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• Open source server environment 
for developing server-side 
applications in JavaScript

• Asynchronous, event-driven 
JavaScript runtime,  designed to 
build scalable network apps

• Built on Chrome's V8 JavaScript 
engine

Node.js

• Serve static and dynamic content

• Collect form data

• Create, open, read, write, delete, 
close files on the server

• Add, delete, modify data in your 
database

What is Node.js? What can it do?

Node.js 

https://nodejs.org/en/
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Why Node.js?
• Performance – designed to optimize throughput and scalability

• Code is written in “plain old JavaScript” which means less time is spent 
dealing with “context shift” between languages when writing both client-
side and server-side code

• The node package manager (NPM) provides access to hundreds of 
thousands of reusable packages, and it supports dependency resolution.

• Portability – available on Windows, macOS, Linux, etc.  

• Very active third party ecosystem and developer community.   
Stackoverflow Developer Survey 2020: Other Frameworks...

Who uses it?  9 Famous Apps Built with Node.js 

Comparison with PHP 
 PHP vs. Node.js

 What is the difference between PHP and Node.js? 

Source: MDN web docs: Express/Node Introduction

https://nodejs.org/en/
https://insights.stackoverflow.com/survey/2020#technology-other-frameworks-libraries-and-tools
https://brainhub.eu/blog/9-famous-apps-using-node-js/
https://www.geeksforgeeks.org/php-vs-node-js/
https://www.websoptimization.com/blog/what-is-the-difference-between-php-and-node-js/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
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But first...Install 
Node.js

Download, and 
double-click

Windows

Mac

https://nodejs.org/en/
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Test your installation
• The Node.js installation includes NPM, a package manager for Node.js. 

packages (or modules). Packages are JavaScript libraries that define 
functions that can be included in applications.

• Test your installation by opening a Terminal (Mac) or Command Prompt 
(Windows) window, and enter these commands that will return the 
installed version of Node.js and NPM.

    node -v 
    npm -v NOTE: if you do not see the version numbers 

displayed, then Node.js did not install properly.

https://www.w3schools.com/nodejs/nodejs_npm.asp
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Notes on using Mac Terminal or 
Windows Command Prompt window

• You need to be familiar with using the Mac Terminal or  Windows 
Command Prompt window when starting a Node.js server.

• The most useful commands are

 cd – this allows you to change directories so that you can navigate 
around your file folders (same on Mac and Win)

 dir (Win) or ls (Mac) – will display the files in the current directory

 Ctrl-C  – to stop the Node.js server. This is important if you make  
changes to the startup script, e.g., demo_fileserver.js,because 
you will need to restart the server for the changes to take effect.

Some useful references

• Mac Terminal for Beginners

• How to use the Windows command line

https://medium.com/@grace.m.nolan/terminal-for-beginners-e492ba10902a
https://www.computerhope.com/issues/chusedos.htm
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Create a simple Node server
Follow the steps in w3schools: Node.js Get Started to create a 
simple Node server that displays “Hello World” in the browser.

• Create a folder (or directory) , e.g., NodeProjects

• In this folder, create the file, myfirst.js with these statements:

      

Source: w3schools: Node.js Get Started

var http = require('http');

http.createServer(function (req, res) {

  res.writeHead(200, {'Content-Type': 'text/html'});

  res.write('Hello World!');

  res.end();

}).listen(8080); 

https://www.w3schools.com/nodejs/nodejs_get_started.asp
https://www.w3schools.com/nodejs/nodejs_get_started.asp
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Create a simple Node server

At the prompt, start the server by entering: node myfirst.js

In your browser, enter: localhost:8080 

Source: w3schools: Node.js Get Started

      var http = require('http');

      http.createServer(function (req, res) {

         res.writeHead(200, {'Content-Type': 'text/html'});

         res.write('Hello World!');

         res.end();

      }).listen(8080); myfirst.js

You should see this displayed in the browser window

http://localhost:8080/
https://www.w3schools.com/nodejs/nodejs_get_started.asp
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Node.js HTTP Module

• In the myfirst.js program, the following statement includes the 
HTTP module so that it can be used to create an HTTP server:

         var http = require('http');    

• This module creates the HTTP server, and handles requests and 
responses between the server and client.

• Modules are similar to JavaScript libraries – they are collections of 
functions that are frequently used in applications. By packaging these 
functions as modules, developers can use them without having to 
write the code themselves.

• The HTTP module is a “built-in” module that is installed with Node.js. 
        

Sources: w3schools: Node.js Modules,    w3schools:  Node.js HTTP Module

https://www.w3schools.com/nodejs/nodejs_modules.asp
https://www.w3schools.com/nodejs/nodejs_http.asp
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Node.js HTTP Module

What this JavaScript program does:

• Creates a server that listens on port number 8080

• The server accepts a request (req), e.g., when you enter 
localhost:8080 in the browser 

• Sets the response (res) header with a 200 status code and the type 
of content for this response (html)

• Writes 'Hello World!' to the response, and ends the response 

Sources: w3schools: Node.js Modules, w3schools Node.js HTTP Module

var http = require('http');

http.createServer(function (req, res) {

  res.writeHead(200, {'Content-Type': 'text/html'});

  res.write('Hello World!');

  res.end();

}).listen(8080);

https://www.w3schools.com/nodejs/nodejs_modules.asp
https://www.w3schools.com/nodejs/nodejs_http.asp
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Node.js HTTP Module
If you open the Developer Tools (either Chrome or Firefox), 
you will see the request and response information

Request info

Response info
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Node.js URL and File System Modules

The URL module provides functions that allow the parsing of 
a web address. 
• For example, you can extract the domain address, pathname, 

or query parameters from the web address. This can be useful 
if an application needs to read a specific file, or to use the 
query parameters to search for specific data.

The File System module provides functions that allow you to 
work with files on your computer. 
• For example, to read, modify, or delete files. When a Node 

server responds to a request for an HTML file, it is basically 
reading the file contents, and returning this data in the HTTP 
response.

Source: w3schools: Node.js URL Module

https://www.w3schools.com/nodejs/nodejs_url.asp
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Practice: URL and File System Modules
Work through the examples found in the w3schools Node.js 
Tutorial for Node.js URL Module.

Example 1: demo_url.js

• This example illustrates how to parse a web address and display the 
component parts. You will need to copy and paste this example into a 
file, e.g., demo_url.js,  run it, and then ensure you see the same 
results as shown in   

• Try changing the contents of the web address (var adr) to see how 
the output changes.

Example 2: demo_fileserver.js

• This example reads an HTML file and renders it in the browser. If the 
file is not found, a 404 error message is displayed. In the tutorial, they 
suggest using 2 files, summer.html and winter.html, but you can also 
copy theme-change.html to your folder to test the code.

Source: w3schools: Node.js URL Module

https://www.w3schools.com/nodejs/nodejs_url.asp
https://www.w3schools.com/nodejs/nodejs_url.asp
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