
Slide 1

JavaScript 
and Open Data

Joan Boone 

jpboone@email.unc.edu 

INLS 672
Web Development 2 

mailto:jpboone@email.unc.edu


Slide 2

Part 1: Open Data and JSON

Part 2: Example using Open Data



Slide 3

Open Data
Open data is free, publicly available data that anyone can access 
and use without restrictions. Actual use of open data is greatly 
improved when it is represented in a standard format.

W3C Recommendation: Data on the Web Best Practices
• As data becomes more ubiquitous, and data sets become larger and 

more complex, processing by computers becomes more crucial.

• Data becomes useful when it has been processed and transformed 
into information.

• Best Practice for Data Formats: Make data available in a machine-
readable, standardized format that is easily parseable including, but 
not limited to, CSV, XML, HDF5, JSON and RDF

Why important?

Because Open Data is publicly accessible (and free), anyone can use it 
for a variety of purposes, such as forecasting trends, understanding 
purchasing patterns, and discovering new opportunities for innovation.

https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/dwbp/#dataFormats


Slide 4

Open Data Use Cases
The Open Data Impact Map is a public database of organizations that 
use open government data for advocacy, to develop products and 
services, improve operations, inform strategy and conduct research.

https://opendataimpactmap.org/


Slide 5

A few sources of Open Data
• Data.gov

• HealthData.gov

• Hawaii Open Data

• NYC Open data

• Chapel Hill Open Data

• Socrata Open Data

• Kaggle Datasets

• RSS Feeds (XML): NASA, Apple, Wired

• Open Food Facts

• Reddit: Jeopardy! dataset of 200,000+ questions

• Learning Hub: 50 Best Open Data Sources

https://www.data.gov/
https://www.healthdata.gov/
https://opendata.hawaii.gov/
https://opendata.cityofnewyork.us/data/
https://opendata-townofchapelhill.hub.arcgis.com/
https://dev.socrata.com/
https://www.kaggle.com/datasets
https://www.nasa.gov/content/nasa-rss-feeds
https://www.apple.com/rss/
https://www.wired.com/about/rss_feeds/
https://world.openfoodfacts.org/
https://www.reddit.com/r/datasets/comments/1uyd0t/200000_jeopardy_questions_in_a_json_file/
https://learn.g2.com/open-data-sources


Slide 6

Open Data Formats
What does open data look like?  
• JSON, XML, RDF, CSV, …

• Data.gov has 50+ formats 

Both JSON and XML are widely used because they are
• Lightweight, and easy for humans to read and write

• Easy for applications to parse and generate 

• Language-independent, and most programming languages 
provide built-in parsers to handle these formats

Some benefits of JSON over XML
• Less verbose, simpler syntax

• Maps more directly to the data structures of programming 
languages, e.g., JavaScript and Python 

https://catalog.data.gov/dataset


Slide 7

Quick view: XML and JSON 
to represent employee names

<employees>

    <employee>

        <firstName>John</firstName> <lastName>Doe</lastName>

    </employee>

    <employee>

        <firstName>Anna</firstName> <lastName>Smith</lastName>

    </employee>

    <employee>

        <firstName>Peter</firstName> <lastName>Jones</lastName>

    </employee>

</employees>

{"employees":[

    {"firstName":"John", "lastName":"Doe"},

    {"firstName":"Anna", "lastName":"Smith"},

    {"firstName":"Peter", "lastName":"Jones"}

]}

JSON 

XML 



Slide 8

JSON Data Format

JSON is built on two structures
 A collection of name/value pairs (objects, delimited by {…} ) 

 An ordered list of values (similar to an array, delimited by […] ) 

Syntax is important!
 JSON requires double quotes to delimit strings and property names. 

Single quotes are not valid.

 Validation is important – even a single misplaced comma or colon 
may make the JSON text impossible to parse

JSONLint is a useful tool for validating and formatting JSON

{"employees":[
    {"firstName":"John", "lastName":"Doe"},

    {"firstName":"Anna", "lastName":"Smith"},

    {"firstName":"Peter", "lastName":"Jones"}

   ]
}

https://jsonlint.com/


Slide 9

'AJAX' programming model

HTTP Request

HTTP Response

JSON  
or 

XML

JavaScript 
converts 
JSON/XML to 
HTML content

The AJAX model allows web apps to make quick, incremental updates 
to the user interface without reloading the entire web page. This 
makes the application faster and more responsive to user actions.

(Fetch API)

MDN: Ajax: Getting Started

Asynchronous JavaScript and XML 
are the underlying technologies for 
this model, although JSON is now 
more widely used.  

https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX


Slide 10

Lighthouse Example 

HTTP Request

Fetch API

[{
  "name": "Cape Hatteras Lighthouse"         
  "location": "Buxton, NC",
  "image": "...hatteras.jpg",
  "description": "The Cape Hatteras ..."
 },

 {
  "name": "Ocracoke Lighthouse",
  "location": "Ocracoke Island, NC",
  "image": "...ocracoke.jpg",
  "description": "Ocracoke Light is ..."
 }
]   

HTTP  Response

lighthouses.js lighthouses.json

async function getLighthouses() {
    let url = 'https://.../lighthouses.json';
    try {
        let response = await fetch(url);
        return await response.json();
    } catch (error) {
        console.log(error);  }
}

async function renderLighthouses() {
    let lighthouses = await getLighthouses();
    let html = '';
    . . .
    let container = document.querySelector('.container');
    container.innerHTML = html; }

renderLighthouses();

lighthouses.html

https://ils.unc.edu/courses/2021_spring/inls672_001/Examples/JavaScript/Fetch-API/Lighthouses/lighthouse.html


Slide 11

Part 1: Open Data and JSON

Part 2: Example using Open Data



Slide 12

Cary Parks Example: creating a web 
app from open JSON data 

cary-parks.html
JSON data

https://ils.unc.edu/courses/2021_spring/inls672_001/Examples/JavaScript/Fetch-API/Cary-Parks/cary-parks.html


Slide 13

Cary Parks data source: Data.gov
• Data.gov → Data 

• Filters: Formats → JSON,  Organization → Town of Cary, NC 

• Select: Cary Parks and Recreation Areas, and the 2nd JSON file

This is the URL to use with Fetch API

https://www.data.gov/
https://catalog.data.gov/dataset/cary-parks-and-recreation-areas/resource/f88c7293-fdd0-45c5-b342-3ac67078c9c8


Slide 14

Know your data! 
How to view the JSON data 

Here's the URL for Cary Parks and Recreation Areas:
 https://data.townofcary.org/api/v2/catalog/datasets/cary-parks-and-recreation-areas/exports/json

You can view the contents several ways..
• With Chrome, the default behavior is to download, and then view 

the contents with a text editor

• With Firefox (recommended), view the data in the browser 
 As raw data, either un-formatted or 'pretty print' for readable text

 In a JSON format where you can expand/collapse objects

• With various JSON validating and formatting tools such as

 JSONLint

 JSON Formatter and Validator

 JSON formatter

https://data.townofcary.org/api/v2/catalog/datasets/cary-parks-and-recreation-areas/exports/json
https://jsonlint.com/
https://jsonformatter.curiousconcept.com/
https://jsonformatter.org/


Slide 15

Cary Parks: User Interface
This example renders the JSON data as a web page, but it also 
allows the user to interact with the content.

Select a Park Feature 
from dropdown list 

Click Find Parks 
button to view a list of 
parks with the feature

Click a park name 
from the list to view 
details

Click park name in 
the details area to 
view its website

cary-parks.html,  cary-parks.js,  cary-parks.css



Slide 16

Cary Parks: 
Initial HTML Structure

Park features found in the 
JSON data is inserted as a 
list of <option> elements 
for the <select> element

cary-parks.html

Detail information about the 
park (address, hours, and 
map) are inserted in the 
<section> element

Park names found in the 
JSON data is inserted as a 
list of <li> elements for 
the <section> element

“parklist”

“feature”

“d
et
ai
ls
”



Slide 17

 

JSON data 
for 1st park

[{
  "parkarea": 9.81,
  "name": "Annie L. Jones Park",
  "operhours": "Sunrise to Sunset",
  "operdays": "Sun-Sat",
  "value": "Yes",
  "geo_point_2d": {

"lat": 35.7604589057,
"lon": -78.8134952866

  },
  "parkurl": "http://www.townofcary.org/recreation-enjoyment/parks-   
                      greenways-environment/parks/annie-jones-park",
  "geo_shape": {

"geometry": {
   "type": "Point",
   "coordinates": [-78.81349528661539, 35.7604589056837]
},
"type": "Feature",
"properties": {}

  },
  "feature": "Picnicing Available",
  "fulladdr": "1414 Tarbert Street Cary NC 27511"
},
 
. . .

]

http://www.townofcary.org/recreation-enjoyment/parks-


Slide 18

Step 1: Browser loads cary-parks.html 

• Browser renders the initial HTML 
structure, and the runs

• Runs cary-parks.js which 
calls loadData() to 

 Fetch the JSON data located at 
the URL

 Create a JSON object from the 
data that defines the list of parks 
and their related information

 Loop through the list of parks to 
get a list of all the features

 Populate the <option> 
elements in the dropdown from 
the feature list



Slide 19

When the 'Find Parks' button is clicked, 
the getParks() function is called to

• Loop through the list of parks in the JSON 
object. If the feature attribute of the park 
matches the one selected by the user, 
then it is added to the page using an 
HTML template string for a <li> element

• Add a click event listener (implemented 
with onclick) to each park <li> 
element so when the park name is 
clicked, the showDetails()function is 
called

• Pass the following park attributes as 
parameters to showDetails(): name, 
url, address, hours/days of operation, 
latitude, and longitude

Step 2: User selects a feature and 
clicks 'Find Parks' button



Slide 20

When the park name is clicked, the 
showDetails() function is called to

• To add the name (with linked url), 
address, and hours/days of operation 
to an HTML template string with <h4> 
and <p> elements

• To call the showMap()function with 
the latitude and longitude parameter 
to display a map using the Leaflet API.

Step 3: User clicks on park name to 
view details

https://leafletjs.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

