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• Grouping documents or instances into subsets or clusters 

• Documents in the same cluster should be similar 

• Documents in different clusters should be dissimilar 

• A common form of unsupervised learning 

• Unsupervised = no human-produced labels 

• The goal is to discover structure from the data

Clustering 
objective
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• Classification:  

‣ the input to the system is a set of labeled data 

‣ the algorithm learns a model for predicting the label 
on new examples 

• Clustering: 

‣ the input to the system is a set of unlabeled data 

‣ the algorithm infers the labels from the data and 
assigns a label to each input instance

Clustering vs. Classification
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• Search engine results clustering: grouping search engine 
results by topic 

‣ the user can identify the relevant clusters and ignore 
the non-relevant ones  

• Collection clustering: grouping documents by topic to 
support navigation and exploration 

• Data analytics: grouping instances to identify popular 
trends (big clusters) and outliers (small clusters)

Clustering 
applications
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Clustering Applications 
search engine results clustering
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Clustering Applications 
collection clustering



7

• Grouping documents or instances into subsets or clusters 

• Documents within a the same cluster should be similar 

• Documents from different clusters should be dissimilar

Clustering 
objective
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• What does it mean for documents to be “similar” or 
“dissimilar”?

Clustering 
basics
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• What does it mean for documents to be similar or 
dissimilar? 

• We need a computational way of modeling similarity 

• One solution: model similarity using distance in a vector 
space representation of the collection or dataset 

• small distance = high similarity 

• long distance = low similarity

Clustering 
basics
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• A vector space is defined by a set of linearly independent 
basis vectors 

• The basis vectors correspond to the dimensions or 
directions of the vector space

basis vectors for 2-
dimensional space

basis vectors for 3-
dimensional space

X

Y

X

Y

Z

Vector Space Representation 
review
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• A vector is a point in a vector space

X

Y
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Y

Z

Vector Space Representation 
review
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• A 2-dimensional vector can be written as [x,y]

• A 3-dimensional vector can be written as [x,y,z]
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Vector Space Representation 
review
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w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_10

1 0 1 0 1 0 0 1 1 0

0 1 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0 0 0

0 0 1 0 1 1 0 1 1 1

.... .... .... .... .... .... .... .... .... ....

1 1 0 1 1 0 0 1 0 1

Vector Space Representation 
review
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w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_10

1 0 1 0 1 0 0 1 1 0

0 1 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0 0 0

0 0 1 0 1 1 0 1 1 1

.... .... .... .... .... .... .... .... .... ....

1 1 0 1 1 0 0 1 0 1

Vector Space Representation 
review

• We can represent this document as a vector in a 10-
dimensional vector space
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w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_10

1 0 1 0 1 0 0 1 1 0

0 1 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0 0 0

0 0 1 0 1 1 0 1 1 1

.... .... .... .... .... .... .... .... .... ....

1 1 0 1 1 0 0 1 0 1

Vector Space Representation 
review

• This representation assumes binary term-weights. 

• Are there other term-weighting schemes?
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TF, IDF, or TF.IDF?

! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! !

"#$%&
'() '#

*+

,-.

*-

,."*,-

/#"
() (*+

0(# 0*'(

,1#22#

$")).

1(*2,.)21(*,

'(,'

,-

3#4)" 3#4*-5

(,+

1)'

61

,1,"'7)-' ,+ ,'

3,23#, 3)$#7) 36' $(,71*#-

/*5('

(),8&0)*5(' *'

7,'$(

+)'

'*7)

3*5 3&

$(,-$) $6"")-' ),"-+ 5,99#

5# ()" 2,')"

7,%) 7),' 7*$%)& -,7). #/

+(#' +#7)#-) +'#") +'"6552*-5

'()& '(*+ '("#65( '",*-*-5 0()")

0#"%+

,.",*- ,22 ,2"),.& ,2+# ,+1*"*-5

3)'')" $,- $,"))"

.)3' .#)+- )8)"& )4(*3*'*#- )4'", /," 5)'+ 5*"2

(*7+)2/ */ %))1 2*/) 2*8*-5 2#,- 2#8)"+

7,- 7)- -#3#.& 1,62*)

+() +7,22 +#7)3#.& +'*22 +6112*)+ +6"1"*+).

'(*-% '*'2) '",*-)" 0,-' 0()-

0*22*-5 0#7,- 0#-



17

TF, IDF, or TF.IDF?
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TF, IDF, or TF.IDF?
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• Similarity = Euclidean Distance:

D(x, y) =

vuut
 |V|

Â
i=1

(xi � yi)2

!

Vector Space Representation 
review



20

(96.72, 30.95)

(50.60, 61.90)

(101.80, 43.33)

D(x, y) =

vuut
 |V|

Â
i=1

(xi � yi)2

!

Vector Space Representation 
review

X

Y

Y
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Clustering
Data set with clear cluster structure
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5

Propose
algorithm
for finding
the cluster
structure in
this
example

12 / 85

• What would we expect a clustering algorithm to do with 
this dataset?
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Clustering
Data set with clear cluster structure
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• What would we expect a clustering algorithm to do with 
this dataset?
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Clustering
Data set with clear cluster structure
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• Propose an algorithm that might be able to do this! 



24

Clustering

• Input: number of desired clusters K 

• Output: assignment of documents to K clusters 

• Algorithm: 

‣ randomly select K documents (seeds) 

‣ assign each remaining document to its nearest seed 
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Clustering
Data set with clear cluster structure
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• Could this work? 



26

K-Means Clustering
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• The key to understanding K-means clustering is to 
understand the concept of a cluster centroid 

• Given a cluster, you can think of its centroid as a point 
(or vector) that corresponds to its “center of mass”

K-means Clustering 
cluster centroid
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• The key to understanding K-means clustering is to 
understand the concept of a cluster centroid 

• Given a cluster, you can think of its centroid as a point 
(or vector) that corresponds to its “center of mass”

K-means Clustering 
cluster centroid
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• The key to understanding K-means clustering is to 
understand the concept of a cluster centroid 

• Given a cluster, you can think of its centroid as a point 
(or vector) that corresponds to its “center of mass”

K-means Clustering 
cluster centroid
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• The key to understanding K-means clustering is to 
understand the concept of a cluster centroid 

• Given a cluster, you can think of its centroid as a point 
(or vector) that corresponds to its “center of mass”

K-means Clustering 
cluster centroid
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• The key to understanding K-means clustering is to 
understand the concept of a cluster centroid 

• Given a cluster, you can think of its centroid as a point 
(or vector) that corresponds to its “center of mass”

K-means Clustering 
cluster centroid
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• The key to understanding K-means clustering is to 
understand the concept of a cluster centroid 

• Given a cluster, you can think of its centroid as a point 
(or vector) that corresponds to its “center of mass”

K-means Clustering 
cluster centroid
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• The key to understanding K-means clustering is to 
understand the concept of a cluster centroid 

• Given a cluster, you can think of its centroid as a point 
(or vector) that corresponds to its “center of mass”

K-means Clustering 
cluster centroid
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• The key to understanding K-means clustering is to 
understand the concept of a cluster centroid 

• Given a cluster, you can think of its centroid as a point 
(or vector) that corresponds to its “center of mass”

K-means Clustering 
cluster centroid
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K-means Clustering 
cluster centroid

w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_10

1 0 1 0 1 0 0 1 1 0

0 1 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0 0 0

0 0 1 0 1 1 0 1 1 1

0 0 1 0 1 1 0 1 1 1

1 1 0 1 1 0 0 1 0 1

w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_10

? ? ? ? ? ? ? ? ? ?

docs 
assigned 
to cluster 

1

cluster 1
centroid
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K-means Clustering 
cluster centroid

w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_10

0.33 0.5 0.5 0.5 1 0.33 0.33 0.83 0.5 0.5

w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_10

1 0 1 0 1 0 0 1 1 0

0 1 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0 0 0

0 0 1 0 1 1 0 1 1 1

0 0 1 0 1 1 0 1 1 1

1 1 0 1 1 0 0 1 0 1

docs 
assigned 
to cluster 

1

cluster 1
centroid

(average!)
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K-means Clustering 
cluster centroid

• For each dimension   , set:  i

ci =
1
|C| Â

d2C
di
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• Input: number of desired clusters K 

• Output: assignment of documents to K clusters 

• Algorithm: 

‣ Step 1: randomly select K documents (seeds) 

‣ Step 2: assign each document to its nearest seed 

‣ Step 3: compute all K cluster centroids 

‣ Step 4: re-assign each document to its nearest centroid 

‣ Step 5: re-compute all K cluster centroids 

‣ Step 6: repeat steps 4 and 5 until terminating condition

K-means Clustering
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• Step 1: randomly select K documents (seeds)

K-means Clustering
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• Step 2: assign each document to its nearest seed

K-means Clustering
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• Step 3: compute all K cluster centroids

K-means Clustering

x

x
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• Step 4: re-assign each document to its nearest centroid

K-means Clustering

x

x
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• Step 4: re-compute all K cluster centroids

K-means Clustering

x

x
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• Step 5: re-assign each document to its nearest centroid

K-means Clustering

x

x
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• Step 4: re-compute all K cluster centroids

K-means Clustering

x

x
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• Step 5: re-assign each document to its nearest centroid

K-means Clustering

x

x
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• Input: number of desired clusters K 

• Output: assignment of documents to K clusters 

• Algorithm: 

‣ Step 1: randomly select K documents (seeds) 

‣ Step 2: assign each document to its nearest seed 

‣ Step 3: compute all K cluster centroids 

‣ Step 4: re-assign each document to its nearest centroid 

‣ Step 5: re-compute all K cluster centroids 

‣ Step 6: repeat steps 4 and 5 until terminating condition

K-means Clustering
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K-means Clustering 
potential drawback

• The quality of the output clustering depends on the 
choice of K and on the initial seeds 

• In many cases, the choice of K is pre-determined by the 
application 

‣ Search engine results clustering: grouping search 
engine results by topic 

‣ Collection clustering: grouping documents by topic to 
support navigation and exploration 

• Later we’ll see ways of setting K dynamically
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K-means Clustering 
bad seeds?
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K-means Clustering 
bad seeds?
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K-means Clustering 
bad seeds?
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K-means Clustering 
bad seeds?

x

x



53

K-means Clustering 
bad seeds?

x

x
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K-means Clustering 
bad seeds?

x

x
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K-means Clustering 
bad seeds?

x

x
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K-means Clustering 
bad seeds

• It’s difficult to know which seeds will yield a high-quality 
clustering 

• However, it’s usually a good idea to avoid seeds that are 
outliers 

• How would you detect outliers?
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K-means Clustering 
clustering evaluation

• What does it mean for a clustering to be high quality 
anyway? 

• What is the goal of clustering again?
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K-means Clustering 
internal evaluation

• In theory, a good clustering should have: 

‣ Similar documents in the same clusters 

‣ Different documents in different clusters
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K-means Clustering 
internal evaluation

Clustering
Quality

Average distance 
between all pairs 
of documents in 

the
same cluster

Average 
distance 

between all pairs 
of documents in 
different clusters

= ( ) - ( )
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K-means Clustering 
improved k-means

• Given a set of documents and a value K,  run K-
means clustering N times and keep the clustering that 
produces the greatest difference between the inter-
cluster distance and the intra-cluster distance



61

Bottom-up Agglomerative Clustering
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Bottom-up Clustering

• While K-means requires setting K, bottom-up clustering 
groups the data in a hierarchical fashion 

• We can then set K after the clustering is done or use a 
distance threshold to set K dynamically (more on this 
later)
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Bottom-up Clustering
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• Input: data 

• Output: cluster hierarchy 

• Algorithm: 

‣ Step 1: consider every document its own cluster 

‣ Step 2: compute the distance between all cluster pairs 

‣ Step 3: merge/combine the nearest two clusters into one 

‣ Step 4: repeat steps 2 and 3 until every document is in 
one cluster

Bottom-up Clustering
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• Input: data 

• Output: cluster hierarchy 

• Algorithm: 

‣ Step 1: consider every document its own cluster 

‣ Step 2: compute the distance between all cluster pairs 

‣ Step 3: merge/combine the nearest two clusters into one 

‣ Step 4: repeat steps 2 and 3 until every document is in 
one cluster

Bottom-up Clustering
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Bottom-up Clustering

• Computing the distance between two clusters 

• Single-Link: the distance between the two nearest 
documents 

• Complete-Link: the distance between the two documents 
that are farthest apart 

• Average-Link: the average distance between all 
document pairs in the two different clusters 

‣ this is equivalent to using the distance between the 
two cluster centroids
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• Step 1: consider each document its own cluster

Bottom-up Clustering 
single-link
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• Step 2: compute the distance between all cluster pairs 

• Step 3: merge/combine the nearest two clusters into one

Bottom-up Clustering 
single-link
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• Step 2: compute the distance between all cluster pairs 

• Step 3: merge/combine the nearest two clusters into one

Bottom-up Clustering 
single-link
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• Step 2: compute the distance between all cluster pairs 

• Step 3: merge/combine the nearest two clusters into one
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• Step 2: compute the distance between all cluster pairs 

• Step 3: merge/combine the nearest two clusters into one

Bottom-up Clustering 
single-link
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Bottom-up Clustering

• Setting K dynamically 

• Instead of setting K, we could set a distance threshold T 

• Stop merging/combining clusters when the distance 
between the two nearest clusters > T 

• Using a distance threshold can help prevent “concept 
drift” (especially with single-link clustering) 

‣ text mining --> inls 613 --> unc --> basketball
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Labeling Clusters
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Clustering Applications 
collection clustering

How can we name clusters 
to inform someone about the 

kind of information they 
contain?
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• Construct a vocabulary of terms and/or phrases (n-grams) 
that are frequent in the data 

• Assign each cluster the term(s) or phrase(s) with the 
highest mutual information 

Labeling Clusters 
A simple solution
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Mutual Information

• P(w,c): the probability that a document 
contains word w and belongs to cluster c 

• P(w): the probability that word w occurs in a 
document from any cluster 

• P(c): the probability that a document belongs 
to cluster c

MI(w, c) = log
✓

P(w, c)
P(w)P(c)

◆
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Mutual Information

• If P(w,c) = P(w) P(c), it means that the word w is 
independent of cluster c 

• If P(w,c) > P(w) P(c), it means that the word w is not 
independent of of cluster c

MI(w, c) = log
✓

P(w, c)
P(w)P(c)

◆
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P(w,c) = ???

P(c) = ???

P(w) = ???

total # of instances N =
a + b + c + d

a b

c d

contains 
word w 

does not 
contains 
word w 

belongs to 
cluster c 

does not 
belong to 
cluster c 

MI(w, c) = log
✓

P(w, c)
P(w)P(c)

◆

• Every document falls under one of these quadrants

Mutual Information
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P(w,c) = a / N

P(c) = (a + c) / N

P(w) = (a + b) / N

total # of instances N =
a + b + c + d

a b

c d

contains 
word w 

does not 
contains 
word w 

belongs to 
cluster c 

does not 
belong to 
cluster c 

MI(w, c) = log
✓

P(w, c)
P(w)P(c)

◆

• Every document falls under one of these quadrants

Mutual Information
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Summary

• Clustering: grouping similar documents (or instances) 
into subsets 

• Exploratory analysis: the goal is to discover common and 
uncommon properties of the data 

• K-means and Agglomerative Bottom-up Clustering (there 
are many, many others) 

• Labeling clusters


