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Introduction

Systems (e.g., search systems) are always trying to
Improve

Basic question: If a specific change is introduced,
will it improve key metrics?

Metrics: measures that are believed to be correlated
with the quality of the user experience

Metrics are often things we want to minimize or
maximize

Examples?



A/B Testing

Experiments where different populations of users are
exposed to different versions of the system for a
period of time

Control group: group of users exposed to the
“normal” or “baseline” version of the system

Experimental group: group of users exposed to the
experimental version of the system

More often A/B/C/D/E... testing

Search companies can have about 15 different A/B
tests happening at once

515 =30,517,578,125



The Alternative

* Make the change and measure the same metrics.

* Why is this a bad idea?



The Alternative

e Make the change and measure the same metrics.
* Why is this a bad idea?
1. Temporal changes

2. Good features lead to incremental improvements

3. It’s difficult to assess the value of ideas



Temporal Changes

Amazon Kindle Sales

Oprah calls Kindle
"her new favorite
thing"

M Website A Website B
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Source: http://exp-platform.com/20 | 7abtestingtutorial/



Temporal Changes + Incremental
Improvements
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Source: http://exp-platform.com/20 | 7abtestingtutorial/



Predicting the value of new features

e 1/3 of ideas improve the intended metric(s)
e 1/3 of ideas have no effect

e 1/3 of ideas degrade the intended metric(s)

Source: http://exp-platform.com/20 | 7abtestingtutorial/



Predicting the value of new features
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Source: http://exp-platform.com/20 | 7abtestingtutorial/



(1) Predicting the value of new features

A B

e (Qverall Evaluation Criterion: no. of searches

e A>B A<B,orA=B?

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Predicting the value of new features

1> bing
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Source: http://exp-platform.com/20 | 7abtestingtutorial/
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(2) Predicting the value of new features

|0 search results 8 search results

A B

e Overall Evaluation Criterion: clickthrough rate 1st
SERP per query

e A>B A<B,orA=B?

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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(3) Predicting the value of new features

Esurance® Auto Insurance - You Could Save 28% with Esurance. A% Esurance® Auto Insurance - You Could Save 28% with Esurance.

www.esurance.com/California www.esurance.com/California
Get Your Free Online Quote Today! Get Your Free Online Quote Today!
Get a Quote - Find Discounts - An Allstate Company - Compare Rates

A B

e QOverall Evaluation Criterion: revenue
4 A ads for every 3 B ads
e A>B A<B,orA=B?

Source: http://exp-platform.com/20 | 7abtestingtutorial/

Ads
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Challenges in A/B Testing

Correlation does not imply causation

Understanding how short-term metrics (measured
during A/B tests) lead to long-term improvements in
user experience and/or revenue

Using the wrong metric

Unexpected effects on important metrics
Making claims not exactly tested

Bugs in the experimental infrastructure
Using sound statistical methods

Hurting the user experience

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Correlation does not Imply Causation

* Umbrellas cause rain
e People with smaller hands live longer

* A new feature (e.g., a new advanced search tool)
Increases retention rate

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Correlation does not Imply Causation

Particularly important for understanding the impact of
system features that are used more by certain types of
users than others

Use Feature

Have higher
retention rates

Source: http://exp-platform.com/201 7abtestingtutorial/
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Correlation does not Imply Causation

e What are features used more by heavy users?

Use Feature

Have higher
retention rates

Source: http://exp-platform.com/201 7abtestingtutorial/
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Correlation does not Imply Causation

e What are features used more by new users?

Use Feature

Have higher
retention rates

Source: http://exp-platform.com/201 7abtestingtutorial/
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Challenges in A/B Testing

Correlation does not imply causation

Understanding how short-term metrics (measured
during A/B tests) lead to long-term improvements in
user experience and/or revenue

Using the wrong metric

Unexpected effects on important metrics
Making claims not exactly tested

Bugs in the experimental infrastructure
Using sound statistical methods

Hurting the user experience

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Short-term vs. Long-term Metrics

* An increase in ad clicks suggests an increase in
revenue

e Showing lots of ads (often) hurts the user experience

and decreases retention (i.e., long-term ad-click
revenue)

Source: http://exp-platform.com/20 | 7abtestingtutorial/
20



Using the wrong metric

e Hanoi’s French Quarter rat problem in 1902

>

Rats Killed per day

1,000/day OOO/day
April, 1902 April, 1902 20,000/day
Week 1 Week 2 July, 1902

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Using the wrong metric

e Hanoi’s French Quarter rat problem in 1902

Rats Killed per day

1,000/day ! 4,000/day
April, 1902 April, 1902

Week 1 Week 2

20,000/day
July, 1902

* What you do not measure, does not improve.

e Goodhart’s law: “when a measure becomes a target,
it ceases to be a good measure”

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Unexpected Effects on Important Metrics

e Example: a hyperlink on the SERP was changed to
open on a new browser tab.

e Itincreased avg. SERP load time by 8.32%
 Why?

<a href="https://www.thesitewizard.com/" target="_ blank">thesitewizard.com</a>

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Challenges in A/B Testing

Correlation does not imply causation

Understanding how short-term metrics (measured
during A/B tests) lead to long-term improvements in
user experience and/or revenue

Using the wrong metric

Unexpected effects on important metrics
Making claims not exactly tested

Bugs in the experimental infrastructure
Using sound statistical methods

Hurting the user experience

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Making Untested Claims

Question: What is the effect of SERP load-time on ad-
click revenue?

Artificially increase SERP load-time and measure
decrease in ad-click revenue

Make the claim that decreasing the SERP load-time
will have a comparable increase in ad-click revenue

What'’s wrong with this?

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Making Untested Claims

Question: What is the effect of SERP load-time on ad-
click revenue?

Artificially increase SERP load-time and measure
decrease in ad-click revenue

Make the claim that decreasing the SERP load-time
will have a comparable increase in ad-click revenue

What'’s wrong with this?

Assumes (bi-directional) linear relationship

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Making Untested Claims

Ad-click revenue ($$$)

SERP page load time (ms)

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Challenges in A/B Testing

Correlation does not imply causation

Understanding how short-term metrics (measured
during A/B tests) lead to long-term improvements in
user experience and/or revenue

Using the wrong metric

Unexpected effects on important metrics
Making claims not exactly tested

Bugs in the experimental infrastructure
Using sound statistical methods

Hurting the user experience

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Bugs in the Experimental Infrastructure

A \

B

A/B Testing p-value
Inirastructure [ U

e User sampling + measurement + statistics

I._

ow can we debug this infrastructure without

O

pening the “black box"?

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Bugs in the Experimental Infrastructure

A :

A/B Testing p-value
Infrastructure | = 0.05

A

e Run lots of A/A tests (no differences between
experimental and control conditions)

* How often should we observe a p-value of 0.05 or
less?

Source: http://exp-platform.com/20| 7abtestingtutorial/
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Sound Statistical Methods

A/B Testing p-value
Infrastructure | = 0.05

A

e Even when there is no difference between the two
systems, it is still possible to observe a p-value of less

than 0.05
o Why?

Source: http://exp-platform.com/20| 7abtestingtutorial/
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Sound Statistical Methods

* By definition, the p-value is the probability of the
observed difference in means (or a more extreme
difference) under the null hypothesis!

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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A/A Testing

Good p-values

e Run lots of A/A tests (no
differences between
experimental and control
conditions)

e We should only observe p-
values of 0.05 or less about e
5% of the time padprvalues

e The p-value distribution
should be uniform rather
than skewed to low or high

values

Source: http://exp-platform.com/20| 7abtestingtutorial/ +



Challenges in A/B Testing

Correlation does not imply causation

Understanding how short-term metrics (measured
during A/B tests) lead to long-term improvements in
user experience and/or revenue

Using the wrong metric

Unexpected effects on important metrics
Making claims not exactly tested

Bugs in the experimental infrastructure
Using sound statistical methods

Hurting the user experience

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Causes of Type | Errors (False Positives)

e Running the same A/B test many times until we
observe a significant difference

e Using 100+ metrics and focusing on the ones that are
significant

e Running an experiment for as long as it takes to reach
significance

e Running an experiment and stopping early because
we reached significance

Source: http://exp-platform.com/20 | 7abtestingtutorial/
35



Causes of Type | Errors (False Positives)

* Bonferroni correction: multiplying the p-value by the
number of comparisons

Source: http://exp-platform.com/20 | 7abtestingtutorial/

36



Hurting the User Experience

e Less manual monitoring of experiments
e Buggy features or bad ideas

 Interactions between concurrent experiments: the
whole is less than the sum of its parts

Source: http://exp-platform.com/20 | 7abtestingtutorial/

37



Cautionary Steps: Starting Small

 Starting internally (within the company)
 Starting with only a few users

 Starting with only partial exposure (1/10 queries)

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Cautionary Steps: Different types of Metrics

e Data quality metrics: ensure that the feature was
implemented correctly

e Overall evaluation criteria: single metric that
measures improvement in user experience (e.g.,
number of satisfied clicks)

e Guardrail metrics: metrics used to shutdown an
experiment (e.g., queries with no clicks)

e Local metrics: metrics that measure what the user is
doing less of (because of the new feature)

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Cautionary Steps: Measuring interactions

Exp. 2
A R
: N
. 0
Exp. | Sig Sig
R

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Cautionary Steps: Measuring interactions

Exp. 2

Exp. | Sig Sig

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Cautionary Steps: Measuring interactions

A

X
XP
B

A B

outcome measure

Exp |

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Fthical Considerations

System development is influenced by the majority

Certain communities may be under-represented in
the data

While there is an “average user”, there is also high
variance (nobody is close to the average)

Metrics used in A/B tests are crude measures of “user
experience”

Users may need to experience extreme differences to
show (positive or negative) changes in behavior

A/B tests are done without considering whether the
user is in a vulnerable state

Source: http://exp-platform.com/20 | 7abtestingtutorial/
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Challenges in A/B Testing

Correlation does not imply causation

Understanding how short-term metrics (measured
during A/B tests) lead to long-term improvements in
user experience and revenue

Using the wrong metric

Unexpected effects on important metrics
Making claims not exactly tested

Bugs in the experimental infrastructure
Using sound statistical methods

Hurting the user experience



