Text Data Mining:
Predictive and Exploratory Analysis of Text

Jaime Arguello
jarguell@email.unc.edu
Outline

Introductions

What is Text Data Mining?

Predictive Analysis of Text: The Big Picture

Exploratory Analysis of Text: The Big Picture

Applications
Introductions

• Hello, my name is ______.
• I’m in the ______ program.
• I’m taking this course because I’d like to learn how to ______.
What is Text Data Mining?

- The science and practice of building and evaluating computer programs that automatically detect or discover interesting and useful things in collections of natural language text
Related Fields

- **Machine Learning**: developing computer programs that improve their performance with “experience”
- **Data Mining**: developing methods that discover patterns within large structured datasets
- **Statistics**: developing methods for the interpretation of data and experimental outcomes in reaching conclusions with a certain degree of confidence
Text Data Mining in this Course

- Predictive Analysis of Text
 - developing computer programs that automatically recognize or detect a particular concept within a span of text

- Exploratory Analysis of Text:
 - developing computer programs that automatically discover interesting and useful patterns or trends in text collections
Outline

Introductions

What is Text Data Mining?

Predictive Analysis of Text: The Big Picture

Exploratory Analysis of Text: The Big Picture

Applications
Predictive Analysis
example: recognizing triangles
Predictive Analysis
example: recognizing triangles

• We could imagine writing a “triangle detector” by hand:
 ‣ if shape has three sides, then shape = triangle.
 ‣ otherwise, shape = other

• Alternatively, we could use supervised machine learning!
Predictive Analysis
example: recognizing triangles

training

machine learning algorithm

model

labeled examples

testing

model

predictions

new, unlabeled examples
Predictive Analysis
example: recognizing triangles

What is the part that is missing?
Predictive Analysis
raw data
Predictive Analysis

representation: features

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th># sides</th>
<th>equal sides</th>
<th>...</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>green</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>
Predictive Analysis
example: recognizing triangles

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th>sides</th>
<th>equal sides</th>
<th>...</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>green</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>

training

machine
learning
algorithm

model

labeled examples

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th>sides</th>
<th>equal sides</th>
<th>...</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>green</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>

testing

model

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th>sides</th>
<th>equal sides</th>
<th>...</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>green</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>

predictions
Predictive Analysis
basic ingredients

1. Training data: a set of examples of the concept we want to automatically recognize

2. Representation: a set of features that we believe are useful in recognizing the desired concept

3. Learning algorithm: a computer program that uses the training data to learn a predictive model of the concept
Predictive Analysis

basic ingredients

1. **Training data:** a set of examples of the concept we want to automatically recognize

2. **Representation:** a set of features that we believe are useful in recognizing the desired concept

3. **Learning algorithm:** a computer program that uses the training data to learn a predictive model of the concept

Highly influential!
4. **Model**: a (mathematical) function that describes a predictive relationship between the feature values and the presence/absence of the concept

5. **Test data**: a set of previously unseen examples used to estimate the model’s effectiveness

6. **Performance metrics**: a set of statistics used to measure the predictive effectiveness of the model
Predictive Analysis
basic ingredients: the focus in this course

1. Training data: a set of examples of the concept we want to automatically recognize

2. Representation: a set of features that we believe are useful in recognizing the desired concept

3. Learning algorithm: uses the training data to learn a predictive model of the “concept”
Predictive Analysis
basic ingredients: the focus in this course

4. **Model**: describes a predictive relationship between feature values and the presence/absence of the concept

5. **Test data**: a set of previously unseen examples used to estimate the model’s effectiveness

6. **Performance metrics**: a set of statistics used to measure the predictive effectiveness of the model
Predictive Analysis
applications

- Topic categorization
- Opinion mining
- Sentiment analysis
- Bias or viewpoint detection
- Discourse analysis
- Forecasting and nowcasting
- Any other ideas?
Predictive Analysis
example: recognizing triangles

training

machine learning algorithm

model

labeled examples

new, unlabeled examples

predictions
What Could Possibly Go Wrong?

1. Bad feature representation
2. Bad data + misleading correlations
3. Noisy labels for training and testing
4. Bad learning algorithm
5. Misleading evaluation metric
Training data + Representation
what could possibly go wrong?
Training data + Representation

what could possibly go wrong?

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th>90 deg. angle</th>
<th>equal sides</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>big</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>green</td>
<td>big</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Training data + Representation
what could possibly go wrong?

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th>90 deg. angle</th>
<th>equal sides</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>big</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>green</td>
<td>big</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

1. bad feature representation!
Training data + Representation
what could possibly go wrong?
Training data + Representation
what could possibly go wrong?

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th># sides</th>
<th>equal sides</th>
<th>...</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>red</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>green</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blue</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>
Training data + Representation
what could possibly go wrong?

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th># sides</th>
<th>equal sides</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>red</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>green</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blue</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

2. bad data + misleading correlations
Training data + Representation
what could possibly go wrong?
Training data + Representation
what could possibly go wrong?

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th># sides</th>
<th>equal sides</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>white</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>white</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>white</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>white</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>white</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

3. noisy training data!
What Could Possibly Go Wrong?

1. Bad feature representation
2. Bad data + misleading correlations
3. Noisy labels for training and testing
4. Bad learning algorithm
5. Misleading evaluation metric
Learning Algorithm + Model
what could possibly go wrong?

- Linear classifier

\[
y = \begin{cases}
 1 & \text{if } w_0 + \sum_{j=1}^{n} w_j x_j > 0 \\
 0 & \text{otherwise}
\end{cases}
\]
Learning Algorithm + Model
what could possibly go wrong?

- Linear classifier

\[
y = \begin{cases}
1 & \text{if } w_0 + \sum_{j=1}^{n} w_j x_j > 0 \\
0 & \text{otherwise}
\end{cases}
\]

parameters learned by the model

predicted value (e.g., 1 = positive, 0 = negative)
Learning Algorithm + Model
what could possibly go wrong?

test instance

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

model parameters

<table>
<thead>
<tr>
<th>w_0</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

output = 2.0 + (0.50 x -5) + (1 x 2) + (0.2 x 1)

output = 1.7

output prediction = positive
Learning Algorithm + Model
what could possibly go wrong?

Learning Algorithm + Model
what could possibly go wrong?

- Would a linear classifier do well on positive (black) and negative (white) data that looks like this?
Learning Algorithm + Model
what could possibly go wrong?

4. Bad learning algorithm!
Learning Algorithm + Model
what could possibly go wrong?

X1 > 0.50

yes no

X2 > 0.5

yes no

pos neg

pos neg neg pos
Predictive Analysis
example: recognizing triangles

Training

```
<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th>sides</th>
<th>equal sides</th>
<th>...</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td>...</td>
<td>yes</td>
</tr>
<tr>
<td>green</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td>...</td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td>...</td>
<td>no</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td>...</td>
<td>no</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>...</td>
<td>!</td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td>...</td>
<td>yes</td>
</tr>
</tbody>
</table>
```

Model

Testing

```
<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th>sides</th>
<th>equal sides</th>
<th>...</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td>...</td>
<td>???</td>
</tr>
<tr>
<td>green</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td>...</td>
<td>???</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td>...</td>
<td>???</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td>...</td>
<td>???</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>...</td>
<td>!</td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td>...</td>
<td>???</td>
</tr>
</tbody>
</table>
```

Predictions

```
<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th>sides</th>
<th>equal sides</th>
<th>...</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td>...</td>
<td>yes</td>
</tr>
<tr>
<td>green</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td>...</td>
<td>yes</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td>...</td>
<td>no</td>
</tr>
<tr>
<td>blue</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td>...</td>
<td>no</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>...</td>
<td>!</td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td>...</td>
<td>yes</td>
</tr>
</tbody>
</table>
```
What Could Possibly Go Wrong?

1. Bad feature representation
2. Bad data + misleading correlations
3. Noisy labels for training and testing
4. Bad learning algorithm
5. Misleading evaluation metric
What Could Possibly Go Wrong?

1. Bad feature representation
2. Bad data + misleading correlations
3. Noisy labels for training and testing
4. Bad learning algorithm
5. Misleading evaluation metric
Most evaluation metrics can be understood using a contingency table.

- What number(s) do we want to maximize?
- What number(s) do we want to minimize?
Evaluation Metric

what could possibly go wrong?

- **True positives (A):** number of triangles **correctly** predicted as triangles

- **False positives (B):** number of “other” **incorrectly** predicted as triangles

- **False negatives (C):** number of triangles **incorrectly** predicted as “other”

- **True negatives (D):** number of “other” **correctly** predicted as “other”

<table>
<thead>
<tr>
<th></th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>predicted</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td>A</td>
</tr>
<tr>
<td>other</td>
<td>B</td>
</tr>
<tr>
<td>other</td>
<td>C</td>
</tr>
<tr>
<td>true</td>
<td>D</td>
</tr>
</tbody>
</table>
Evaluation Metric

what could possibly go wrong?

- **Accuracy**: percentage of predictions that are correct (i.e., true positives and true negatives)

\[
\]

<table>
<thead>
<tr>
<th></th>
<th>triangle</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>triangle</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>other</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>
Evaluation Metric
what could possibly go wrong?

- **Accuracy**: percentage of predictions that are correct (i.e., true positives and true negatives)

\[
\frac{(A + D)}{(A + B + C + D)}
\]

<table>
<thead>
<tr>
<th></th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>predicted</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td>A</td>
</tr>
<tr>
<td>other</td>
<td>C</td>
</tr>
</tbody>
</table>
Accuracy: percentage of predictions that are correct (i.e., true positives and true negatives)

What could possibly go wrong?

What is the accuracy of this model?
Evaluation Metric
what could possibly go wrong?

• Interpreting the value of a metric on a particular data set requires some thinking ...

• On this dataset, what would be the expected accuracy of a model that does NO learning (degenerate baseline)?
Evaluation Metric
what could possibly go wrong?

• Interpreting the value of a metric on a particular data set requires some thinking ...

5. Misleading interpretation of a metric value!
What Could Possibly Go Wrong?

1. Bad feature representation
2. Bad data + misleading correlations
3. Noisy labels for training and testing
4. Bad learning algorithm
5. Misleading evaluation metric
Outline

Introductions

What is Text Data Mining?

Predictive Analysis of Text: The Big Picture

Exploratory Analysis of Text: The Big Picture

Applications
Text Data Mining in this Course

• Predictive Analysis of Text
 ‣ developing computer programs that automatically recognize a particular concept within a span of text

• Exploratory Analysis of Text:
 ‣ developing computer programs that automatically discover useful patterns or trends in text collections
Exploratory Analysis
example: clustering shapes
Exploratory Analysis
example: clustering shapes
Exploratory Analysis
example: clustering shapes

unlabeled examples

clustering algorithm
Exploratory Analysis

representation: features

<table>
<thead>
<tr>
<th>color</th>
<th>size</th>
<th># sides</th>
<th>equal sides</th>
<th>...</th>
<th>shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>big</td>
<td>3</td>
<td>no</td>
<td></td>
<td>triangle</td>
</tr>
<tr>
<td>blue</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>triangle</td>
</tr>
<tr>
<td>red</td>
<td>small</td>
<td>inf</td>
<td>yes</td>
<td></td>
<td>circle</td>
</tr>
<tr>
<td>green</td>
<td>small</td>
<td>4</td>
<td>yes</td>
<td></td>
<td>square</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blue</td>
<td>big</td>
<td>3</td>
<td>yes</td>
<td></td>
<td>triangle</td>
</tr>
</tbody>
</table>
Exploratory Analysis
basic ingredients

1. **Data**: a set of examples that we want to automatically analyze in order to discover interesting trends

2. **Representation**: a set of features that we believe are useful in describing the data (i.e., important attributes)

3. **Similarity Metric**: a measure of similarity between two examples that is based on their feature values

4. **Clustering algorithm**: an algorithm that assigns items with similar feature values to the same group
Representation
what could possibly go wrong?
Representation
what could possibly go wrong?
Exploratory Analysis
basic ingredients: the focus in this course

1. **Data**: a set of examples that we want to automatically analyze in order to discover interesting trends

2. **Representation**: a set of features that we believe are useful in describing the data

3. **Similarity Metric**: a measure of similarity between two examples that is based on their feature values

4. **Clustering algorithm**: an algorithm that assigns items with similar feature values to the same group
Text Data Mining in this Course

• Predictive Analysis of Text
 ‣ developing computer programs that automatically recognize or detect a particular concept within a span of text

• Exploratory Analysis of Text:
 ‣ developing computer programs that automatically discover interesting and useful patterns or trends in text collections
Outline

Introductions

What is Text Data Mining?

Predictive Analysis of Text: The Big Picture

Exploratory Analysis of Text: The Big Picture

Applications
Predictive Analysis of Text
examples we’ll cover in class

- Topic Categorization
- Opinion Mining
- Sentiment/Affect Analysis
- Bias Detection
- Information Extraction and Relation Learning
- Text-driven Forecasting
- Temporal Summarization
Predictive Analysis of Text
example applications

• **Topic Categorization:** automatically assigning documents to a set of pre-defined topical categories
<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts</td>
<td>Movies, Television, Music...</td>
</tr>
<tr>
<td>Games</td>
<td>Video Games, RPGs, Gambling...</td>
</tr>
<tr>
<td>Kids and Teens</td>
<td>Arts, School Time, Teen Life...</td>
</tr>
<tr>
<td>Reference</td>
<td>Maps, Education, Libraries...</td>
</tr>
<tr>
<td>Shopping</td>
<td>Clothing, Food, Gifts...</td>
</tr>
<tr>
<td>World</td>
<td>Català, Dansk, Deutsch, Español, Français, Italiano, 日本語, Nederlands, Polski, Русский, Svenska...</td>
</tr>
<tr>
<td>Business</td>
<td>Jobs, Real Estate, Investing...</td>
</tr>
<tr>
<td>Health</td>
<td>Fitness, Medicine, Alternative...</td>
</tr>
<tr>
<td>Computers</td>
<td>Internet, Software, Hardware...</td>
</tr>
<tr>
<td>Home</td>
<td>Family, Consumers, Cooking...</td>
</tr>
<tr>
<td>Recreation</td>
<td>Travel, Food, Outdoors, Humor...</td>
</tr>
<tr>
<td>Regional</td>
<td>US, Canada, UK, Europe...</td>
</tr>
<tr>
<td>Science</td>
<td>Biology, Psychology, Physics...</td>
</tr>
<tr>
<td>Sports</td>
<td>Baseball, Soccer, Basketball...</td>
</tr>
</tbody>
</table>
Topic Categorization

Arts
- Movies
- Television
- Music

Games
- Video Games
- RPGs
- Gambling

Kids and Teens
- Arts
- School Time
- Teen Life

Reference
- Maps
- Education
- Libraries

Shopping
- Clothing
- Food
- Gifts

World
- Català
- Dansk
- Deutsch
- Español
- Français
- Italiano
- 日本語
- Nederlands
- Polski
- Русский
- Svenska
Predictive Analysis of Text
example applications

- Opinion Mining: automatically detecting whether a span of opinionated text expresses a positive or negative opinion about the item being judged
Opinion Mining
movie reviews

• “Great movie! It kept me on the edge of my seat the whole time. I IMAX-ed it and have no regrets.”
 positive

• “Waste of time! It sucked!”
 negative

• “This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can’t hold up.”
 negative

• “Trust me, this movie is a masterpiece after you’ve seen it 4+ times.”
 ???
Predictive Analysis of Text

example applications

- **Sentiment/Affect Analysis**: automatically detecting the emotional state of the author of a span of text (usually from a set of pre-defined emotional states).
Sentiment Analysis
support group posts

• “[I] also found out that the radiologist is doing the biopsy, not a breast surgeon. I am more scared now than when I ...”

• “... My radiologist ‘assured’ me my scan was NOT going to be cancer...she was wrong.”

• “... My radiologist did my core biopsy. Not a problem and he did a super job of it.”

• “It's pretty standard for the radiologist to do the biopsy so I wouldn't be concerned on that score.”

fear
despair
hope
Bias detection: automatically detecting whether the author of a span of text favors a particular viewpoint (usually from a set of pre-defined viewpoints)
Bias Detection

• “Coming [up] next, drug addicted pregnant women no longer have anything to fear from the authorities thanks to the Supreme Court. Both sides on this in a moment.” -- Bill O’Reilly

• “Nationalizing businesses, nationalizing banks, is not a solution for the democratic party, it's the objective.” -- Rush Limbaugh

• “If you're keeping score at home, so far our war in Iraq has created a police state in that country and socialism in Spain. So, no democracies yet, but we're really getting close.” -- Jon Stewart
Information extraction: automatically detecting that a short sequence of words belongs to (or is an instance of) a particular entity type, for example:

- Person(X)
- Location(X)
- TennisPlayer(X)
- ...

Predictive Analysis of Text
example applications
• **Relation Learning**: automatically detecting pairs of entities that share a particular relation, for example:
 - CEO(<person>,<company>)
 - Capital(<city>,<country>)
 - Mother(<person>,<person>)
 - ConvictedFelon(<person>,<crime>)
 - ...
Relation Learning

CEO(<person>,<company>)

<person>, who was named CEO of <company>
Relation Learning
CEO(<person>,<company>)

DailyTech - Fisker Appoints New CEO, Eliminates Battery/Engine...
4 days ago – Tom LaSorda, who was named CEO of Fisker back in February 2012 when founder Henrik Fisker stepped down, is leaving the company, but ...

who was named CEO of Yahoo on Monday. Christian Science Monitor
gtp123.com/.../who-was-named-ceo-of-yahoo-on-monday-christian--...
Jul 17, 2012 – You are browsing the archive for who was named CEO of Yahoo on Monday. Christian Science Monitor. Avatar of Garland E. Harris ...

CEO of renamed Sara Lee meat biz chooses Winnetka - Residential...
www.chicagorealestateldaily.com › Home › Residential News
Aug 7, 2012 – Sean Connolly, who was named CEO of Hillshire Brands Co. in January, declines to comment through a company spokesman. Records show ...

Who is the woman who was named CEO of Gilt Groupe in Septem...
askville.amazon.com › Miscellaneous › Popular News
Askville Question: Who is the woman who was named CEO of Gilt Groupe in September? : Popular News.

Tom McKillop - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Tom_McKillop
Sir Thomas Fulton Wilson "Tom" McKillop, FRS (born 19 March 1943) is a Scottish chemist, who was named CEO of AstraZeneca PLC in 1999 (retired 1 January ...

Harrison adjusts to view from top at First Hawaiian - Pacific Business...
www.bizjournals.com/.../harrison-adjusts-to-view-from-top-at.html?...
Jan 27, 2012 – Bob Harrison, who was named CEO of First Hawaiian Bank on Jan. 1, says he'll spend a lot of time focusing on his people and community ...

CEO(Tom LaSorda, Fisker)
CEO(Sean Connolly, Hillshire Brands)
CEO(woman, Gilt Groupe)
CEO(Scottish chemist, AstraZeneca)
CEO(Bob Harrison, First Hawaiian Bank)
Predictive Analysis of Text
example applications

• **Text-based Forecasting:** monitoring incoming text (e.g., tweets) and making predictions about external, real-world events or trends, for example:
 ‣ a presidential candidate’s poll rating
 ‣ a company’s stock value change
 ‣ a movie’s box office earnings
 ‣ side-effects for a particular drug
 ‣ ...

Predictive Analysis of Text example applications

- **Temporal Summarization:** monitoring incoming text (e.g., tweets) about a news event and predicting whether a sentence should be included in an on-going summary of the event.

- Updates to the summary should contain relevant, novel, and accurate information. S_{t-1}

(Diagram from Guo et al., ECIR 2013)
Detecting other interesting properties of text: [insert your crazy idea here], for example, detecting humorous text:

- “Beauty is in the eye of the beholder” not funny
- “Beauty is in the eye of the beer holder” funny

(example from Mihalcea and Pulman, 2007)
Outline

Introductions

What is Text Data Mining?

Predictive Analysis of Text: The Big Picture

Exploratory Analysis of Text: The Big Picture

Applications
Course Overview
Road Map
first half of the semester

- Predictive Analysis of Text
 - Supervised machine learning principles
 - Text representation
 - Feature selection
 - Machine learning algorithms
 - Tools for predictive analysis of text
 - Experimentation and evaluation

- Exploratory Analysis of Text
 - Clustering
Road Map
second half of the semester

• Applications
 ‣ Text classification
 ‣ Opinion mining
 ‣ Sentiment analysis
 ‣ Discourse analysis
 ‣ Bias detection
 ‣ Text-based forecasting

• Is there anything that you would like to learn more about?
Grading

- 30% homework
 - 10% each
- 20% midterm
- 40% term project
 - 5% proposal
 - 10% presentation
 - 25% paper
- 10% participation
Participation

- Attendance **is not optional**
- Be “present” during class
- Avoid multi-tasking
- Ask questions
- Challenge the material
- You’re the most important part of the course, take ownership of it
Grading for Graduate Students

- H: 95-100%
- P: 80-94%
- L: 60-79%
- F: 0-59%
Grading for Undergraduate Students

- A+: 97-100%
- A: 94-96%
- A-: 90-93%
- B+: 87-89%
- B: 84-86%
- B-: 80-83%
- C+: 77-79%
- C: 74-76%
- C-: 70-73%
- D+: 67-69%
- D: 64-66%
- D-: 60-63%
- F: <= 59%
General Outline of Homework

• Given a dataset (i.e., a training and test set), run experiments where you try to predict the target class using different feature representations

• Do error analysis

• Report on what worked, what didn’t, and why!

• Answer essay questions about the assignment
 ‣ These will be associated with the course material
Course Tips

• Work hard
• Do the assigned readings
• Do other readings
• Be patient and have reasonable expectations
 ‣ you’re not supposed to understand everything we cover in class during class
• Seek help sooner rather than later
 ‣ office hours: by appointment
 ‣ questions via email
• Remember the golden rule: no pain, no gain
Questions?