Course Overview

Jaime Arguello
jarguell@email.unc.edu
Course Objectives

- How do search engines work?
 - effectiveness and efficiency
- How do users behave with them?
 - how do users determine usefulness of information?
 - how can a search engine mimic this process?
- Why do search engines fail?
 - the user? the corpus? the system? something else?
- How can they be evaluated (off-line)?
- How can they be monitored and tuned (on-line)?
Why are these important questions?

• Most of the world’s information is in natural language text
 ‣ the world wide web
 ‣ scientific publications
 ‣ books
 ‣ social media interactions

• The amount of this information is growing quickly; human capacity is not (evolution doesn’t move that fast)

• We need smarter tools

• IR provides tools for analyzing and organizing content to facilitate search, discovery, and learning
Course Structure

- Information retrieval is an interdisciplinary problem

We need to understand both ends of the spectrum

- people who want to understand how computers can solve problems
- people who care about information retrieval
- people who want to understand how people behave with computers
Course Structure

- IR: computer-based solutions to a human problem

- Understanding IR systems requires math!

Diagram:
- The system
- The user
- First half of the semester
- Second half of the semester
Road Map

• Introduction to ad-hoc retrieval
 ‣ controlled vocabularies
 ‣ full-text indexing
• Boolean retrieval
• Indexing and query processing
• Statistical Properties of Text
• Document Representation
• Retrieval Models
 ‣ vector space model
 ‣ language modeling
 ‣ others (depending on how quickly we progress)
Road Map

• Evaluation
 ‣ test-collection construction
 ‣ evaluation metrics
 ‣ experimentation
 ‣ user studies
 ‣ search-log analysis
 ‣ A/B testing

• Studies of search behavior

• Federated Search (?)

• Clustering (?)

• Text Classification (?)
Grading

• 30% homework
 ‣ 10% each
• 15% midterm
• 15% final exam
• 30% literature review
 ‣ 5% proposal
 ‣ 10% presentation
 ‣ 15% paper
• 10% participation
Grading for Graduate Students

- H: 95-100%
- P: 80-94%
- L: 60-79%
- F: 0-59%
Grading for Undergraduate Students

- A+: 97-100%
- A: 94-96%
- A-: 90-93%
- B+: 87-89%
- B: 84-86%
- B-: 80-83%
- C+: 77-79%
- C: 74-76%
- C-: 70-73%

- D+: 67-69%
- D: 64-66%
- D-: 60-63%
- F: <= 59%
Homework vs. Midterm vs. Final

- The homework will be challenging. It should be, you have more time.
Literature Review

- See description on the syllabus
- Form groups of 3 or 4
- Choose an IR task (next slide)
- Write a short proposal (mostly for feedback)
- Review the literature
 - not just the different solutions to the problem
 - the best solutions to the problem!
- Write a paper (~30 pages double-spaced)
- Make a presentation
 - 10 minute presentation + 5 minutes Q&A
Literature Review

e
dexample tasks

- Personalized information retrieval
- Session-based information retrieval
- Clustering of search results
- Book search
- Multimedia search (over items not inherently associated with text)
- Social-media data for event-detection and forecasting
- Query-log analysis for event-detection and forecasting
- Faceted search
- Federated search
Literature Review tips

• Be thorough
• Be scientific
 ‣ don’t focus on the writing of the papers you review
 ‣ focus on the science (the method and the evaluation)
• Be constructive
• Contribute new insight and structure
 ‣ your literature review shouldn’t read like a “list”
 ‣ connect dots that haven’t been connected
• Say what you think!
Course Tips

- Work hard
- Do the assigned readings
- Do other readings
- Be patient and have reasonable expectations
 - you’re not supposed to understand everything we cover in class during class
- Seek help sooner rather than later
 - office hours: by appointment
 - questions via email
- Keep laptop usage to a minimum (live in the present)
Course Tips

- You are the most important part of the course!
- Teaching is not all I do ;-)!
Questions?