies were used extensively with normal
distribution-based tests to determine how sensitive they are to violations of the assumption of normal distribution
of the analyzed variables in the population. The general conclusion from these studies is that the consequences of
such violations are less severe than previously thought. Although these conclusions should not entirely
discourage anyone from being concerned about the normality assumption, they have increased the overall
popularity of the distribution-dependent statistical tests in all areas of research.
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