
Slide 1

JavaScript Debugging

Joan Boone

jpboone@email.unc.edu

INLS 672
Web Development 2

mailto:jpboone@email.unc.edu

Slide 2

Simplest approach: use the Console
• Add console.log() statements to your code to display the values of important

variables; similar to print() statements in Python

• View the console.log()output by Inspecting the page and viewing the Console

• If you load your page and the browser window is empty, you most likely have a
JavaScript error. Check the Console tab – this is where error messages are
logged, and typically include a line number in your code where the problem was
detected.

Sample output when a syntax error occurs:

Using JavaScript console.log()

Note that the dropdown list is empty – this indicates
that the JavaScript did not run successfully

Error message and line number

Slide 3

Best approach for runtime and logic problems
• Both Chrome and Firefox browsers have built-in debugging tools that allow you to

step through JavaScript code and examine its state to help track down problems.

 Chrome: Debugging in Chrome

 Firefox: JavaScript Debugger

• In general, for both browsers, the workflow is
 Inspect the page, and select the tab that displays the Source code. This is 'Sources' in

Chrome, and 'Debugger' in Firefox (as of this writing)

 Select your JavaScript file to view the contents

 You can set breakpoints in your code where you would like it to pause, so you can
examine the current state of execution and variables. You set the breakpoint by clicking
the line number in the code where you want it to pause, and the line number changes
color to highlight its status; click it again to remove it.

 Run your code again and it will pause at the breakpoint so you can examine your
variables.

 You can then resume your code, single step by executing one line at a time.

 It is recommended that you read the browser documentation as they have very good,
and detailed, descriptions of how to use the debuggers.

Using JavaScript Debugger Tools

https://javascript.info/debugging-chrome
https://developer.mozilla.org/en-US/docs/Tools/Debugger

Slide 4

Using Chrome Debugger

App files

Resume execution Single step execution

Breakpoint

Examine current
values of variables

Slide 5

• A CORS policy allows servers to define whether origins (domains, schemes, ports) other
than their own can request resources. A very simple example is a server in domain A can
prohibit a client in domain B from requesting resources.

• For security reasons, browsers restrict cross-origin HTTP requests initiated from scripts.

• For open data sources, such as those on Data.gov, cross-origin requests are usually
allowed, so you will not encounter errors; however, in the example below, the JavaScript
attempted to fetch the JSON contents at an Apple music site and was blocked by the
server's CORS policy.

• If you encounter this kind of error, there is little you can do to work around it.

Cross-Origin Resource Sharing
(CORS) Errors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

