
Slide 1

Node.js
Introduction

Joan Boone

jpboone@email.unc.edu

INLS 672
Web Development 2

mailto:jpboone@email.unc.edu

Slide 2

• Open source server environment
for developing server-side
applications in JavaScript

• Asynchronous, event-driven
JavaScript runtime, designed to
build scalable network apps

• Built on Chrome's V8 JavaScript
engine

Node.js

• Serve static and dynamic content

• Collect form data

• Create, open, read, write, delete,
close files on the server

• Add, delete, modify data in your
database

What is Node.js? What can it do?

Node.js

https://nodejs.org/en/

Slide 3

Why Node.js?
• Performance – designed to optimize throughput and scalability

• Code is written in “plain old JavaScript” which means less time is spent
dealing with “context shift” between languages when writing both client-
side and server-side code

• The node package manager (NPM) provides access to hundreds of
thousands of reusable packages, and it supports dependency resolution.

• Portability – available on Windows, macOS, Linux, etc.

• Very active third party ecosystem and developer community.
Stackoverflow Developer Survey 2020: Other Frameworks...

Who uses it? 9 Famous Apps Built with Node.js

Comparison with PHP
 PHP vs. Node.js

 What is the difference between PHP and Node.js?

Source: MDN web docs: Express/Node Introduction

https://nodejs.org/en/
https://insights.stackoverflow.com/survey/2020#technology-other-frameworks-libraries-and-tools
https://brainhub.eu/blog/9-famous-apps-using-node-js/
https://www.geeksforgeeks.org/php-vs-node-js/
https://www.websoptimization.com/blog/what-is-the-difference-between-php-and-node-js/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction

Slide 4

But first...Install
Node.js

Download, and
double-click

Windows

Mac

https://nodejs.org/en/

Slide 5

Test your installation
• The Node.js installation includes NPM, a package manager for Node.js.

packages (or modules). Packages are JavaScript libraries that define
functions that can be included in applications.

• Test your installation by opening a Terminal (Mac) or Command Prompt
(Windows) window, and enter these commands that will return the
installed version of Node.js and NPM.

 node -v
 npm -v NOTE: if you do not see the version numbers

displayed, then Node.js did not install properly.

https://www.w3schools.com/nodejs/nodejs_npm.asp

Slide 6

Notes on using Mac Terminal or
Windows Command Prompt window

• You need to be familiar with using the Mac Terminal or Windows
Command Prompt window when starting a Node.js server.

• The most useful commands are

 cd – this allows you to change directories so that you can navigate
around your file folders (same on Mac and Win)

 dir (Win) or ls (Mac) – will display the files in the current directory

 Ctrl-C – to stop the Node.js server. This is important if you make
changes to the startup script, e.g., demo_fileserver.js,because
you will need to restart the server for the changes to take effect.

Some useful references

• Mac Terminal for Beginners

• How to use the Windows command line

https://medium.com/@grace.m.nolan/terminal-for-beginners-e492ba10902a
https://www.computerhope.com/issues/chusedos.htm

Slide 7

Create a simple Node server
Follow the steps in w3schools: Node.js Get Started to create a
simple Node server that displays “Hello World” in the browser.

• Create a folder (or directory) , e.g., NodeProjects

• In this folder, create the file, myfirst.js with these statements:

Source: w3schools: Node.js Get Started

var http = require('http');

http.createServer(function (req, res) {

 res.writeHead(200, {'Content-Type': 'text/html'});

 res.write('Hello World!');

 res.end();

}).listen(8080);

https://www.w3schools.com/nodejs/nodejs_get_started.asp
https://www.w3schools.com/nodejs/nodejs_get_started.asp

Slide 8

Create a simple Node server

At the prompt, start the server by entering: node myfirst.js

In your browser, enter: localhost:8080

Source: w3schools: Node.js Get Started

 var http = require('http');

 http.createServer(function (req, res) {

 res.writeHead(200, {'Content-Type': 'text/html'});

 res.write('Hello World!');

 res.end();

 }).listen(8080); myfirst.js

You should see this displayed in the browser window

http://localhost:8080/
https://www.w3schools.com/nodejs/nodejs_get_started.asp

Slide 9

Node.js HTTP Module

• In the myfirst.js program, the following statement includes the
HTTP module so that it can be used to create an HTTP server:

 var http = require('http');

• This module creates the HTTP server, and handles requests and
responses between the server and client.

• Modules are similar to JavaScript libraries – they are collections of
functions that are frequently used in applications. By packaging these
functions as modules, developers can use them without having to
write the code themselves.

• The HTTP module is a “built-in” module that is installed with Node.js.

Sources: w3schools: Node.js Modules, w3schools: Node.js HTTP Module

https://www.w3schools.com/nodejs/nodejs_modules.asp
https://www.w3schools.com/nodejs/nodejs_http.asp

Slide 10

Node.js HTTP Module

What this JavaScript program does:

• Creates a server that listens on port number 8080

• The server accepts a request (req), e.g., when you enter
localhost:8080 in the browser

• Sets the response (res) header with a 200 status code and the type
of content for this response (html)

• Writes 'Hello World!' to the response, and ends the response

Sources: w3schools: Node.js Modules, w3schools Node.js HTTP Module

var http = require('http');

http.createServer(function (req, res) {

 res.writeHead(200, {'Content-Type': 'text/html'});

 res.write('Hello World!');

 res.end();

}).listen(8080);

https://www.w3schools.com/nodejs/nodejs_modules.asp
https://www.w3schools.com/nodejs/nodejs_http.asp

Slide 11

Node.js HTTP Module
If you open the Developer Tools (either Chrome or Firefox),
you will see the request and response information

Request info

Response info

Slide 12

Node.js URL and File System Modules

The URL module provides functions that allow the parsing of
a web address.
• For example, you can extract the domain address, pathname,

or query parameters from the web address. This can be useful
if an application needs to read a specific file, or to use the
query parameters to search for specific data.

The File System module provides functions that allow you to
work with files on your computer.
• For example, to read, modify, or delete files. When a Node

server responds to a request for an HTML file, it is basically
reading the file contents, and returning this data in the HTTP
response.

Source: w3schools: Node.js URL Module

https://www.w3schools.com/nodejs/nodejs_url.asp

Slide 13

Practice: URL and File System Modules
Work through the examples found in the w3schools Node.js
Tutorial for Node.js URL Module.

Example 1: demo_url.js

• This example illustrates how to parse a web address and display the
component parts. You will need to copy and paste this example into a
file, e.g., demo_url.js, run it, and then ensure you see the same
results as shown in

• Try changing the contents of the web address (var adr) to see how
the output changes.

Example 2: demo_fileserver.js

• This example reads an HTML file and renders it in the browser. If the
file is not found, a 404 error message is displayed. In the tutorial, they
suggest using 2 files, summer.html and winter.html, but you can also
copy theme-change.html to your folder to test the code.

Source: w3schools: Node.js URL Module

https://www.w3schools.com/nodejs/nodejs_url.asp
https://www.w3schools.com/nodejs/nodejs_url.asp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

