### Linear Classifiers

Jaime Arguello INLS 613: Text Data Mining jarguell@email.unc.edu

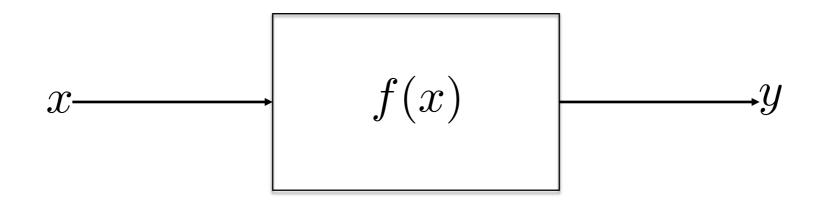
### Overview

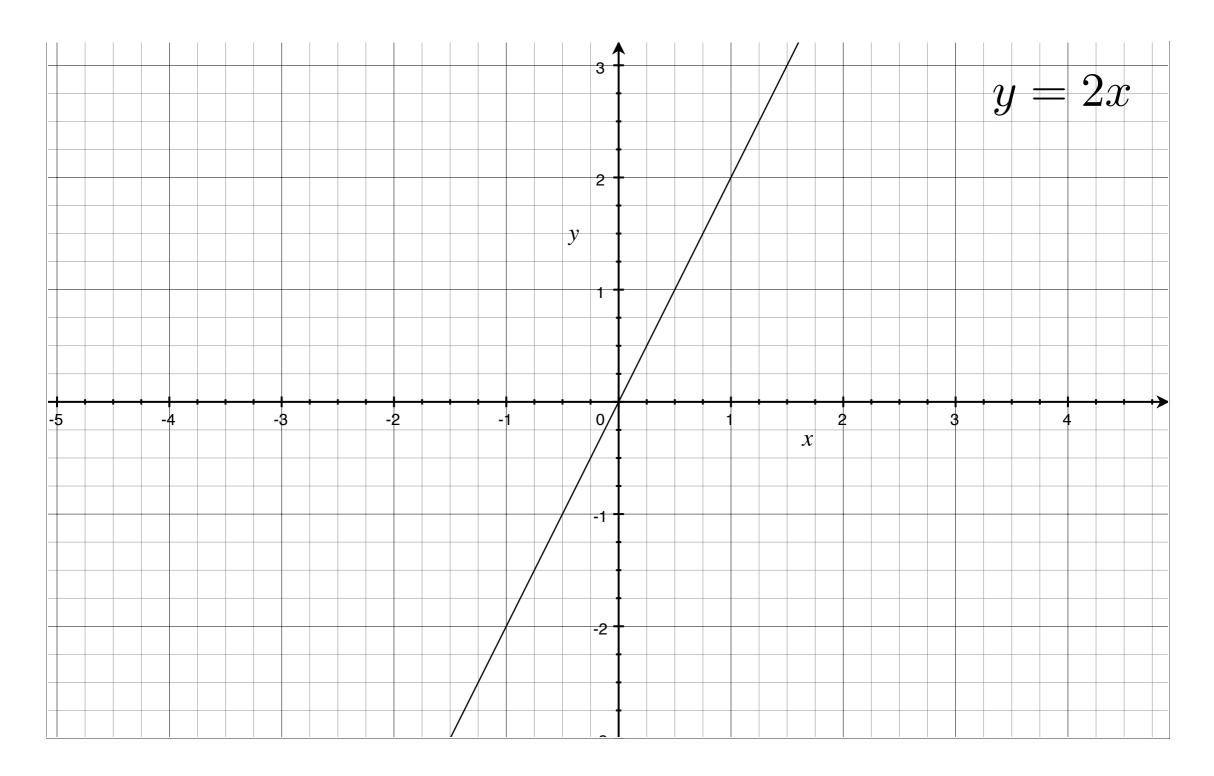
- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

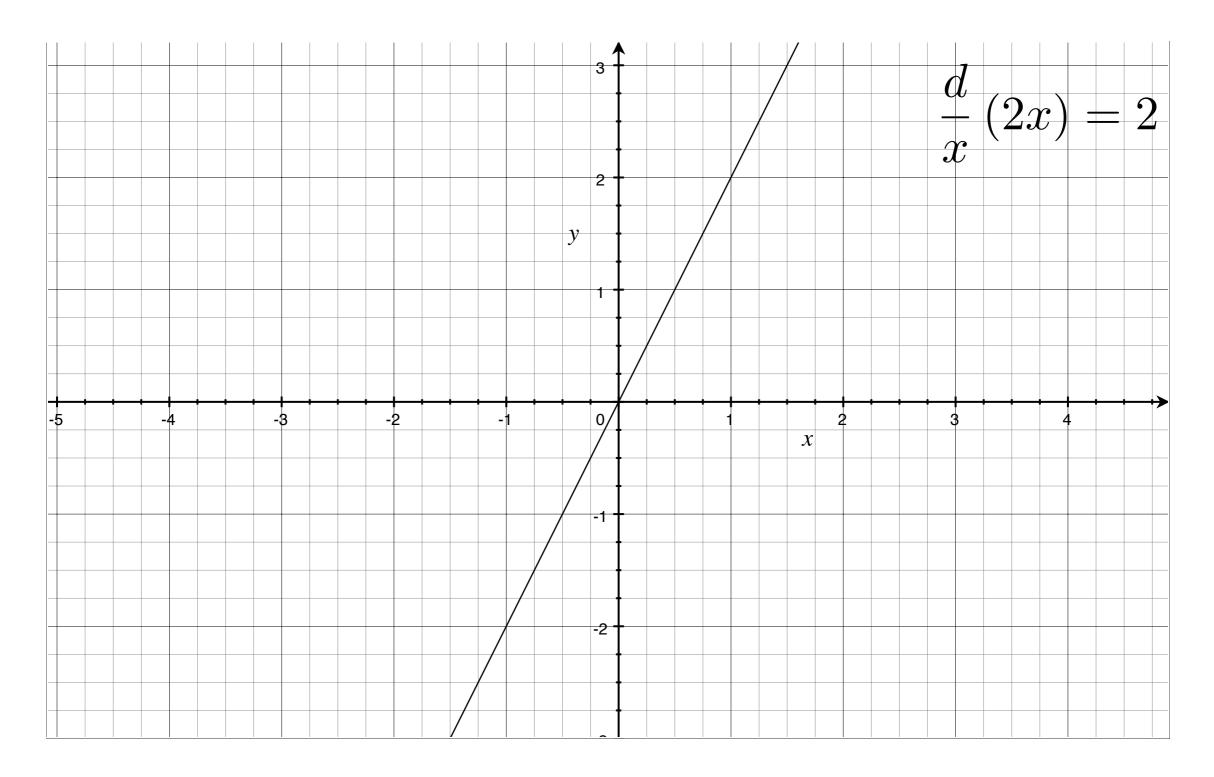
## **Philosophical Questions**

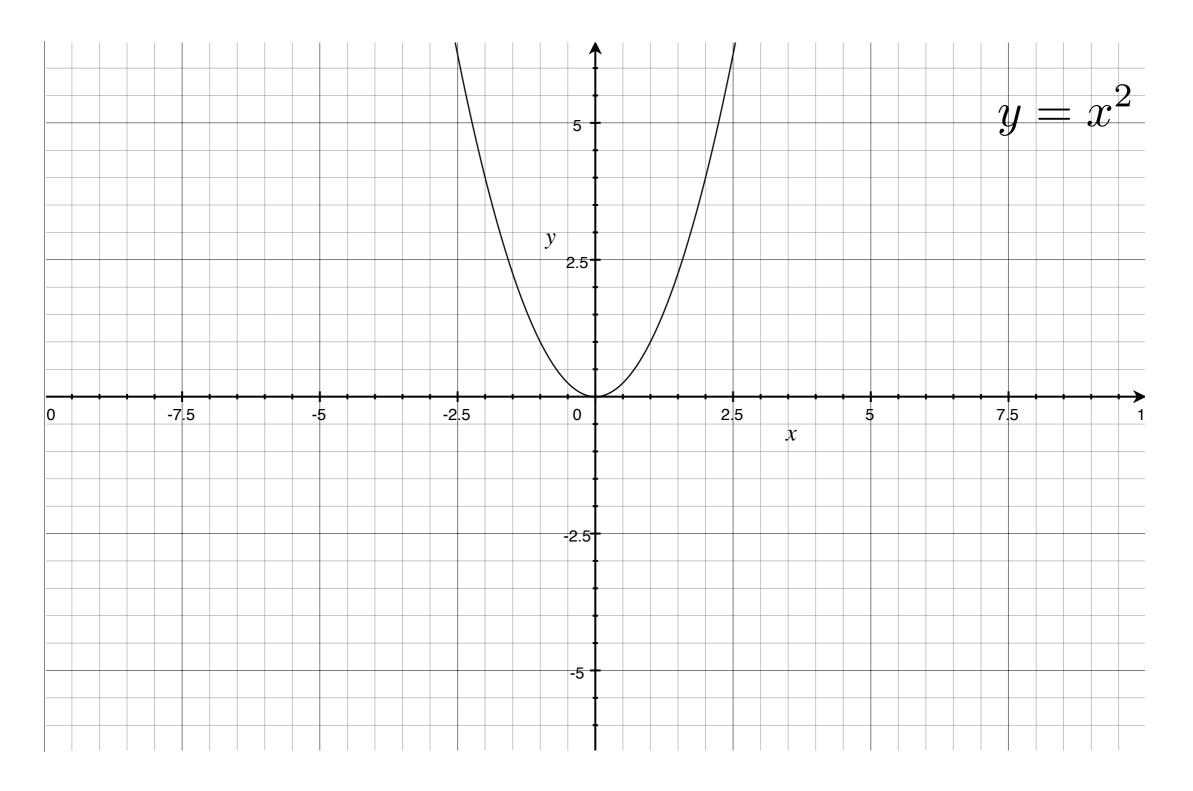
- What would you do if ...
- What does this have to do with linear classifiers?

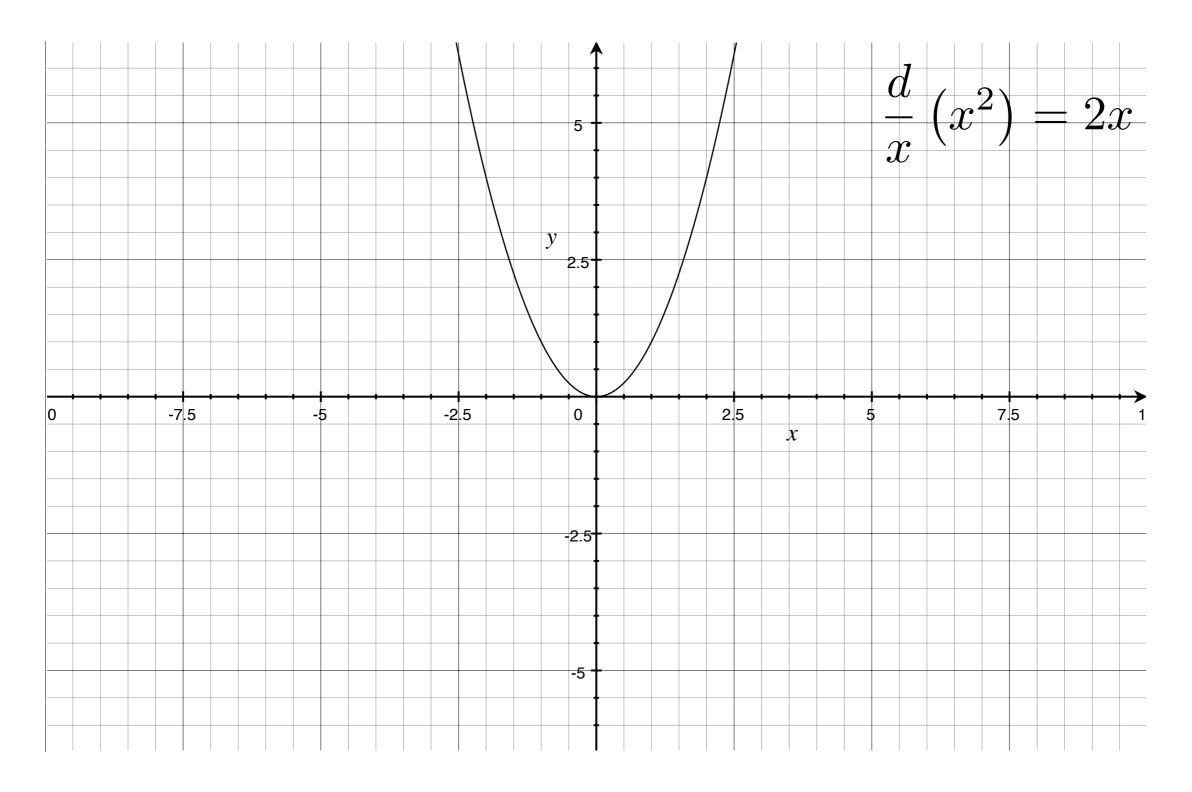
### Functions





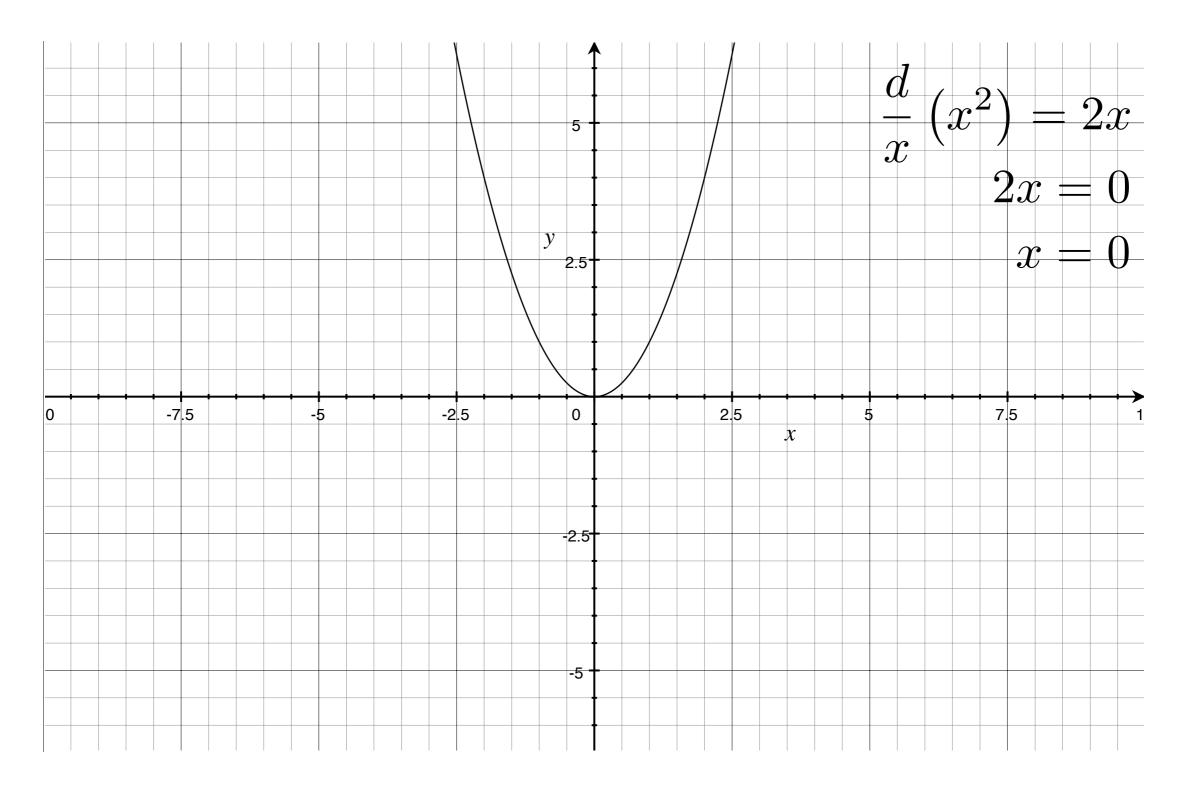






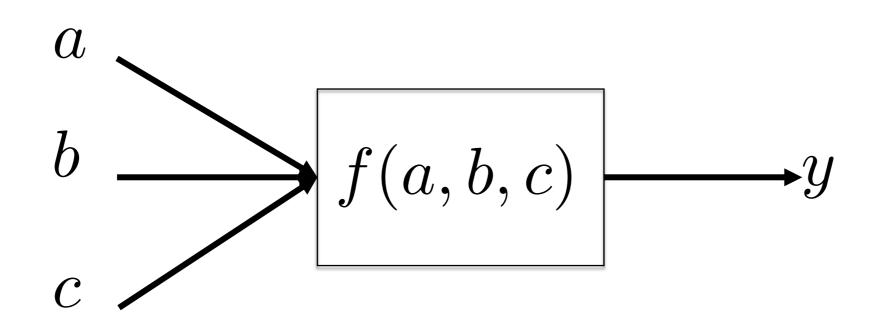
## Derivatives: What are they good for?

- The derivative of f(x) outputs the slope of f(x) for a particular value of x
- A point of which the slope is zero is a point at which f(x) is at its highest or lowest value.
- What does this have to do with machine learning?

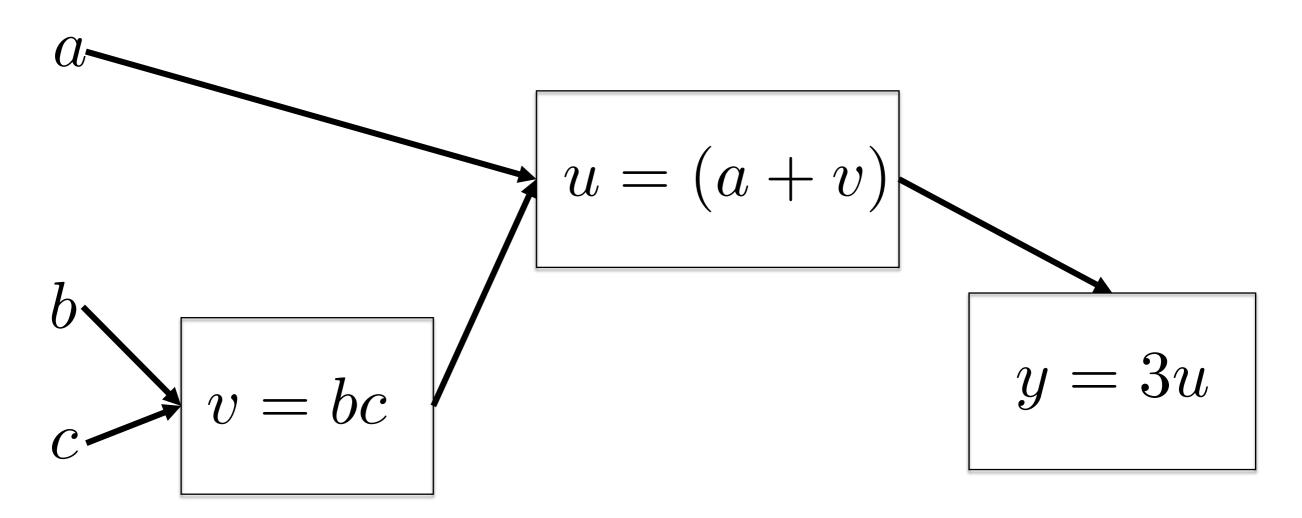


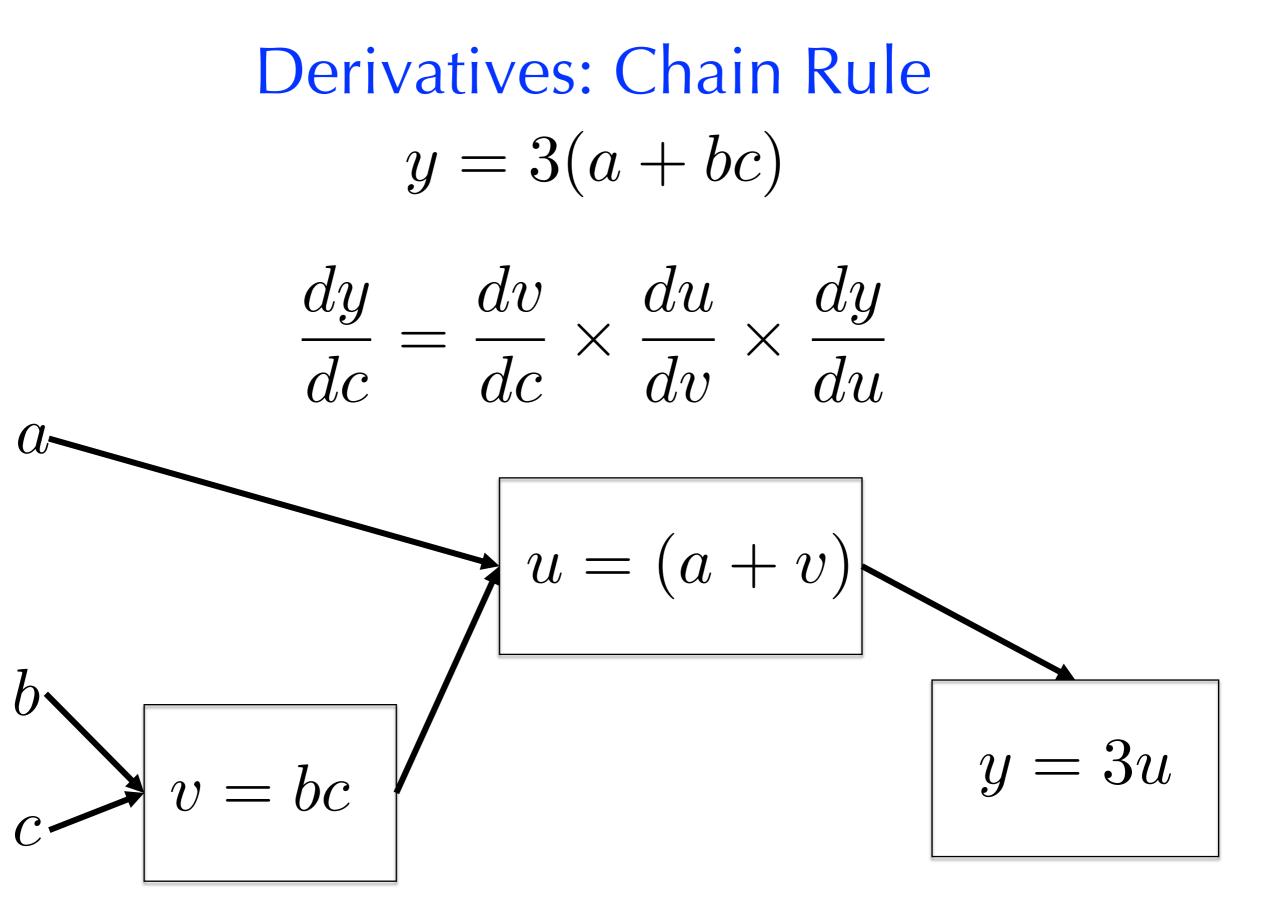
### **Computation Graphs**

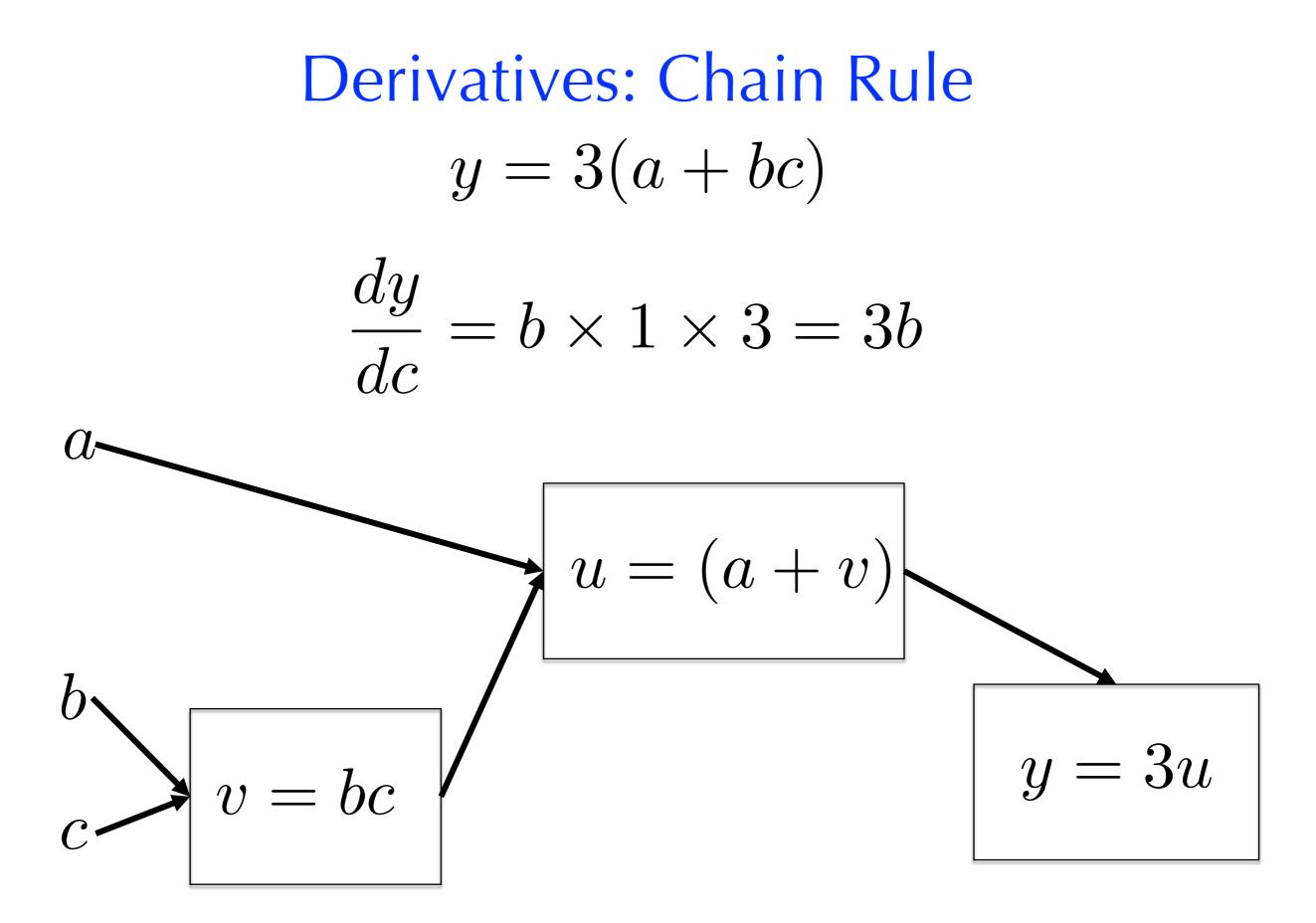
$$y = 3(a + bc)$$



# Computation Graphs y = 3(a + bc)



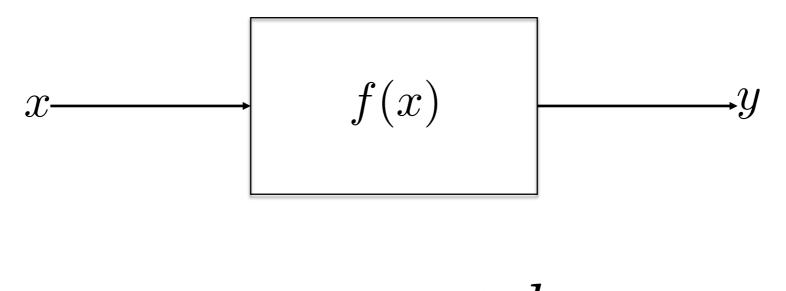




### Overview

- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

### Linear Regression



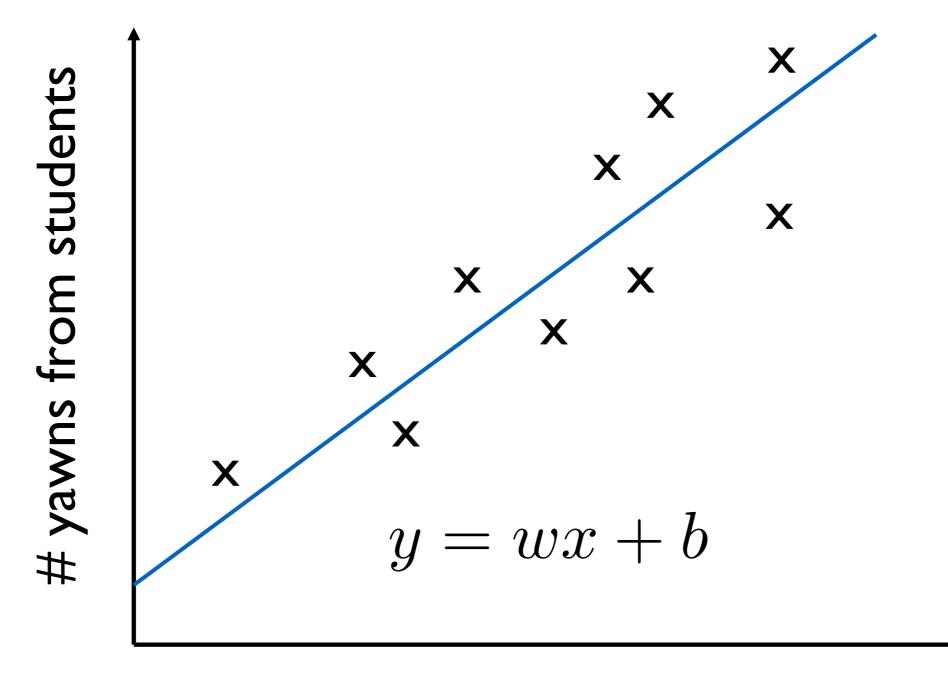
$$y = wx + b$$

### Linear Regression



Temperature in Rm 001

### Linear Regression



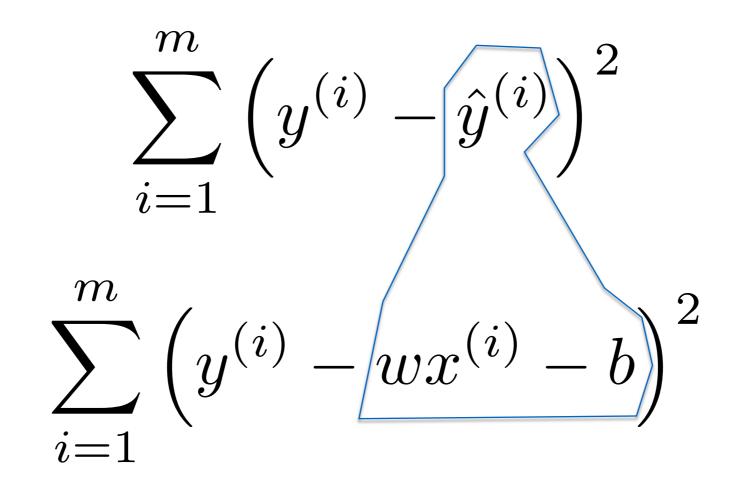
Temperature in Rm 001

Linear Regression: Training y = wx + b

- **Input:** set of *m* training examples (x,y)
- Find the value of *w* and *b* that minimize the error:

$$\sum_{i=1}^{m} \left( y^{(i)} - \hat{y}^{(i)} \right)^2$$

Linear Regression: Training 
$$y = wx + b$$



Linear Regression: Training 
$$y = wx + b$$

$$\sum_{i=1}^{m} \left( y^{(i)} - wx^{(i)} - b \right)^2$$

- Take the derivative with respect to *w*, set it equal to 0, and solve for *w*.
- Take the derivative with respect to *b*, set it equal to 0, and solve for *b*.

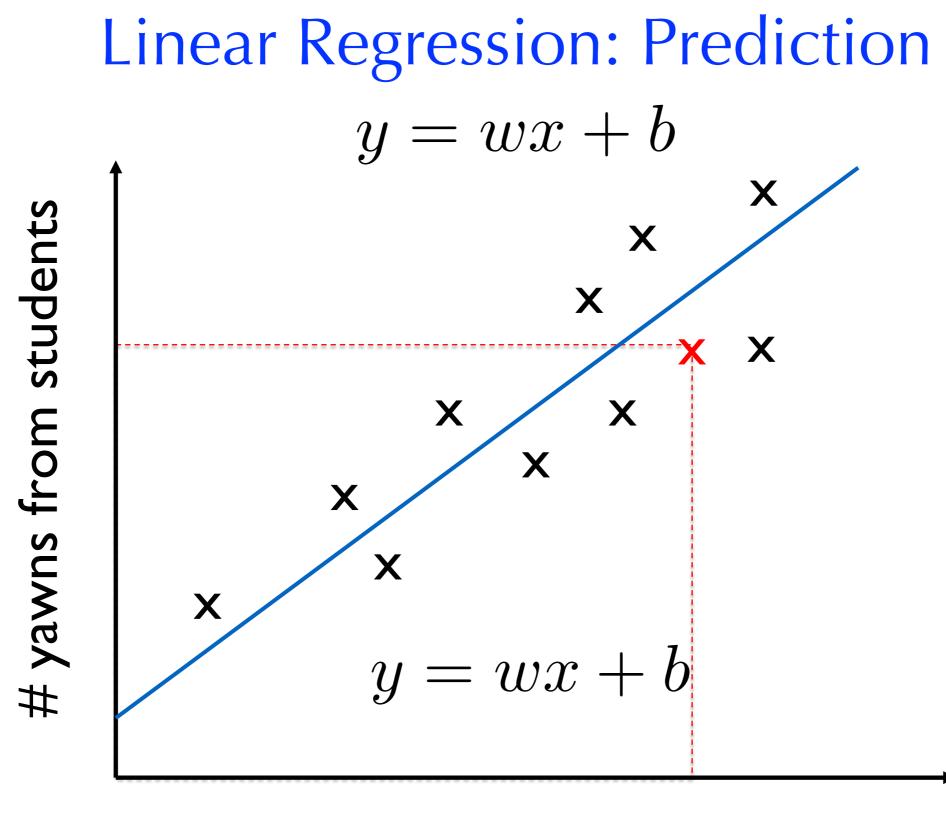
### Linear Regression: Training

$$w = \frac{\frac{1}{m} \sum_{i=1}^{m} \left( x^{(i)} - \bar{x} \right) \left( y^{(i)} - \bar{y} \right)}{\sum_{i=1}^{m} \left( x^{(i)} - \bar{x} \right)^2}$$

$$b = \bar{y} - w\bar{x}$$

## Linear Regression: Training

$$w = \frac{\frac{1}{m} \sum_{i=1}^{m} \left( x^{(i)} - \bar{x} \right) \left( y^{(i)} - \bar{y} \right)}{\sum_{i=1}^{m} \left( x^{(i)} - \bar{x} \right)^2} \sqrt{1}$$
Always
positive!
$$b = \bar{y} - w\bar{x}$$
It depends!

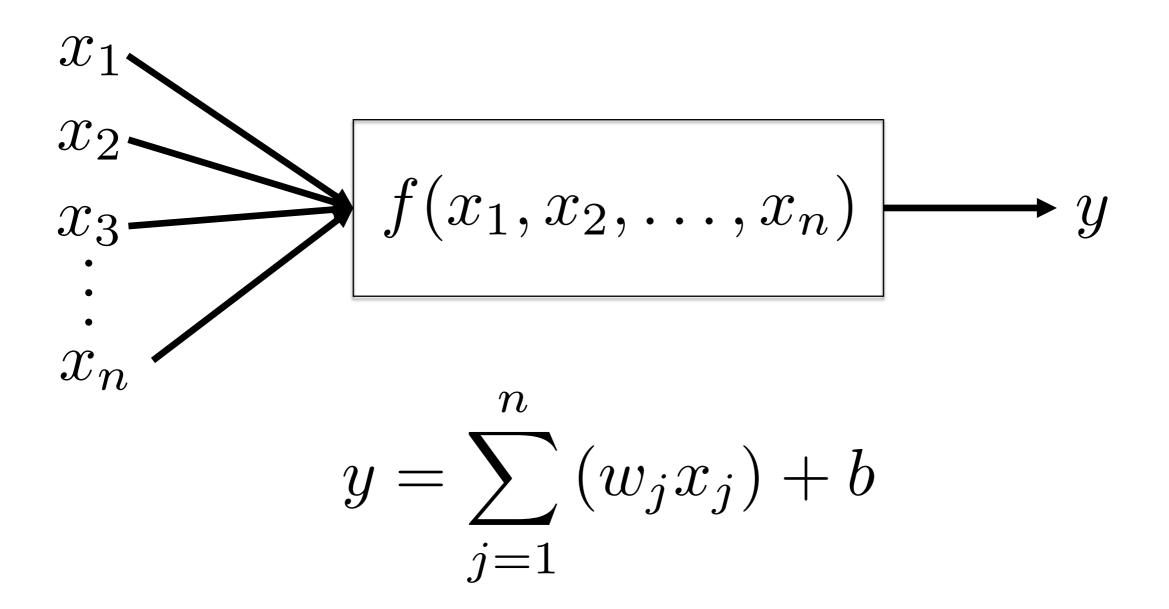


Temperature in Rm 001

### Overview

- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

### Multiple Linear Regression



## Multiple Linear Regression

| Size<br>(feet) | No. of<br>bedrooms | No. of<br>floors | Age<br>(years) | Price<br>(x\$1000) |
|----------------|--------------------|------------------|----------------|--------------------|
| 2,350          | 5                  | 2                | 45             | 500                |
| 1,600          | 3                  | 2                | 20             | 450                |
| 2,000          | 3                  | 2                | 30             | 250                |
| 854            | 2                  | 1                | 10             | 200                |
| 560            | 1                  | 1                | 30             | 180                |

## Multiple Linear Regression: Training

• Given:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

• We want:

$$\hat{y}^{(i)} \approx y^{(i)}$$

## Multiple Linear Regression: Training

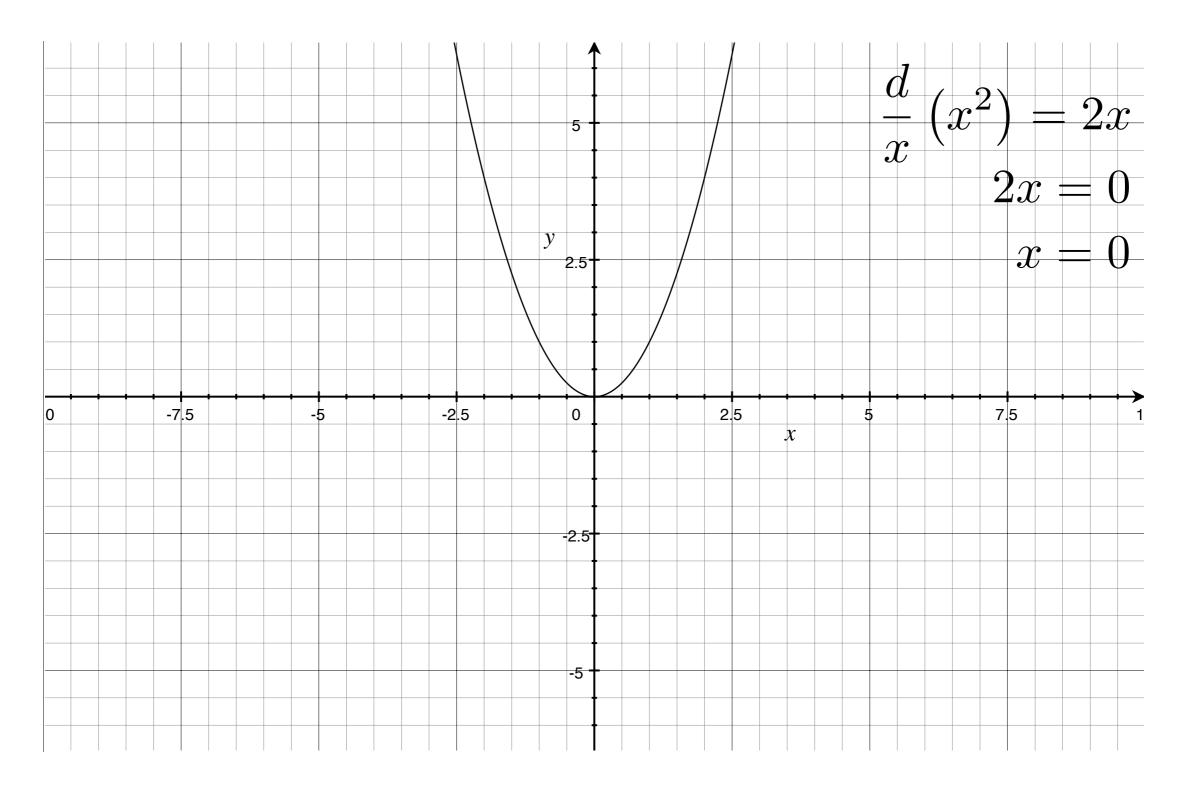
• Loss Function: the discrepancy between the predicted and actual output values for <u>a single</u> training instance

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \frac{1}{2}(y^{(i)} - \hat{y}^{(i)})^2$$

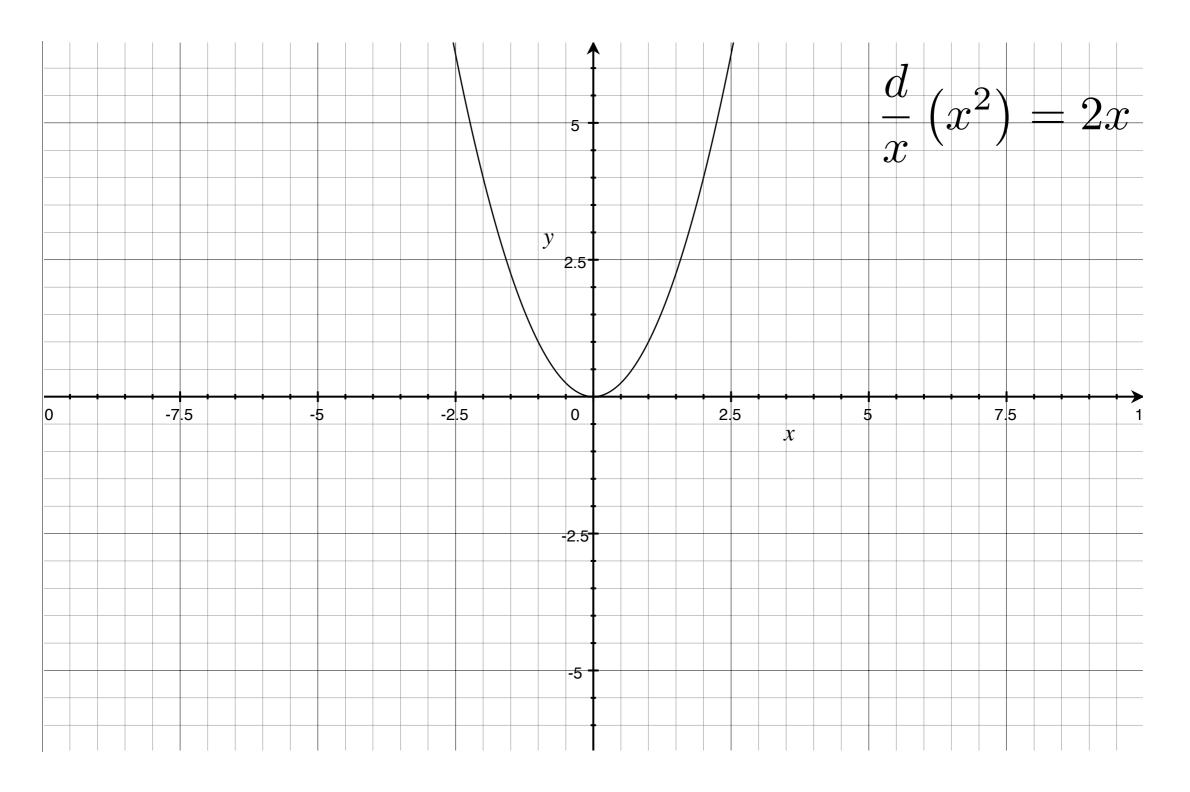
## Multiple Linear Regression: Training

 Cost Function: the discrepancy between the predicted and actual output values for <u>all</u> training instances

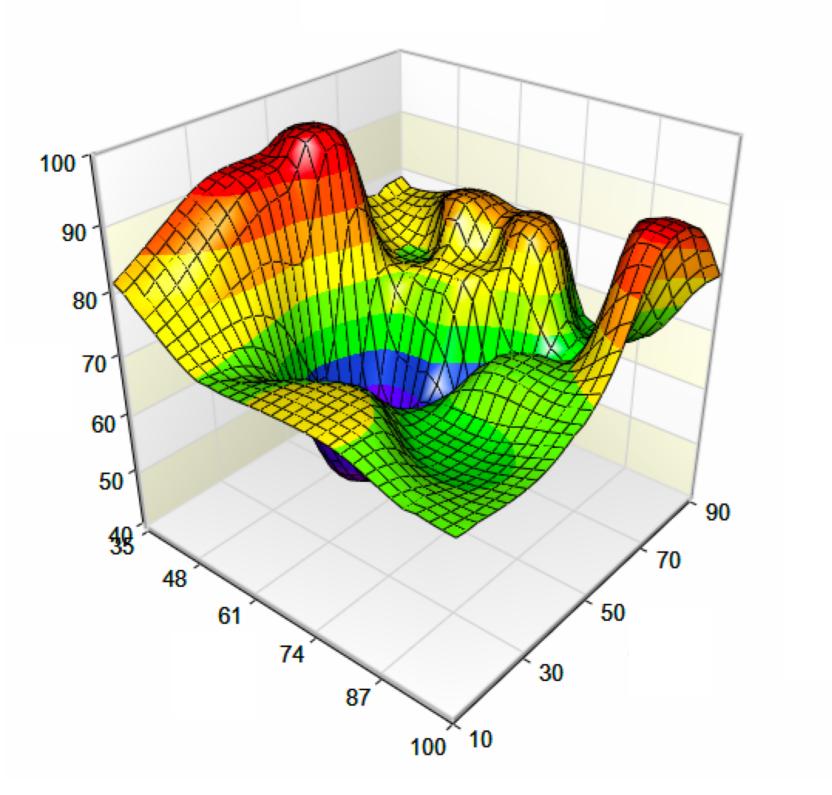
$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^2$$
$$\mathcal{J}(w, b) = \frac{1}{m} \sum_{i=1}^m \left( \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^2 \right)$$



### Gradient Descent: Intuition



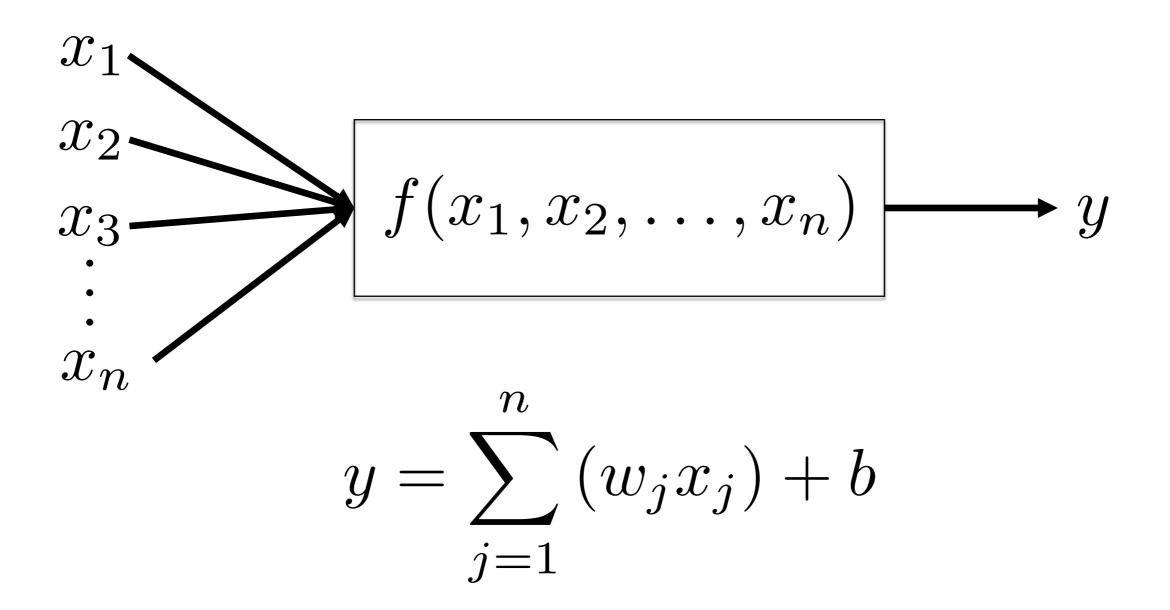
### Gradient Descent: Intuition



## Multiple Linear Regression

| Size<br>(feet) | No. of<br>bedrooms | No. of<br>floors | Age<br>(years) | Price<br>(x\$1000) |
|----------------|--------------------|------------------|----------------|--------------------|
| 2,350          | 5                  | 2                | 45             | 500                |
| 1,600          | 3                  | 2                | 20             | 450                |
| 2,000          | 3                  | 2                | 30             | 250                |
| 854            | 2                  | 1                | 10             | 200                |
| 560            | 1                  | 1                | 30             | 180                |

### Multiple Linear Regression



### Gradient Descent

• Loss Function: the discrepancy between the predicted and actual output values for <u>a single</u> training instance

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \frac{1}{2}(y^{(i)} - \hat{y}^{(i)})^2$$

- Let's see what the slope of the loss function is with respect to parameter *b*!
- **Note:** this will only consider one training example!

• Derivative of the loss function with respect to *b* 

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^2$$
$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \frac{1}{2} \left( y^{(i)} - \sum_{j=1}^n (w_j x_j^{(i)}) - b \right)^2$$

$$\frac{d}{db}\mathcal{L}(y^{(i)},\hat{y}^{(i)}) = -\left(y^{(i)} - \hat{y}^{(i)}\right)$$

$$\frac{d}{db}\mathcal{L}(y^{(i)},\hat{y}^{(i)}) = \hat{y}^{(i)} - y^{(i)}$$

# Gradient Descent $\frac{d}{db}\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \hat{y}^{(i)} - y^{(i)}$

| Scenario                        | $\hat{y}^{(i)} - y^{(i)}$ | Action!                   |
|---------------------------------|---------------------------|---------------------------|
| $\hat{y}^{(i)} > y^{(i)}$       | +                         | Decrease<br>(nudge left)  |
| $\hat{y}^{(i)} < y^{(i)}$       |                           | Increase<br>(nudge right) |
| $\hat{y}^{(i)} \approx y^{(i)}$ | 0                         | Do nothing!               |

$$y = \sum_{j=1}^{n} \left( w_j x_j \right) + b$$

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \frac{1}{2}(y^{(i)} - \hat{y}^{(i)})^2$$

- Let's see what the slope of the loss function is with respect to parameter w<sub>i</sub>!
- **Note:** this will only consider one training example!

• Derivative of the loss function with respect to  $w_j$ 

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \frac{1}{2} (y^{(i)} - \hat{y}^{(i)})^2$$
$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \frac{1}{2} \left( y^{(i)} - \sum_{j=1}^n (w_j x_j^{(i)}) - b \right)^2$$

$$\frac{d}{dw_j}\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = -x_j^{(i)} \left( y^{(i)} - \hat{y}^{(i)} \right)$$

$$\frac{d}{dw_j}\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = (\hat{y}^{(i)} - y^{(i)})x_j$$

## Gradient Descent $\frac{d}{dw_j}\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = (\hat{y}^{(i)} - y^{(i)})x_j$

| Scenario                        | $\hat{y}^{(i)} - y^{(i)}$ | Action!                                     |
|---------------------------------|---------------------------|---------------------------------------------|
| $\hat{y}^{(i)} > y^{(i)}$       | +                         | Go in the opposite direction as $x_j^{(i)}$ |
| $\hat{y}^{(i)} < y^{(i)}$       | _                         | Go in the same direction as $x_j^{(i)}$     |
| $\hat{y}^{(i)} \approx y^{(i)}$ | 0                         | Do nothing!                                 |

$$y = \sum_{j=1}^{n} \left( w_j x_j \right) + b$$

• Loss Function: the discrepancy between the predicted and actual output values for <u>a single</u> training instance

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \frac{1}{2}(y^{(i)} - \hat{y}^{(i)})^2$$

• Given one training example, we can take derivatives with respect to each parameter to see what direction we should be going to minimize the loss function.

$$b \leftarrow b - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( \hat{y}^{(i)} - y^{(i)} \right)$$

$$w_j \leftarrow w_j - \alpha \frac{1}{m} \sum_{i=1}^m \left( (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)} \right)$$

$$b \leftarrow b - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( \hat{y}^{(i)} - y^{(i)} \right)$$

- If we are overshooting the target, reduce *b*
- If we are undershooting the target, increase b
- Otherwise, do nothing

$$w_j \leftarrow w_j - \alpha \frac{1}{m} \sum_{i=1}^m \left( (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)} \right)$$

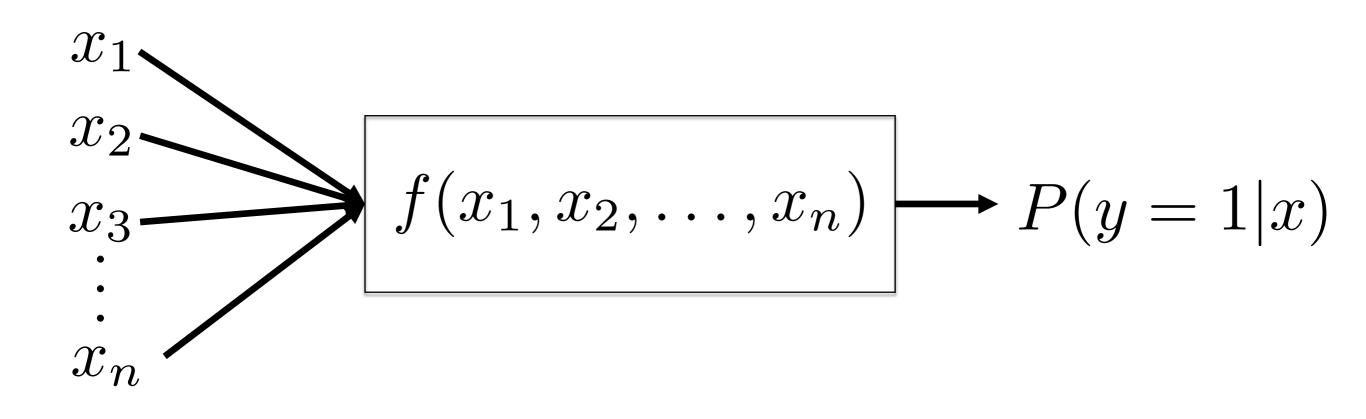
- If we are overshooting the target, reduce w<sub>j</sub> proportional to the value of x<sub>j</sub>
- If we are undershooting the target, increase w<sub>j</sub> proportional to the value of x<sub>j</sub>
- Otherwise, do nothing

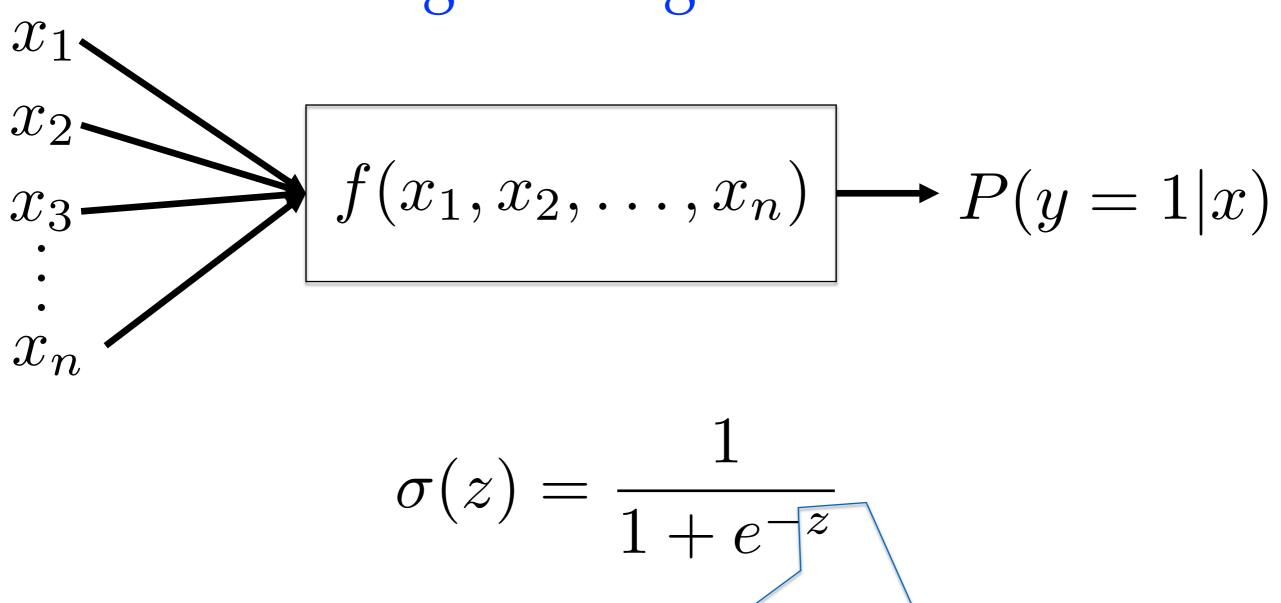
## Overview

- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

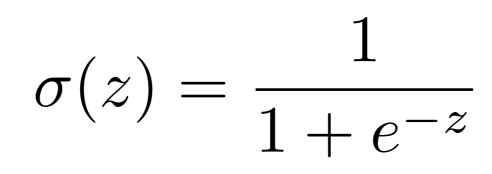
- Linear regression: predict *y* given *x*
- Multiple linear regression: predict y given x\_1, x\_2,
   ..., x\_n

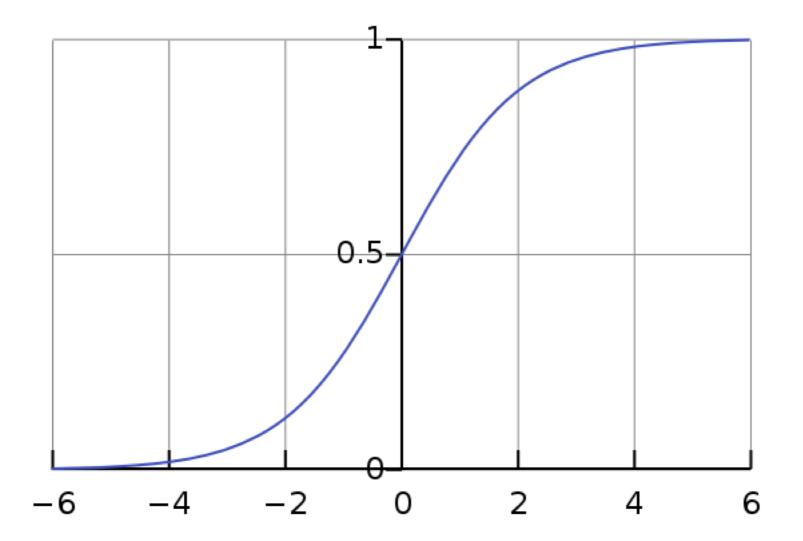
- Logistic Regression: predict P(y=1|x\_1, x\_2, ..., x\_n)
- We can use logistic regression to do binary classification.





 $z = \sum_{j=1}^{n} (w_j x_j) + b$ 

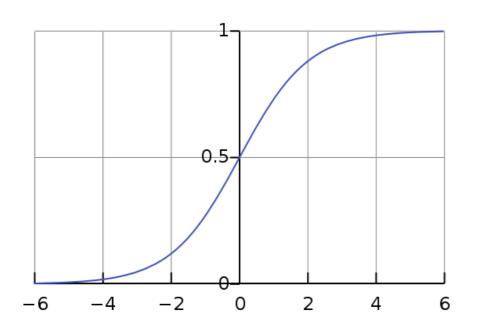




$$z = \sum_{j=1}^{n} (w_j x_j) + b$$
$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

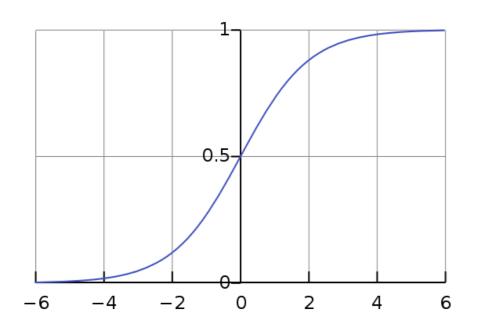
$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = -\left(y^{(i)}\log\hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})\right)$$

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = -\left(y^{(i)}\log\hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})\right)$$



- If the true value is 1, we want the predicted value to be <u>high</u>.
- Remember: log(1) = 0

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = -\left(y^{(i)}\log\hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})\right)$$



- If the true value is 0, we want the predicted value to be <u>low</u>.
- Remember: log(1) = 0

$$z = \sum_{j=1}^{n} (w_j x_j) + b$$
$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = -\left(y^{(i)}\log\hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})\right)$$

$$\frac{d}{db}\mathcal{L}(y^{(i)},\hat{y}^{(i)}) = \hat{y}^{(i)} - y^{(i)}$$

$$z = \sum_{j=1}^{n} (w_j x_j) + b$$
$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = -\left(y^{(i)}\log\hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})\right)$$

$$\frac{d}{dw_j} \mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = (\hat{y}^{(i)} - y^{(i)})x_j$$

#### Logistic Regression: Gradient Descent

$$b \leftarrow b - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( \hat{y}^{(i)} - y^{(i)} \right)$$

$$w_j \leftarrow w_j - \alpha \frac{1}{m} \sum_{i=1}^m \left( (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)} \right)$$

#### Logistic Regression: Gradient Descent

$$b \leftarrow b - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( \hat{y}^{(i)} - y^{(i)} \right)$$

- If we are overshooting the target, reduce *b*
- If we are undershooting the target, increase b
- Otherwise, do nothing

#### Logistic Regression: Gradient Descent

$$w_j \leftarrow w_j - \alpha \frac{1}{m} \sum_{i=1}^m \left( (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)} \right)$$

- If we are overshooting the target, reduce w<sub>j</sub> proportional to the value of x<sub>j</sub>
- If we are undershooting the target, increase w<sub>j</sub> proportional to the value of x<sub>j</sub>
- Otherwise, do nothing

### Overview

- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

## The Big Picture!

- Linear regression, multiple linear regression and logistic regression are examples of linear models
- Internally, linear models output a prediction based on a weighted combination of input features
- Features that are <u>positively correlated</u> with the target output get a <u>high</u> weight
- Features that are <u>negatively correlated</u> with the target output get a <u>negative</u> weight
- Features that are <u>uncorrelated</u> with the target output get a <u>zero</u> weight