Experimentation

Jaime Arguello
INLS 613: Text Data Mining

jarguell@email.unc.edu

Outline

Parameter Tuning

Cross-Validation

Significance tests

Evaluation

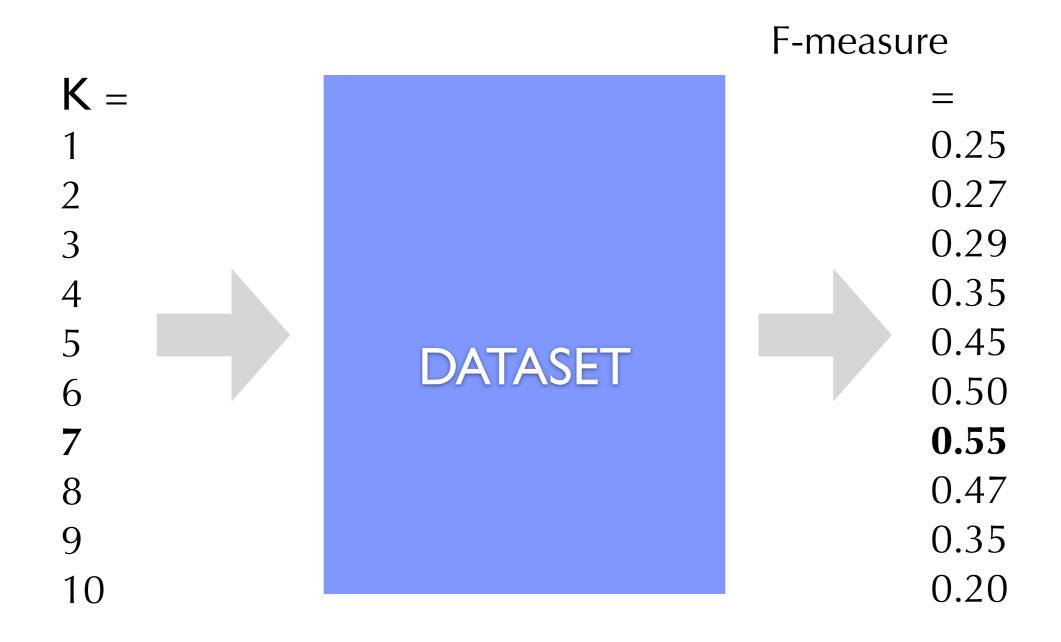
- The goal of evaluation is to determine a model's performance on previously unseen data
 - Parameter-tuning
 - Comparing between alternative approaches
 - Feature-ablation studies

Parameter Tuning motivation

- Supervised machine learning algorithms have lots of moving parts
- We can think of these parameters as "knobs" that need to be tweaked or tuned
- The goal is to set these parameter values such that we maximize performance
- We need to do this for both systems, not just the one we want to win!
- Can you think of some example parameters?

- K-nearest Neighbor
 - Compute the similarity between a previously unseen instance and all the instances in the training set
 - Assign the majority class associated with its K nearest neighbors
- Parameter K determines the number of training set instances that are used in the voting
- Goals:
 - How do we set K?
 - What is the expected performance of the system with a good value of K?

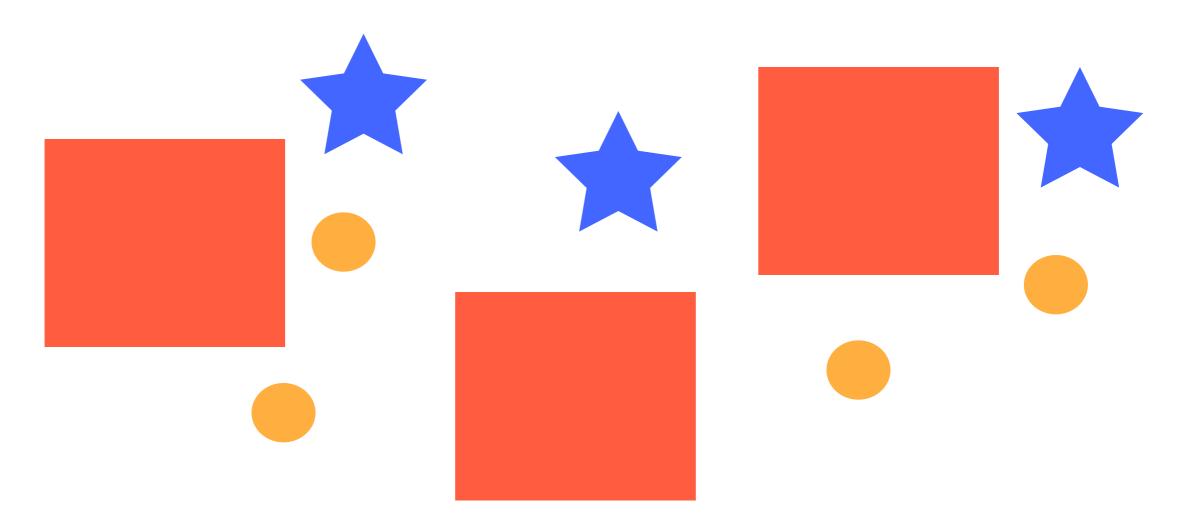
- How should we determine the value of K?
- Option -1: roll the dice, close your eyes, and hope for the best
- Option 0: take a conservative guess (e.g., K = 5)?
- Option 1: try out a range of values (e.g., K = 1, 5, 10, 20, 50, 100) and set it to the value that maximizes performance based on a sensible metric?



Why is this a bad idea?

Parameter Tuning toy example

Objective: distinguish between stars, squares, and circles



• Parameters: the relative importance between (1) size, (2) color, and (3) number of sides

- The goal is to set parameter values such that we maximize performance
- What is the performance that we are really interested in?
- We care about performance on <u>previously unseen</u> data
- We care about generalization performance!
- Our training set may contain regularities that are not meaningful
- We care about those regularities that are meaningful for the overall population!

• Option 2:

- 1. divide the data set into two sets
 - training set: a set used to find the best parameter values (e.g., 80%)
 - test set: a held-out set used to evaluate model performance (e.g., 20%)
- 2. train: find the parameter value that maximize performance on the training set
- 3. test: evaluate the model (with the best training-set parameter value) on the test set

- Split the data into two sets.
- Find the parameter value that maximizes performance on the training set.
- Evaluate the system with that parameter value on the test set.

TRAINING SET (80%)

TEST SET (20%)

K = 5

F = 0.50

- Split the data into two sets.
- Find the parameter value that maximizes performance on the training set.
- Evaluate the system with that parameter value on the test set.

TRAINING SET (80%)

K = 5

TEST SET (20%)

F = 0.50

Advantages and Disadvantages?

Single Train/Test Split

Advantage

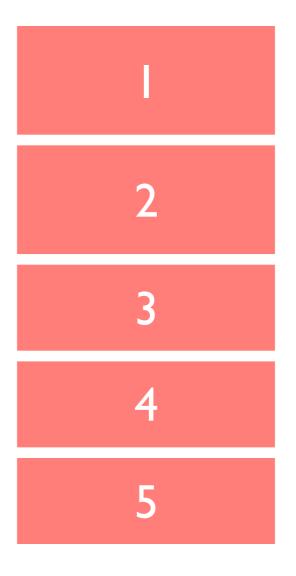
- the data used to find the optimal parameter value is not the same data used to test!
- we are testing generalization performance.

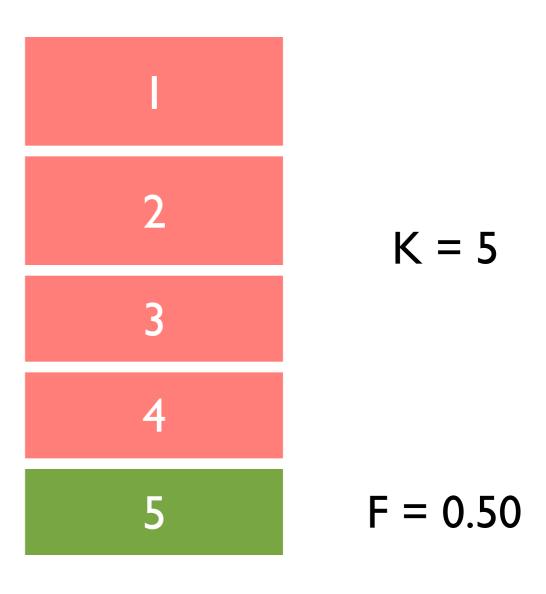
Disadvantage

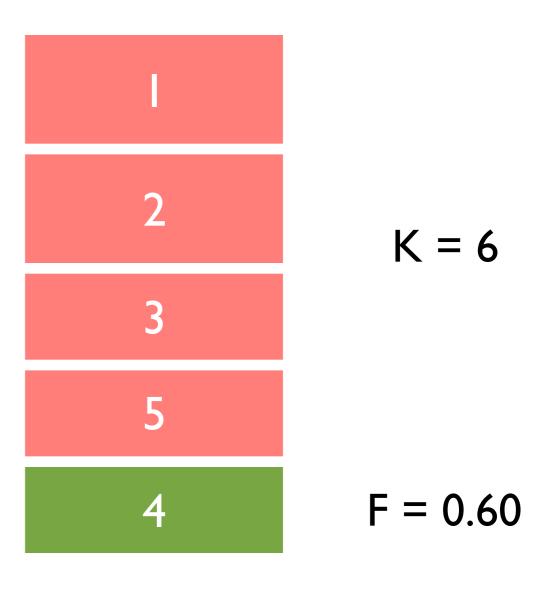
- we are putting all our eggs in one basket!
- out of pure coincidence, the training set may have regularities that don't generalize to the test set

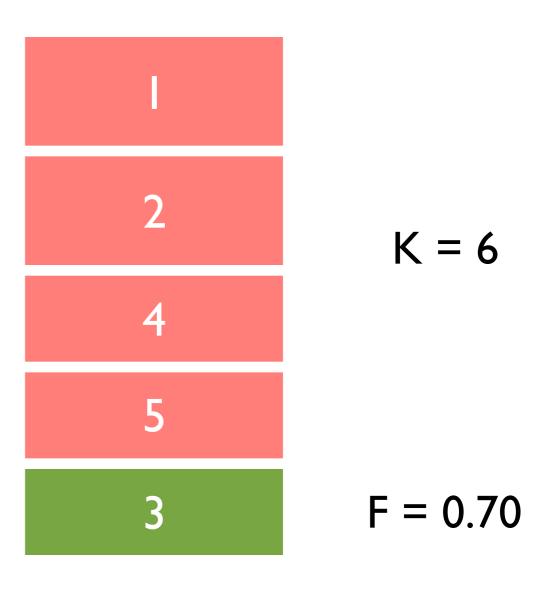
- Option 3: cross-validation
 - 1. divide the data into N sets of instances
 - 2. use the union of N-1 sets to find the best parameter values
 - 3. measure performance (using the best parameters) on the held-out set
 - 4. do steps 2-3 N times
 - 5. average performance across the N held-out sets
- This is called N-fold cross-validation (usually, N=10)

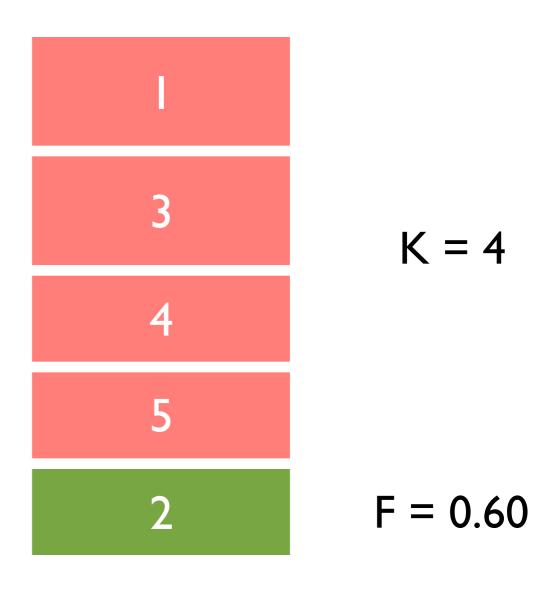
• Split the data into N = 5 folds

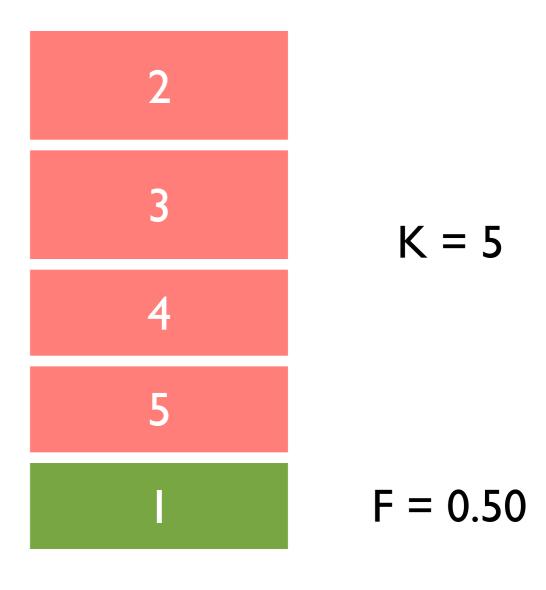




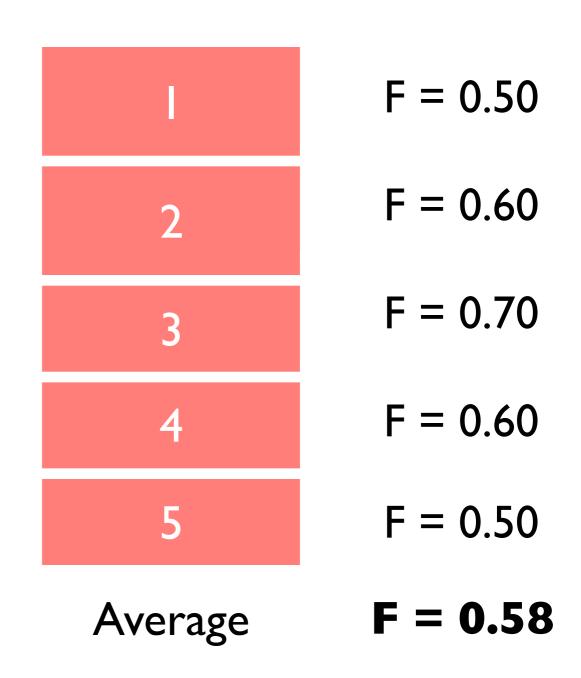




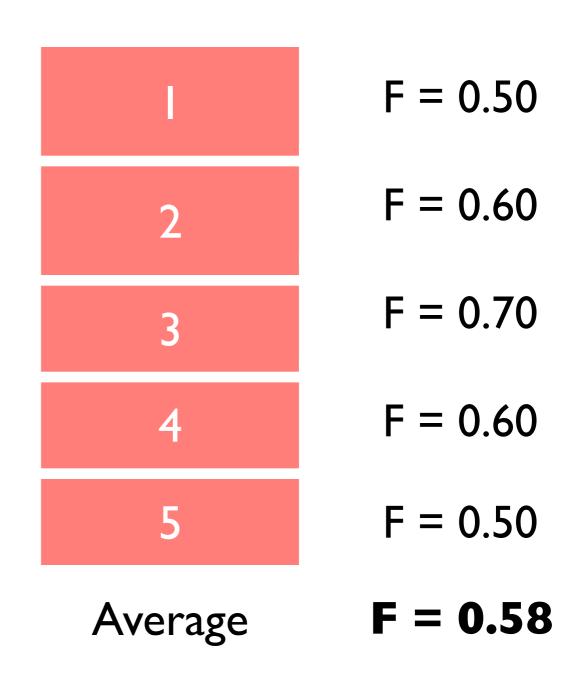




 Average the performance across held-out folds



 Average the performance across held-out folds



Advantages and Disadvantages?

N-Fold Cross-Validation

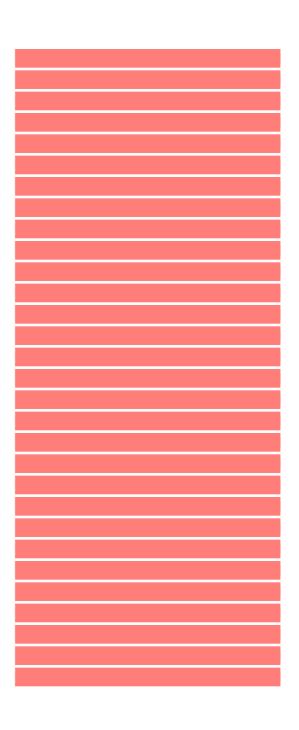
Advantage

multiple rounds of generalization performance.

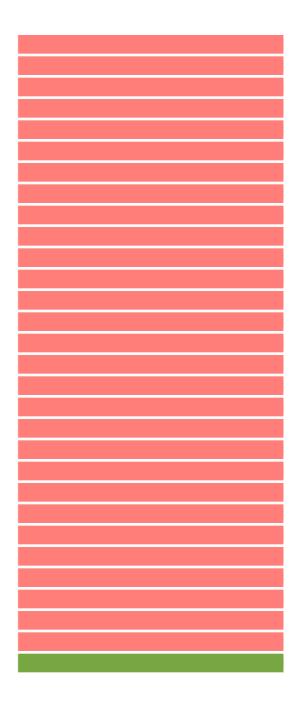
Disadvantage

- ultimately, we'll tune parameters on the whole dataset and send our system into the world.
- a model trained on 100% of the data should perform better than one trained on 80%.
- thus, we may be underestimating the model's performance!

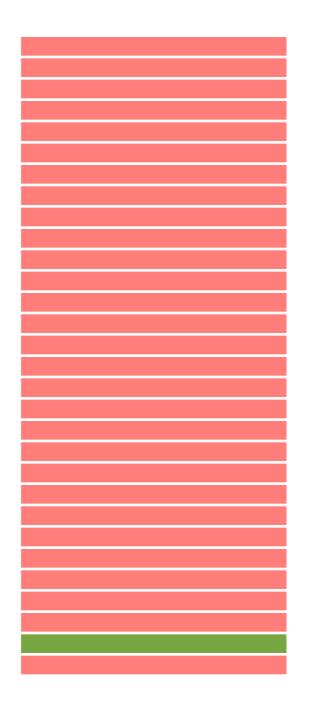
 Split the data into N folds of 1 instance each



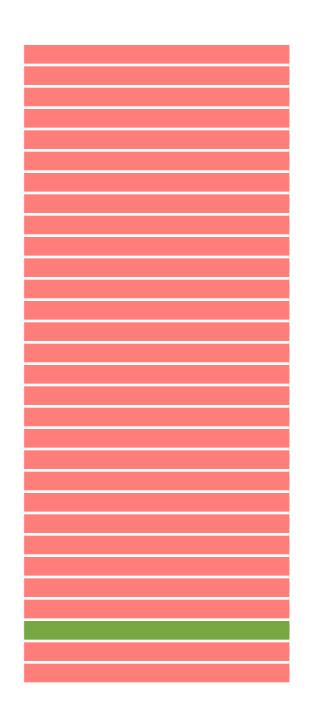
 For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.



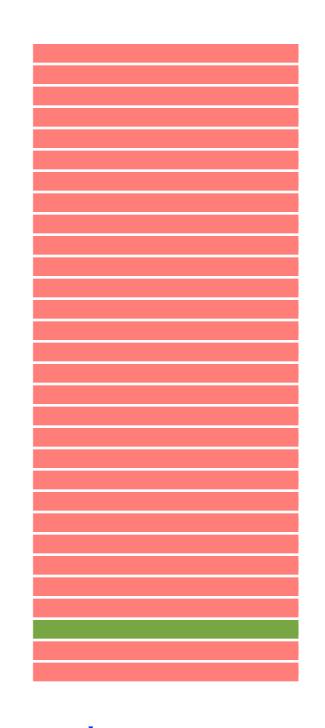
 For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.



- For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.
- And so on ...
- Finally, average the performance for each held-out instance



- For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.
- And so on ...
- Finally, average the performance for each held-out instance



Advantages and Disadvantages?

Advantages

- multiple rounds of generalization performance.
- each training fold is as similar as possible to the one we will ultimately use to tune parameters before sending the system out into the world.

Disadvantage

- our estimate of generalization performance may still be artificially high
- why?

Advantages

- multiple rounds of generalization performance.
- each training fold is as similar as possible to the one we will ultimately use to tune parameters before sending the system out into the world.

Disadvantage

- our estimate of generalization performance may still be artificially high
- we are likely to try lots of different things and pick the one with the best "generalization" performance
- still indirectly over-training to the dataset (sigh...)

Experimentation

Jaime Arguello
INLS 613: Text Data Mining

jarguell@email.unc.edu

Outline

Parameter Tuning

Cross-Validation

Significance tests

Comparing Systems

	Train and test both	Fold	System A	System B
		1	0.2	0.5
	systems using 10-	2	0.3	0.3
	fold cross validation	3	0.1	0.1
•	Use the same folds	4	0.4	0.4
	for both systems	5	1	1
	TOT DOTT SYSTEMS	6	0.8	0.9
•	Compare the	7	0.3	0.1
	difference in average	8	0.1	0.2
	performance across	9	O	0.5
	held-out folds	10	0.9	0.8
		Average	0.41	0.48
			Difference	0.07

Significance Tests motivation

- Why would it be risky to conclude that System B is better System A?
- Put differently, what is it that we're trying to achieve?

Significance Tests motivation

- In theory: that the average performance of System B is greater than the average performance of System A for all possible test sets.
- However, we don't have all test sets. We have a sample
- And, this sample may favor one system vs. the other!

Significance Tests definition

 A significance test is a statistical tool that allows us to determine whether a difference in performance reflects a true pattern or just random chance

Significance Tests ingredients

- Test statistic: a measure used to judge the two systems (e.g., the difference between their average F-measure)
- Null hypothesis: no "true" difference between the two systems
- P-value: take the value of the observed test statistic and compute the probability of observing a value that large (or larger) <u>under the null hypothesis</u>

Significance Tests ingredients

- If the p-value is large, we cannot reject the null hypothesis
- That is, we cannot claim that one system is better than the other
- If the p-value is small (p<0.05), we can reject the null hypothesis
- That is, the observed test statistic is not due to random chance

Comparing Systems

Fold

System A System B 0.2 0.5 P-value: the probability 0.3 0.3 of observing a 0.10.1difference equal to or 0.4 0.4 greater than 0.07 8.0 0.9under the null 0.3 0.1 hypothesis (i.e., the 8 0.1 0.2 systems are actually 0.5 equally good). 10 0.9 8.0 0.41 0.48 Average Difference 0.07

Fisher's Randomization Test procedure

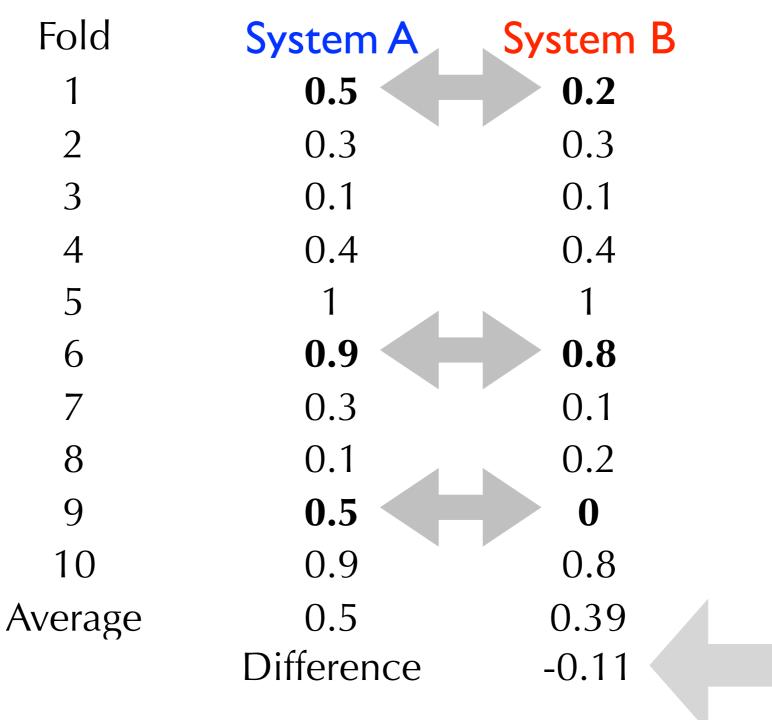
- **Inputs:** counter = 0, N = 100,000
- Repeat N times:

Step 1: for each fold, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment counter

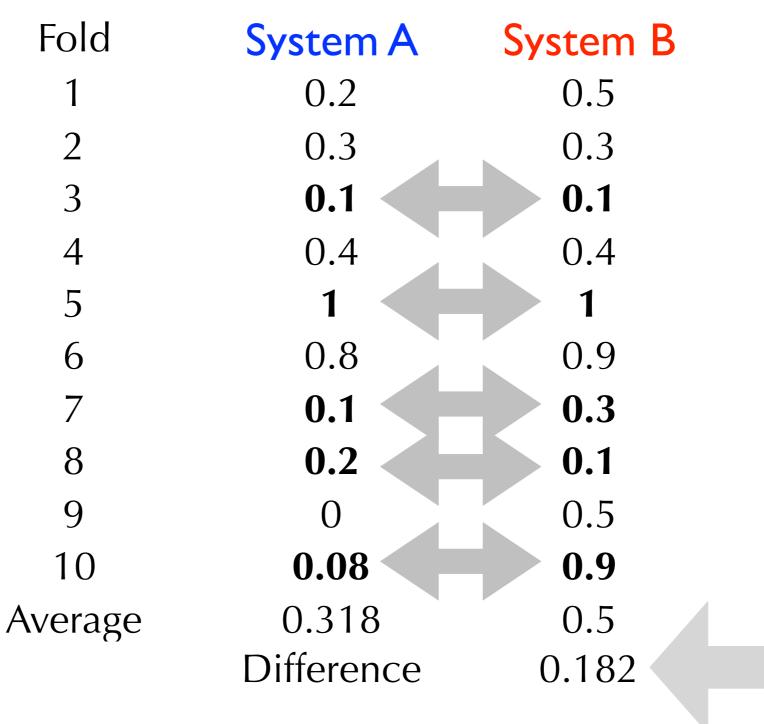
Output: counter / N

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	O	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07



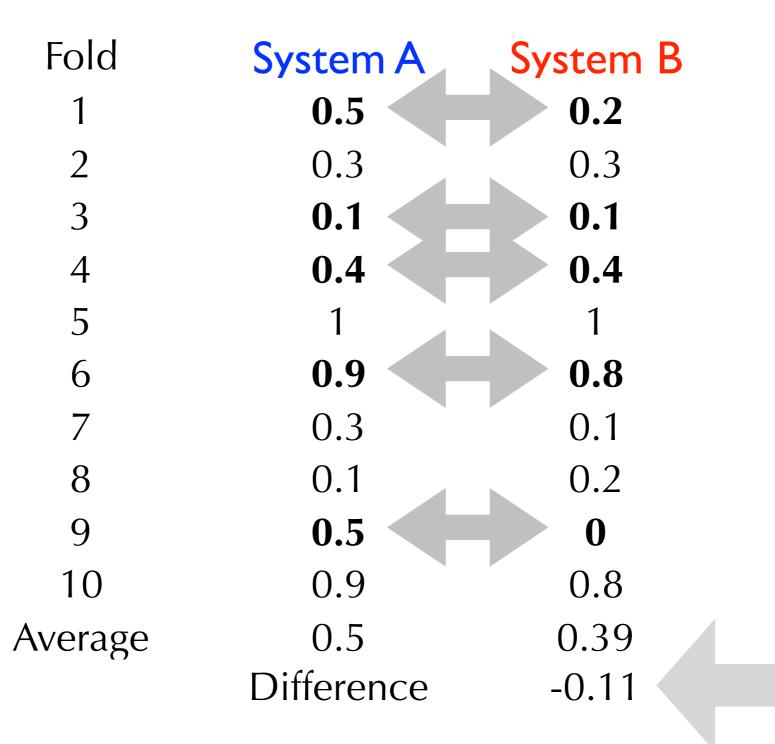
at least 0.07?

iteration = I counter = 0



at least 0.07?

iteration = 2 counter = I



at least 0.07?

iteration = 100,000

counter = 25,678

Fisher's Randomization Test procedure

- **Inputs:** counter = 0, N = 100,000
- Repeat N times:

Step 1: for each query, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment counter

• Output: counter / N = (25,678/100,00) = 0.25678

- Under the null hypothesis, the probability of observing a value of the test statistic of 0.07 or greater is about 0.26.
- Because p > 0.05, we cannot confidently say that the value of the test statistic is <u>not</u> due to random chance.
- A difference between the average F-measure values of 0.07 is not significant

Fisher's Randomization Test procedure

- **Inputs:** counter = 0, N = 100,000
- Repeat N times:
 - **Step 1:** for each query, flip a coin and if it lands 'heads', flip the result between System A and B
 - **Step 2:** see whether the test statistic is equal to or greater than the one observed and, if so, increment counter
- Output: counter / N = (25,678/100,00) = 0.25678

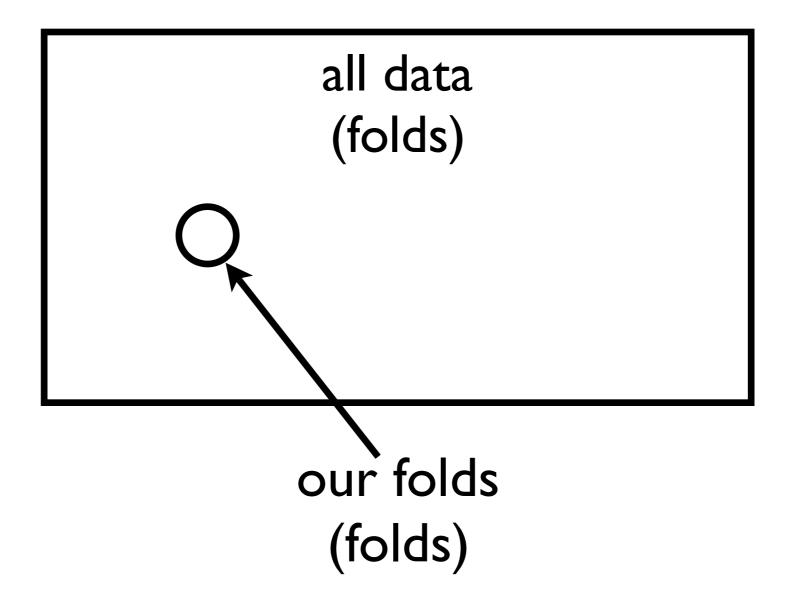
This is a one-tailed test (B > A). How can we modify it to be a two-tailed test (B != A)

Fisher's Randomization Test procedure

Fold System A System B 0.2 0.5 P-value: the probability 0.3 0.3 of observing a 0.10.1difference in the 0.4 0.4 absolute value equal to 5 or greater than 0.07 8.0 0.9under the null 0.3 0.1 hypothesis (i.e., the 8 0.1 0.2 systems are actually 9 0.5 10 0.9 8.0 equal). 0.41 0.48 Average 0.07 Difference

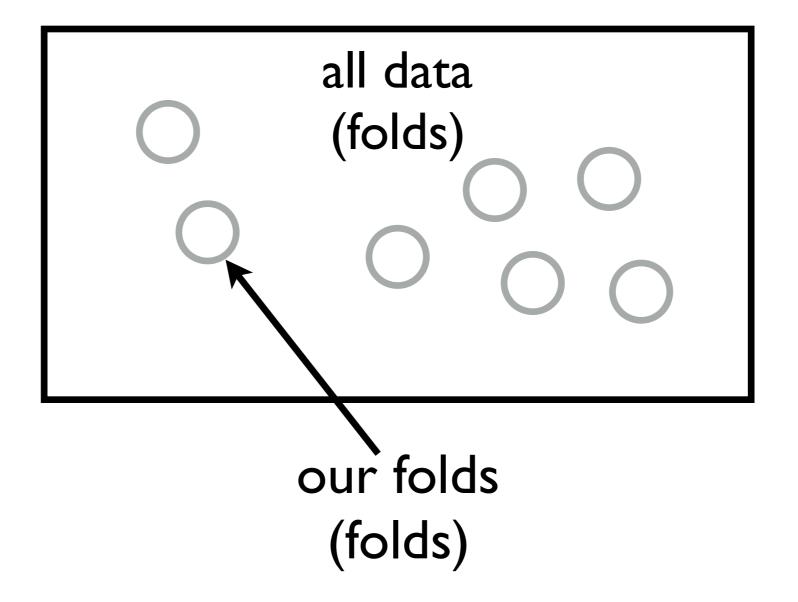
Bootstrap-Shift Test motivation

Our sample is a representative sample of all data



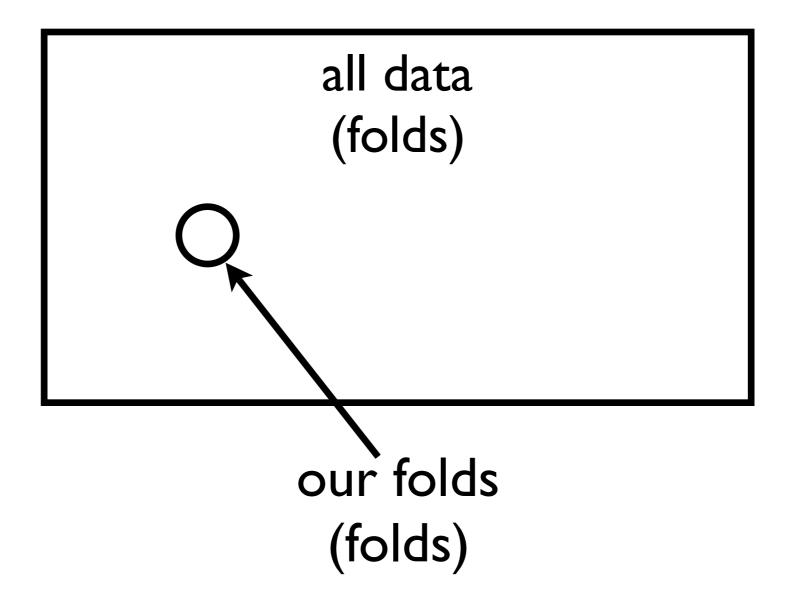
Bootstrap-Shift Test motivation

Our sample is a representative sample of all data



motivation

• If we sample (with replacement) from our sample, we can generate a new representative sample of all data



- **Inputs:** Array $T = \{\}$, N = 100,000
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to T

- Step 3: compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by <u>average</u>
- Output: % of numbers in T greater than or equal to the observed test statistic

- **Inputs:** Array $T = \{\}$, N = 100,000
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to T

- Step 3: compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by average
- Output: % of numbers in T greater than or equal to the observed test statistic

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	O	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Fold	System A	System B	sample
1	0.2	0.5	0
2	0.3	0.3	1
3	0.1	0.1	2
4	0.4	0.4	2
5	1	1	0
6	0.8	0.9	1
7	0.3	0.1	1
8	0.1	0.2	1
9	O	0.5	2
10	0.9	8.0	0

Fold	System A	System E	3	
2	0.3	0.3		
3	0.1	0.1		
3	0.1	0.1		
4	0.4	0.4		
4	0.4	0.4		
6	0.8	0.9		
7	0.3	0.1		
8	0.1	0.2		
9	0	0.5		
9	0	0.5		
Average	0.25	0.35		
- 7	Difference	0.1		$T = \{0.10\}$
	iteratio	on = I		

sample	System B	System A	Fold
0	0.5	0.2	1
0	0.3	0.3	2
3	0.1	0.1	3
2	0.4	0.4	4
0	1	1	5
1	0.9	0.8	6
1	0.1	0.3	7
1	0.2	0.1	8
1	0.5	0	9
1	0.8	0.9	10

$$T = \{0.10\}$$

Fold	System A	System	В	
3	0.1	0.1		
3	0.1	0.1		
3	0.1	0.1		
4	0.4	0.4		
4	0.4	0.4		
6	0.8	0.9		
7	0.3	0.1		
8	0.1	0.2		
9	O	0.5		
10	0.9	0.8		
Average	0.32	0.36		$T = \{0.10,$
	Difference	0.04		0.04
	iteratio	on = 2		U.U4 }

Fold	System A	System B
1	0.2	0.5
1	0.2	0.5
4	0.4	0.4
4	0.4	0.4
4	0.4	0.4
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
8	0.1	0.2
10	0.9	0.8
Average	0.38	0.44
	Difference	0.06
	iteration :	= 100,000

T = {0.10, 0.04,,

- Inputs: Array $T = \{\}$, N = 100,000
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to T

- **Step 3:** compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by <u>average</u>
- Output: % of numbers in T' greater than or equal to the observed test statistic

• For the purpose of this example, let's assume N = 10.

- Inputs: Array $T = \{\}$, N = 100,000
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to T

- Step 3: compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by average
- Output: % of numbers in T' greater than or equal to the observed test statistic

• Output: (3/10) = 0.30

Average = 0.12

• Output: (3/10) = 0.30

Average = 0.12

Significance Tests

summary

- Significance tests help us determine whether the outcome of an experiment signals a "true" trend
- The null hypothesis is that the observed outcome is due to random chance (sample bias, error, etc.)
- There are many types of tests
- Parametric tests: assume a particular distribution for the test statistic under the null hypothesis
- Non-parametric tests: make no assumptions about the test statistic distribution under the null hypothesis
- The randomization and bootstrap-shift tests make no assumptions, are robust, and easy to understand