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Linear Interpolation
Review

n

score(Q, D) = | [ (AP(4i|D) + (1 = A)P(4i]C))

1

P(gi|D) = probability given to query term qgi by the
document language model

P(gi|C) = probability given to query term qgi by the
collection language model



Linearly Interpolated Smoothing
Review

Doc 1: haikus are easy
Doc 2: but sometimes they don’t make sense
Doc 3: refrigerator

Query: haikus make sense

n

score(Q, D) = ]1 (AP(qi|D) + (1 = A)P(g:|C))

(source: threadless t-shirt)



Let’s Take A Step Back

e The query likelihood model has a more theoretic
motivation than I've portrayed so far



Bayes’ Law




Bayes’ Law

(source: wikipedia)



Bayes’ Law Derivation

P(A,B) = P(A|B) x P(B)
P(A,B) = P(B|A) x P(A)
P(A,B) = P(A, B)
P(A|B) x P(B) = P(B|A) x P(A)







If we're scoring and ranking
documents based on this formula,
which number doesn’t matter?
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Query-likelihood Retrieval Model

e Dividing every document score by the same number
doesn’t change the ranking of documents ...

* So, we can ignore the denominator P(Q)

Q|D) x P(D)
P(Q)

p(D|Q) = X

P(D[Q) « P(Q|D) x P(D)

N

query-likelihood score document prior
(you already know this) (new concept)



Document Prior

P(D|Q) o P(Q|D) x P(D)

/ AN

query-likelihood score document prior
(you already know this) (new concept)

e The document prior, P(D), is the probability that the
document is relevant to any query

e Itis a document-specific probability

e Itis a query-independent probability
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Document Prior
P(D|Q) < P(Q|D) x P(D)

/ AN

query-likelihood score document prior
(you already know this) (this is a new concept)

Unknowingly, so far we've assumed that P(D) is the
same for all documents

Under this assumption, the ranking is based only on the
query-likelihood given the document language model

Now, we will assume that P(D) is not uniform

That is, some documents are more likely to be relevant
independent of the query
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Document Prior
P(D|Q) «< P(Q|D) x P(D)

e What is it?

e Anything that affects the likelihood that a document is
relevant to any query

» document popularity

» document authority

» amount of content (e.g., length)
» topical cohesion

» really, you decide ...



Document Prior
P(D|Q) «< P(Q|D) x P(D)

e But, it is a probability, so in a collection of M
documents...

M
;P(Di) =?

|5



BEATLES




Document Prior
P(D|Q) «< P(Q|D) x P(D)

e Not that difficult...
score(D;)
y M. score(D;)

P(D;) =

|7



Document Prior
P(D|Q) «< P(Q|D) x P(D)

e What is it?

e Anything that affects the likelihood that a document is
relevant to any query

» document popularity

» document authority

» amount of content (e.g., length)
» topical cohesion

» really, you decide ...



Document Popularity

Given user-interaction data, we can determine the
popularity of a document based on clicks

Click-rate:

# of clicks on the document

# of clicks on any document
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Document Popularity
most clicked urls - aol query-log (2006)

rank  URL P(URL) [rank  URL P(URL)
I http://www.google.com 0.0204 |11 http://www.geocities.com  0.0022
2 http://www.myspace.com 0.0093 |12 http://www.hotmail.com 0.0022
3 http://mail.yahoo.com 0.0090 (13 http://www.ask.com 0.0021

4 http://en.wikipedia.org 0.0066 (14 http://www.bizrate.com 0.0017
5 http://www.amazon.com 0.0056 [I5 http://www.tripadvisor.com 0.0017
6 http://www.mapquest.com 0.0054 |16 http://www.msn.com 0.0017
7 http://www.imdb.com 0.0053 (17 http://profile.myspace.com 0.0016
8 http://www.ebay.com 0.0044 |I8 http://www.craigslist.org 0.0015
9 http://www.yahoo.com 0.0030 [I9 http://disney.go.com 0.0015
|10 http://www.bankofamerica.com 0.0027 |20 http://cgi.ebay.com 0.0015
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http://www.tripadvisor.com
http://www.yahoo.com

Document Popularity
least clicked urls - aol query-log (2006)

rank URL P(URL) |rank URL P(URL)
1501087 http://www.livedsoccer.com 0.0000 (1501097  http://www.toymod.com 0.0000
1501088 http://www.smalltowngallery.com 0.0000 [I1501098  http://www.aaabarcodes.com  0.0000
1501089 http://1239.8wmc5l.info 0.0000 |[1501099  http://www.stubaidirect.com 0.0000
1501090 http://silverjews.lyrics-online.net 0.0000 |[I1501100  http://rtbknox.no-ip.biz 0.0000
1501091 http://www?2.glenbrook.kl2.il.us 0.0000 (1501101 http://www.panontheweb.com 0.0000
1501092 http://www.palmerschools.org 0.0000 |[1501102  http://4395.bsxnf57.info 0.0000
1501093 htep:// | | 0.0000 |1501103  http://www.calco.com 0.0000
www.rainbowridgefarmeauestriancenter.com
1501094 http://mncable.net 0.0000 |1501104 http://www.sharpe.freshair.org 0.0000
1501095 http://www.modem-software.com 0.0000 |[I1501105 http://www.opium.co.za 0.0000
1501096 http://www.clevelandrugby.com 0.0000 [1501106 http://grediagnostic.ets.org 0.0000
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Document Popularity

http://www.unc.edu

http://www.unc.edu/about/history-traditions

Calendar | Libraries

== THE UNIVERSITY
” ” of NORTH CAROLINA
:l— at CHAPEL HILL

INFORMATION FOR

Prospective Students

Current Students

Faculty and Staff

Alumni

Parents

Visitors

e URL depth

Departments | MyUNC m

@ UNC.edu : People t Places

THE UNIVERSITY
af NORTH CAROLINA
at CHAPEL HILL

Home » About UNC » History & Traditions

Text: j ﬂ &

Celebrating 10 years of
the Thomas Wolfe iny
SCh(]larShip History and Traditions

* History
Studying Mandarin in Tapei to broaden * Logo and Licensing

research on Chinese-language cinema. * Landmarks
Writing a full-length book of poetry. ...
READ MORE »

* School Mascot

* Southern Roots

* University Colors
* University Day

* What's a Tar Heel?

News and Media

More Spotlight Stories

Contact Us

Calendar | Libraries |

Departments | MyUNC

®unceds (Jrecple () Places

B share|  Text: =] [+] &

History and
Traditions

Carolina's rich history has
yielded many traditions. Here,
you can learn about a few of the
most traditions that enable a
campus known for preparing
future leaders in touch with its
past.

Visit UNC-Chapel Hill:
INTERACTIVE TOUR =

» website entry-pages tend to be more popular than
those that are deep within the domain

e Count the number of “/” in the URL

22


http://www.unc.edu
http://www.unc.edu

»  blog search: number user-

» twitter search: number of

Document Authority

Number of “endorsements”

» scientific search: number
of citations in other papers

incoming hyperlinks

» web search: number of \ l /

generated comments

followers

»  review search: number of

times someone found the
review useful
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Document Authority
“HUB” score

» scientific search: number
citations of other papers

» web search: number of \ T /

outgoing hyperlinks

» blog search: number of Hll=
links to other bloggers / l \

»  twitter search: number of
neople followed by author

»  review search: number of
reviews written by the
reviewer
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Document Prior
P(D|Q) «< P(Q|D) x P(D)

e What is it?

e Anything that affects the likelihood that a document is
relevant to any query

» document popularity

» document authority

» amount of content (e.g., length)
» topical cohesion

» really, you decide ...



Topical Focus

e Example: blog retrieval

e Objective: favor blogs that focus on a coherent,
recurring topic

 How might we do this? (HINT: vector space model)

time
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Topical Focus

e Example: blog retrieval

e Objective: favor blogs that focus on a coherent,
recurring topic

 How might we do this? (HINT: vector space model)

A

vector representation of
entire blog (all posts)




Topical Focus

 How might we do this? (HINT: vector space model)

e Compute average cosine similarity between the

and the entire blog

vector representation of
entire blog (all posts)




Topical Focus

 How might we do this? (HINT: vector space model)

e Compute average cosine similarity between the
and the entire blog

vector representation of
entire blog (all posts)




Document Prior
P(D|Q) «< P(Q|D) x P(D)

e What is it?

e Anything you want.

4

4

4

document popularity
document authority

amount of content (e.g., length)
topical focus

really, you decide
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What document priors would you use?
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Remember Smoothing?

YOU: Are there mountain lions
around here?

YOUR FRIEND: Nope.
YOU: How can you be so sure?

YOUR FRIEND: Because l've
been hiking here five times
before and have never seen one.

MOUNTAIN LION: You should
have learned about smoothing
by taking INLS 509. Yum!
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Remember Smoothing?

* When estimating probabilities, we tend to ...
»  Over-estimate the probability of observed outcomes

» Under-estimate the probability of unobserved
outcomes

e The goal of smoothing is to ...
» Decrease the probability of observed outcomes
» Increase the probability of unobserved outcomes

e Smoothing P(D) is very important!
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Example: Click-Rate

# of clicks on the document

/ # of clicks on any document
P(D|Q) « P(Q|D) x P(D)

e Do we really want to always give documents that have
never been clicked a score of zero?

 How could we smooth this probability?
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Example: Click-Rate

# of clicks on the document

/ # of clicks on any document
P(D|Q) « P(Q|D) x P(D)

e Do we really want to always give documents that have
never been clicked a score of zero?

e Add-one smoothing!

(# of clicks on the document) + |

(# of clicks on any document) + (# of documents)
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