
Slide 1

JavaScript
Application Programming

Interfaces (APIs)

Joan Boone

jpboone@email.unc.edu

INLS 672
Web Development 2

mailto:jpboone@email.unc.edu

 Slide 2

Part 1: API Overview

Part 2: Fetch API Example

 Slide 3

What are APIs ?

• Provide building blocks of code that simplify the
interface to complex functions by abstracting away the
underlying details

• Provide common, frequently needed functions that allow
developers to reuse existing code

MDN Web Docs: Introduction to Web APIs

JavaScript (client-side) has many APIs that fall into 2 categories

• Browser APIs that are built into your browser, e.g., DOM API

• Third party APIs – not built into your browser, and you need to access the
code and documentation from the vendor's website.

Application Programming Interfaces are collections of code and tools that
are available in all programming languages, and that allow developers to
create complex functionality more easily.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction

 Slide 4

What can APIs do?
Just about anything you need them to do: MDN Web APIs

Most common categories of browser APIs include
 DOM APIs for manipulating HTML and CSS, handling events

 Fetching data from the server using Fetch API (or XMLHttpRequest),
and returning data in a standard format such as JSON or XML

 Drawing and manipulating graphics (Canvas, WebGL)

 Video and Audio APIs for customizing user controls

 Device APIs to access features such as GPS, camera, orientation,
vibration

 Client-side storage APIs that enable offline app use, and saving state
of apps between page loads.

Many third-party APIs: Twitter, Facebook, YouTube, Google, ...

MDN Web Docs: Introduction to Web APIs

https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction

Slide 5

 Using DOM APIs

// When an image is clicked, toggle theme

let lighthouse = document.querySelector('img');

let body = document.querySelector('body');

lighthouse.addEventListener('click', changeTheme);

function changeTheme() {

 // If the 'light' image is currently displayed, change theme to 'dark'

 if (lighthouse.src.match(".../HLH-Daytime.jpg")) {

 lighthouse.src = ".../HLH-Nighttime.jpg";

 document.documentElement.style.setProperty('--bg-color', 'darkslateblue');

 document.documentElement.style.setProperty('--text-color', 'white'); }

 else { // Change 'dark' to 'light' theme

 lighthouse.src = “.../HLH-Daytime.jpg";

 document.documentElement.style.setProperty('--bg-color', 'white');

 document.documentElement.style.setProperty('--text-color', '#5dadec'); }

}

theme-change.html

The theme-changer example uses the DOM API in several ways:

• Adds an event listener to the lighthouse image element

• Changes HTML content by toggling the lighthouse image

• Changes CSS styles by toggling the color properties of the
custom variables between light and dark

https://ils.unc.edu/courses/2021_spring/inls672_001/Examples/JavaScript/Basics/theme-change.html
https://ils.unc.edu/courses/2021_spring/inls672_001/Examples/JavaScript/Basics/theme-change.html

Slide 6

Using Video API to
Customize User

Interface Controls

var myVideo = document.querySelector("#video1");

var playPauseButton = document.querySelector("#playpause");
playPauseButton.addEventListener('click', playPause);

var stopButton = document.querySelector("#stop");
stopButton.addEventListener('click', stop);

function playPause() {
 if (myVideo.paused) {
 myVideo.play();
 playPauseButton.className = "far fa-pause-circle fa-2x"; }
 else {
 myVideo.pause();
 playPauseButton.className = "far fa-play-circle fa-2x"; }
}
function stop() {
 myVideo.pause();
 myVideo.currentTime = 0;
 playPauseButton.className = "far fa-play-circle fa-2x";
}

JavaScript

https://ils.unc.edu/courses/2020_fall/inls572_001/Examples/JavaScript/APIs-Libraries/Video-Audio/video-big-buck-bunny-custom-ui.html

Slide 7

Using Audio API to
Customize User

Interface Controls

 var myAudio = document.querySelector("#audio1");
 . . .
 var muteButton = document.querySelector("#mute");
 muteButton.addEventListener('click', muteOnOff);
 var volumeUpButton = document.querySelector("#volume-up");
 volumeUpButton.addEventListener('click', volumeUp);
 var volumeDownButton = document.querySelector("#volume-down");
 volumeDownButton.addEventListener('click', volumeDown);
 . . .
 function muteOnOff() {
 if (myAudio.muted) {
 myAudio.muted=false;
 muteButton.className = "fas fa-volume-up fa-2x"; }
 else {
 myAudio.muted=true;
 muteButton.className = "fas fa-volume-off fa-2x"; } }

 function volumeUp() {
 if (myAudio.volume < 1.0)
 myAudio.volume = myAudio.volume + 0.1; }

 function volumeDown() {
 if (myAudio.volume > 0.0)
 myAudio.volume = myAudio.volume - 0.1; }

audio-star-wars-theme-custom-ui.html

https://ils.unc.edu/courses/2020_fall/inls572_001/Examples/JavaScript/APIs-Libraries/Video-Audio/audio-star-wars-theme-custom-ui.html

 Slide 8

Fetch API
What is it?

A JavaScript interface that fetches data from a server and returns it to the browser
in a standard format such as JSON or XML.

Why use it?
• Allows websites and applications to retrieve individual data items to update sections of a

webpage without having to re-load an entire page. This technique greatly improves
performance and website behavior.

• Requests are asynchronous and also improve performance by allowing the browser to
keep working while waiting for a response. Synchronous requests stop the execution of
any code until a response is received.

• Practical application: there is much open data available for applications to extract
information and insights. The Fetch API simplifies access to this data so that it can be
programmatically analyzed, and made more understandable with web interfaces. Some
examples include:

 Re-purpose with HTML+CSS to present data in a usable and actionable way.

 Use 3rd party APIs and libraries to visualize data

MDN Web Docs: Fetch API , Fetching data from the server

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Fetching_data

 Slide 9

Fetching data...a few comments
And some sources of confusion :)
A basic problem solved by Fetch API is that when you make a network request, it may take
awhile for the results to be returned, so your code must 'pause' until the results are
successfully returned before proceeding.

• The Fetch API is the most recent approach for retrieving data from a server
asynchronously. It is a simpler interface than XMLHttpRequest (XHR), but XHR is still
widely used, so you will see many examples that use it (and you can use it if it makes
more sense to you).

• There are multiple ways to use the Fetch API

 Frequently examples and tutorials will use the 'promises' approach which is a
JavaScript feature for performing asynchronous operations. The fetch() returns a
promise, which resolves to the response sent back from the server — then you use a
then()function to run some follow-up code after the promise resolves. Multiple
then() functions can be chained to handle various conditions. As you might guess,
this begins to get verbose and complicated.

 The async/await approach (to me) is simpler and easier to understand, and it is
the one I use in the examples. You can use the promises approach, but if you are
new to fetching data, I would recommend async/await.

MDN Web Docs: Making asynchronous programming easier with async and await

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Async_await

 Slide 10

Part 1: API Overview

Part 2: Fetch API Example

 Slide 11

Using Fetch API
to re-purpose

JSON as
HTML+CSS

lighthouse.html, lighthouses.js, style.css

[{
 "name": "Cape Hatteras Lighthouse",
 "location": "Buxton, NC",
 "image": "https://assets.codepen.io/108450/hatteras.jpg",
 "description": "The Cape Hatteras Lighthouse is located on Hatteras Island"
 },
 {
 "name": "Ocracoke Lighthouse",
 "location": "Ocracoke Island, NC",
 "image": "https://assets.codepen.io/108450/ocracoke.jpg",
 "description": "Ocracoke Light is the oldest operating light station in ..."
 }
]

lighthouses.json

2 steps:
 1) Fetch the data
 2) Render the page

https://ils.unc.edu/courses/2021_spring/inls672_001/Examples/JavaScript/Fetch-API/Lighthouses/lighthouse.html

 Slide 12

Using Fetch API
to re-purpose

JSON as
HTML+CSS

lighthouse.html

<!DOCTYPE html>
<html lang="en">
<head>
 ...
 <title>Lighthouses Fetch API Demo</title>
 <link rel="stylesheet" href="style.css">
</head>

<body>
 <div class="container">

 </div>
 <script src="lighthouses.js"></script>
</body>

</html>

When the browser loads the page,
it creates the DOM, and then
instructs the JavaScript interpreter
to run the script.

https://ils.unc.edu/courses/2021_spring/inls672_001/Examples/JavaScript/Fetch-API/Lighthouses/lighthouse.html

 Slide 13

async function getLighthouses() {
 let url = 'https://assets.codepen.io/108450/lighthouses.json';
 try {
 let response = await fetch(url);
 return await response.json();
 } catch (error) {
 console.log(error);
 }
}

// After getting the lighthouse data (a JSON object containing a list with 2 items).
async function renderLighthouses() {
 let lighthouses = await getLighthouses();
 let html = '';

 . . .

 let container = document.querySelector('.container');
 container.innerHTML = html;
}

renderLighthouses();

Using Fetch API to
re-purpose JSON
as HTML+CSS

lighthouses.js

https://ils.unc.edu/courses/2021_spring/inls672_001/Examples/JavaScript/Fetch-API/Lighthouses/lighthouse.html

 Slide 14

Step 1: Fetch the data
• Define an async function to get the lighthouse data. async functions know that

there is a possibility that its code will need to wait for a response to be returned
by the server – it won't happen immediately!

• The await keyword causes the JavaScript runtime to pause your code on this
line, not allowing further code to execute in the meantime until the function call
has returned its result — very useful if subsequent code relies on that result!

• try/catch clause because things can go wrong :(

MDN Web Docs: Making asynchronous programming easier with async and await

async function getLighthouses() {

 let url = 'https://assets.codepen.io/108450/lighthouses.json';

 try {

 let response = await fetch(url); // fetch the data

 return await response.json(); // return as JSON

 } catch (error) {

 console.log(error);

 }

}

Once the response is available,
create a json object from it, and
return to the calling function

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Async_await

 Slide 15

Step 2: Render the page
• Gets the lighthouse information that has been

converted to a JSON object – a list with 2 items

• Loop through the list, extract the data, and insert
into HTML template string.

async function renderLighthouses() {

 let lighthouses = await getLighthouses();

 let html = '';

 lighthouses.forEach(light => {

 let htmlSegment = `<div class="lighthouse">

 <h2>${light.name}</h2>

 <h3>${light.location}</h3>

 <div>${light.description}</div>

 </div>`;

 html += htmlSegment;

 });

 let container = document.querySelector('.container');

 container.innerHTML = html;

}

[{
 "name": "Cape Hatteras Lighthouse"
 "location": "Buxton, NC",
 "image": "...hatteras.jpg",
 "description": "The Cape Hatteras ..."
 },

 {
 "name": "Ocracoke Lighthouse",
 "location": "Ocracoke Island, NC",
 "image": "...ocracoke.jpg",
 "description": "Ocracoke Light is ..."
 }
]

lighthouses.json

Loop through the list and for
each item:

• Assign the current list item
to the light variable

• Extract the data from the
light object and
substitute into the HTML
template.

JavaScript template strings are
delimited by the backtick (``).
They contain placeholder
variables that are replaced with
values from the light object

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

 Slide 16

Practice: Add a website link

• lighthouses.json at the CodePen URL also contains a
website for each lighthouse.

• Add this value, {$light.website} to the HTML template so
that the lighthouse name links to the website as illustrated in
the screenshot.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

