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Clustering

objective

Grouping documents or instances into subsets or clusters
Documents in the same cluster should be similar
Documents in different clusters should be dissimilar

A common form of unsupervised learning

Unsupervised = no human-produced labels

The goal is to discover structure from the data



Clustering vs. Classification

e (lassification:

» the input to the system is a set of labeled data

» the algorithm learns a model for predicting the label
on new examples

e (lustering:

» the input to the system is a set of unlabeled data

» the algorithm infers the labels from the data and
assigns a label to each input instance



Clustering

applications

e Search engine results clustering: grouping search engine
results by topic

» the user can identity the relevant clusters and ignore
the non-relevant ones

e Collection clustering: grouping documents by topic to
support navigation and exploration

e Data analytics: grouping instances to identify popular
trends (big clusters) and outliers (small clusters)



Clustering Applications

search engine results clustering
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Clustering Applications

collection clustering

GO»‘JS]@

News

Top Stories

Mitt Romney
Chromebook
Washington Redskins
Earthquake

Fidel Castro
Cleveland Browns
George McGovern
Toronto Blue Jays
Brad Pitt

Jay-Z

North Carolina
World

U.s.

Business
Elections
Technology
Entertainment
Sports
Science
Health

Spotlight

N “

U.5. edition - Modern -

Top Stories

;! B

»

Police chief: Wisconsin spa shooting suspect died of
self-inflicted wound

Chicago Tribune - 23 minutes ago

A man police suspected of killing three and wounding four by opening fire at a tranguil day spa was found
dead Sunday afternoon following a six-hour manhunt that locked down a shopping center, country club and
hospital in suburban Milwaukee.

Suspect in Wisconsin spa shooting found dead
Three Killed in Shooting at Spa in Wisconsin Mew York Times

Fox News

Related
Brown Deer, Wisconsin »

The Guardian

Highly Cited: 3 killed, 4 injured in rampage at Azana Spa in Brookfield Milwaukee Journal Sentinel
In Depth: Three killed in shooting at Milwaukee-area salon; suspect found dead at scene WECHews.com
Wikipedia: 2012 Azana Spa shootings

& ABC Mews

-
NEWY 4 hours ago

- Google+

Breaking: The area is on lockdown as authorities in Brookfield work to secure the scene, which is across the
street from a shopping mall in Wisconsin.

At Least 7 Injured in Spa Shooting
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The Associated P... The Associated P... YouTube CBS Mews Chr 5la 5.

Romney, Obama in Dead Heat
Wall Street Journal - 22 minutes ago
By NEIL KING JR. Mitt Romney has strengthened his image as the candidate best able to boost the economy and has

fought President Barack Obama to a near-draw on who can best serve as commander in chief, helping turn the 2012
election into a tie ...
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Clustering

objective

e Grouping documents or instances into subsets or clusters
e Documents within a the same cluster should be similar

e Documents from different clusters should be dissimilar



Clustering

basics

e What does it mean for documents to be “similar” or
“dissimilar”?



Clustering

basics
What does it mean for documents to be similar or
dissimilar?
We need a computational way of modeling similarity

One solution: model similarity using distance in a vector
space representation of the collection or dataset

e small distance = high similarity

* |ong distance = low similarity



Vector Space Representation

review

e A vector space is defined by a set of linearly independent
basis vectors

e The basis vectors correspond to the dimensions or
directions of the vector space

Y Y
A A
basis vectors for 2- basis vectors for 3-
dimensional space dimensional space
> X > X




Vector Space Representation
review

e A vectoris a point in a vector space




Vector Space Representation

review
A 2-dimensional vector can be written as [X,y]

* A 3-dimensional vector can be written as [X,V,Z]

> =<
<
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Vector Space Representation
review

0 1 0 1 0 0 1 1
1 0 1 1 0 1 1 0
1 0 1 1 0 1 0 0
0 1 0 1 1 0 1 1
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Vector Space Representation
review

1 0 1 0 1 0 0 1 1 0
0 1 0 1 1 0 1 1 0 0
0 1 0 1 1 0 1 0 0 0
0 0 1 0 1 1 0 1 1 1
1 1 0 1 1 0 0 1 0 1

* We can represent this document as a vector in a 10-
dimensional vector space

|4



Vector Space Representation
review

1 0 1 0 1 0 0 1 1
0 1 0 1 1 0 1 1 0
0 1 0 1 1 0 1 0 0
0 0 1 0 1 1 0 1 1
1 1 0 1 1 0 0 1 0

e This representation assumes binary term-weights.

* Are there other term-weighting schemes?
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Vector Space Representation
review

e Similarity = Euclidean Distance:

4
D(x,y) = \ (Z(xi —yi)z>

1=1
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Vector Space Representation

review

Y V|
D(x,y) = \ <Z(xi —yi)2>

=1

(50.60’ 6 I .90) 2 N :

o (101.80,43.33)

(96.72, 30.95)
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Clustering

* What would we expect a clustering algorithm to do with
this dataset?

2.5

O O
O
N O 0800
O
O
00 ©
0 | O @) O O()(§>
- ©s O
& e
o | QO OO
O oo ® e
o & © O
o | O OOO
O 0
@,
3 OO0

0.0

0.0 0.5 1.0 1.5 2.0



Clustering

* What would we expect a clustering algorithm to do with
this dataset?
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Clustering

* Propose an algorithm that might be able to do this!
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Clustering

* Input: number of desired clusters K
e Output: assignment of documents to K clusters
e Algorithm:

» randomly select K documents (seeds)

» assign each remaining document to its nearest seed

24



e Could this work?
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K-Means Clustering
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K-means Clustering
cluster centroid

'he key to understanding K-means clustering is to
understand the concept of a cluster centroid

Given a cluster, you can think of its centroid as a point
(or vector) that corresponds to its “center of mass”
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K-means Clustering
cluster centroid

'he key to understanding K-means clustering is to
understand the concept of a cluster centroid

Given a cluster, you can think of its centroid as a point
(or vector) that corresponds to its “center of mass”
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K-means Clustering
cluster centroid

'he key to understanding K-means clustering is to
understand the concept of a cluster centroid

Given a cluster, you can think of its centroid as a point
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K-means Clustering
cluster centroid

'he key to understanding K-means clustering is to
understand the concept of a cluster centroid

Given a cluster, you can think of its centroid as a point
(or vector) that corresponds to its “center of mass”
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K-means Clustering
cluster centroid

'he key to understanding K-means clustering is to
understand the concept of a cluster centroid
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K-means Clustering
cluster centroid

'he key to understanding K-means clustering is to
understand the concept of a cluster centroid

Given a cluster, you can think of its centroid as a point
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K-means Clustering
cluster centroid

'he key to understanding K-means clustering is to
understand the concept of a cluster centroid

Given a cluster, you can think of its centroid as a point
(or vector) that corresponds to its “center of mass”



K-means Clustering
cluster centroid

'he key to understanding K-means clustering is to
understand the concept of a cluster centroid

Given a cluster, you can think of its centroid as a point
(or vector) that corresponds to its “center of mass”
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K-means Clustering
cluster centroid

docs 0 1 0 1 1 0 1 1 0 0

assigned | 1 0 1 1 0 1 o | o 0
to cluster

1 0 0 1 0 1 1 0 1 1 1
0 0 1 0 1 1 0 1 1 1
1 1 0 1 1 0 0 1 0 1

cluster 1
centroid ? ? ? ? ? ? ? 2 | » z
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docs
assigned
to cluster
1

cluster 1
centroid
(average!)

K-means Clustering
cluster centroid

1 0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 0 0
0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 1 1
0 0 1 0 1 0 1 1 1
1 1 0 1 0 0 1 0 1
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K-means Clustering
cluster centroid

For each dimension 1, set:

1
C; — T =7 Z di
‘C‘ deC
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K-means Clustering

* Input: number of desired clusters K

e QOutput: assignment of documents to K clusters

e Algorithm:

4

4

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:

randomly select K documents (seeds)

assign each document to its nearest seed
compute all K cluster centroids

re-assign each document to its nearest centroid
re-compute all K cluster centroids

repeat steps 4 and 5 until terminating condition
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K-means Clustering

o Step 1: randomly select K documents (seeds)
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K-means Clustering

o Step 2: assign each document to its nearest seed
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K-means Clustering

e Step 3: compute all K cluster centroids
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K-means Clustering

o Step 4: re-assign each document to its nearest centroid
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K-means Clustering

o Step 4: re-compute all K cluster centroids
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K-means Clustering

o Step 5: re-assign each document to its nearest centroid
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K-means Clustering

o Step 4: re-compute all K cluster centroids
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K-means Clustering

o Step 5: re-assign each document to its nearest centroid
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K-means Clustering

* Input: number of desired clusters K

e QOutput: assignment of documents to K clusters

e Algorithm:

4

4

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:

randomly select K documents (seeds)

assign each document to its nearest seed
compute all K cluster centroids

re-assign each document to its nearest centroid
re-compute all K cluster centroids

repeat steps 4 and 5 until terminating condition
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K-means Clustering
potential drawback

The quality of the output clustering depends on the
choice of K and on the initial seeds

In many cases, the choice of K is pre-determined by the
application

»  Search engine results clustering: grouping search
engine results by topic

»  Collection clustering: grouping documents by topic to
support navigation and exploration

Later we’ll see ways of setting K dynamically
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K-means Clustering

bad seeds?
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K-means Clustering

bad seeds?
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K-means Clustering

bad seeds?
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K-means Clustering

bad seeds?
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K-means Clustering
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K-means Clustering
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K-means Clustering
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K-means Clustering
bad seeds

 It's difficult to know which seeds will yield a high-quality
clustering

 However, it’s usually a good idea to avoid seeds that are
outliers

 How would you detect outliers?
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K-means Clustering
clustering evaluation

* What does it mean for a clustering to be high quality
anyway?

e What is the goal of clustering again?
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K-means Clustering
internal evaluation

 In theory, a good clustering should have:
»  Similar documents in the same clusters

» Different documents in different clusters
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Clustering —
Quality —

K-means Clustering

internal evaluation

Average
distance
between all pairs
of documents iIn
different clusters

Average distance
between all pairs
of documents In
the
same cluster
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K-means Clustering
improved k-means

e (iven a set of documents and a value K, run K-
means clustering N times and keep the clustering that
produces the greatest difference between the inter-
cluster distance and the intra-cluster distance
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Bottom-up Agglomerative Clustering
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Bottom-up Clustering

e While K-means requires setting K, bottom-up clustering
groups the data in a hierarchical fashion

e We can then set K after the clustering is done or use a

distance threshold to set K dynamically (more on this
later)
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Bottom-up Clustering
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Bottom-up Clustering

e Input: data

e QOutput: cluster hierarchy

e Algorithm:

4

4

4

Step 1: consider every document its own cluster
Step 2: compute the distance between all cluster pairs
Step 3: merge/combine the nearest two clusters into one

Step 4: repeat steps 2 and 3 until every document is in
one cluster
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Bottom-up Clustering

e Input: data

e QOutput: cluster hierarchy

e Algorithm:

4

4

Step 1: consider every document its own cluster

Step 2: compute the distance between all cluster pairs
Step 3: merge/combine the nearest two clusters into one

Step 4: repeat steps 2 and 3 until every document is in
one cluster
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Bottom-up Clustering

Computing the distance between two clusters

Single-Link: the distance between the two nearest
documents

Complete-Link: the distance between the two documents
that are farthest apart

Average-Link: the average distance between all
document pairs in the two different clusters

» this is equivalent to using the distance between the
two cluster centroids
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Bottom-up Clustering

single-link

e Step 1: consider each document its own cluster
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Bottom-up Clustering

single-link
o Step 2: compute the distance between all cluster pairs

e Step 3: merge/combine the nearest two clusters into one
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Bottom-up Clustering

single-link
o Step 2: compute the distance between all cluster pairs

e Step 3: merge/combine the nearest two clusters into one

&
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Bottom-up Clustering

single-link
o Step 2: compute the distance between all cluster pairs

e Step 3: merge/combine the nearest two clusters into one

o) :@
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Bottom-up Clustering

single-link
o Step 2: compute the distance between all cluster pairs

e Step 3: merge/combine the nearest two clusters into one
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Bottom-up Clustering

single-link
o Step 2: compute the distance between all cluster pairs

e Step 3: merge/combine the nearest two clusters into one
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Bottom-up Clustering

single-link
o Step 2: compute the distance between all cluster pairs

e Step 3: merge/combine the nearest two clusters into one
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Bottom-up Clustering

single-link
o Step 2: compute the distance between all cluster pairs

e Step 3: merge/combine the nearest two clusters into one
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Bottom-up Clustering

Setting K dynamically
Instead of setting K, we could set a distance threshold T

Stop merging/combining clusters when the distance
between the two nearest clusters > T

Using a distance threshold can help prevent “concept
drift” (especially with single-link clustering)

» text mining --> inls 613 --> unc --> basketball
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Labeling Clusters
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Clustering Applications

collection clustering
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Labeling Clusters

A simple solution

e Construct a vocabulary of terms and/or phrases (n-grams)
that are frequent in the data

* Assign each cluster the term(s) or phrase(s) with the
highest mutual information
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Mutual Information

MI(w, c) = log ( Pl()z(uszC()CQ

* P(w,c): the probability that a document
contains word w and belongs to cluster ¢

* P(w): the probability that word w occurs in a
document from any cluster

* P(c): the probability that a document belongs
to cluster ¢
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Mutual Information

MI(w, c) = log ( Pl()z(uzfl’c()CQ

It P(w.c) =P(w) P(c), it means that the word w is
independent of cluster ¢

It P(w.c) > P(w) P(c), it means that the word w is not

independent of of cluster ¢
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Mutual Information

* Every document falls under one of these quadrants

total # of instances N =

does not
belongs to a+b+c+d
belong to
cluster €
cluster € P(wc) = 2?2
contains P(c) = ???
word W d b

P(w) = 222

does not

- P(w,c)
contains C d MI — 1 /
word W (w,c) = log (P(w)P(c) )
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Mutual Information

* Every document falls under one of these quadrants

total # of instances N =
does not

belongs to a+b+c+d
belong to
cluster C
cluster C P(wc)=a/N
contains P(c)=(a+c)/N
word W a b

P(w)=(a+b)/N

does not

- P(w,c)
contains C d MI — 1 /
word W (w,c) = log (P(w)P(c) )
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Summary

Clustering: grouping similar documents (or instances)
into subsets

Exploratory analysis: the goal is to discover common and
uncommon properties of the data

K-means and Agglomerative Bottom-up Clustering (there
are many, many others)

Labeling clusters
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