Syllabus
INLS 523_02W, Spring 2018, Data
base Systems I Online, Stephanie W. Haas

Instructor
Stephanie W. Haas
shaas at email dot unc dot edu

Acknowledgements
The design, materials, and implementation of this online version of INLS 523 is the product of a collaborative effort of SILS database instructors: Joan Boone, Rob Capra, Arcot Rajasekar, and myself.

Syllabus Contents
Course Description
Course Outline
Learning Objectives
Policies on Academic Integrity and Diversity
Grading Policies
Grade Components
Course Communications
Sakai

Course Description
INLS 523: Database Systems I: Introduction to Databases (3 credits)
Prerequisite:
- Undergraduates: INLS 161 (formerly 261) or equivalent.

Design and implementation of database systems. Semantic modeling, relational database theory, including normalization, query construction, and SQL.

This course will introduce the basic concepts and applications of relational database management systems, including semantic modeling and relational database theory. Topics include: user requirements and specifications, semantic data modeling, the relational model, SQL, normalization and data quality, and emerging technologies.

Course Outline
Startup
Introduction and Database Concepts
Entity-Relationship Models
Relational Theory and Concepts
SQL
Good Design
Functional Dependencies and Normalization
Data Quality
Wrapping up and Looking ahead
Learning Objectives

- Understand the basic concepts of databases, with emphasis on the relational model
- Gain experience with both the theoretical and practical aspects of database design and implementation.
- Develop proficiency with entity-relationship modeling.
- Be able to weigh, discuss, and justify database design decisions.
- Learn how to use SQL to create, manipulate and query databases
- Apply practical techniques for improving database design quality
- Gain an understanding of important ideas for databases in the future

Textbook

There is no required textbook for this course. Readings or links to readings will be included in the Sakai modules. The Tools and Resources document gives information about tools and resources you need for this course. I have suggested chapters from one textbook for those who would like to see additional examples or explanations of concepts and processes: Elmasri, R. & Navathe, S. (2011). Fundamentals of Database Systems, Sixth Edition, Addison-Wesley. We will use some examples from this textbook in the course.

The file E&NChapters.pdf in the Sakai/Resources/Official Documents folder contains suggestions for readings for each course module, as well as a crosswalk between chapters in the 4th, 5th, and 6th editions.

Policies on Academic Integrity and Diversity

Chapel Hill has had a student-administered honor system and judicial system for over 100 years. Because academic honesty and the development and nurturing of trust and trustworthiness are important to all of us as individuals, and are encouraged and promoted by the honor system, this is a most significant University tradition. More information is available at http://studentconduct.unc.edu/honor-system

The UNC Honor Code is in effect for all work in this course. Section II. B. of the “Instrument of Student Judicial Governance” gives examples of actions that constitute academic dishonesty: https://studentconduct.unc.edu/sites/studentconduct.unc.edu/files/documents/Instrument.pdf

Students often ask what is okay to talk about with other students and what is not. There are some specific guidelines for this course.

- I do encourage you to help each other learn the course material – your fellow students can often be a great resource for learning. For example, you could watch one of the videos together, and discuss the material it presents. However, you should not discuss the details of a solution to an ongoing assignment with other students, and should never copy or share answers for an assignment with other students. It is okay to talk about course material with other students, but you should not discuss solutions to pending assignments.
- All work you submit should be your own.
- You may give and receive assistance regarding the use of hardware and software. For example, you may ask or answer a question such as "how do I [fill in the blank] in SQLite?". A question such as "Should I have a separate table to represent cats and their information?" should be addressed to me.
- Individual homework assignments are to be done individually. You may consult the course materials, your notes, and even other print or web sources. (Keep in mind,
however, that what you find in other sources may not be consistent with what I want you to do.) You may not consult your classmates or other people; all questions should be addressed to me.

- You must sign (check) the honor statement when you submit each assignment. This confirms that you and the work conforms to the Honor Code.

In support of the University’s diversity goals and the mission of the School of Information and Library Science, SILS embraces diversity as an ethical and societal value. We broadly define diversity to include race, gender, national origin, ethnicity, religion, social class, age, sexual orientation and physical and learning ability. As an academic community committed to preparing our graduates to be leaders in an increasingly multicultural and global society we strive to:

- Ensure inclusive leadership, policies, and practices;
- Integrate diversity into the curriculum and research;
- Foster a mutually respectful intellectual environment in which diverse opinions are valued;
- Recruit traditionally underrepresented groups of students, faculty and staff; and
- Participate in outreach to underserved groups in the State.

The statement represents a commitment of resources to the development and maintenance of an academic environment that is open, representative, reflective and committed to the concepts of equity and fairness.
Grading Policies
The following grade scale will be used AS A GUIDELINE (subject to any curve) for **undergraduate** students:

<table>
<thead>
<tr>
<th>Grade Range</th>
<th>Definition*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 90-100%</td>
<td>Mastery of course content at the highest level of attainment that can reasonably be expected of students at a given stage of development. The A grade states clearly that the students have shown such outstanding promise in the aspect of the discipline under study that he/she may be strongly encouraged to continue.</td>
</tr>
<tr>
<td>B 80-89.9%</td>
<td>Strong performance demonstrating a high level of attainment for a student at a given stage of development. The B grade states that the student has shown solid promise in the aspect of the discipline under study.</td>
</tr>
<tr>
<td>C 70-79.9%</td>
<td>A totally acceptable performance demonstrating an adequate level of attainment for a student at a given stage of development. The C grade states that, while not yet showing unusual promise, the student may continue to study in the discipline with reasonable hope of intellectual development.</td>
</tr>
<tr>
<td>D 60-69.9%</td>
<td>A marginal performance in the required exercises demonstrating a minimal passing level of attainment. A student has given no evidence of prospective growth in the discipline; an accumulation of D grades should be taken to mean that the student would be well advised not to continue in the academic field.</td>
</tr>
<tr>
<td>F 0-59.9%</td>
<td>For whatever reason, an unacceptable performance. The F grade indicates that the student's performance in the required exercises has revealed almost no understanding of the course content. A grade of F should warrant an advisor's questioning whether the student may suitably register for further study in the discipline before remedial work is undertaken.</td>
</tr>
</tbody>
</table>

*Definitions are from: http://registrar.unc.edu/academic-services/grades/explanation-of-grading-system/ (underlining is my emphasis)

Plus and minus scores, when given, use the following range:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-</td>
<td>93 and higher</td>
</tr>
<tr>
<td>A</td>
<td>90-92</td>
</tr>
<tr>
<td>B+</td>
<td>88-89</td>
</tr>
<tr>
<td>B</td>
<td>83-87</td>
</tr>
<tr>
<td>B-</td>
<td>80-82</td>
</tr>
<tr>
<td>C+</td>
<td>78-79</td>
</tr>
<tr>
<td>C</td>
<td>73-77</td>
</tr>
<tr>
<td>C-</td>
<td>70-72</td>
</tr>
<tr>
<td>D+</td>
<td>68-69</td>
</tr>
<tr>
<td>D</td>
<td>63-67</td>
</tr>
<tr>
<td>D-</td>
<td>60-62</td>
</tr>
<tr>
<td>F</td>
<td>59 and below</td>
</tr>
</tbody>
</table>
The following grade scale will be used AS A GUIDELINE (subject to any curve) for graduate students:

<table>
<thead>
<tr>
<th>Grade Range</th>
<th>Definition*</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 95-99%</td>
<td>High Pass</td>
</tr>
<tr>
<td>P 80-94.9%</td>
<td>Pass</td>
</tr>
<tr>
<td>L 70-79.9%</td>
<td>Low Pass</td>
</tr>
<tr>
<td>F 0-69.9%</td>
<td>Fail</td>
</tr>
</tbody>
</table>

*Definitions are from: http://registrar.unc.edu/academic-services/grades/explanation-of-grading-system/

Due Dates and Late Work
Each assignment has a due date and time and includes instructions for submission. A late penalty of 5% per day will be applied unless prior arrangements have been made with the instructor. Assignments submitted more than 5 days after the due date will receive no credit and will not be graded.

Requests for Extensions
If you have a real problem submitting an assignment on time, please contact me before the due date. Getting a late start on an assignment does not count as a real problem. Any request for an extension must be made, preferably by email, at least 24 hours prior to the due date. If an emergency arises that prevents you from contacting me in advance, you must do so as soon as possible.

Grade Components
- Graded exercises, 4% of final grade
- Discussion contributions, 4% of final grade
- Tests, 30% of final grade
- Assignments, 32% of final grade
- Project, 30% of final grade

The Assignment Overview provides additional information about the work for this course.

Course Communications
Course announcements
Announcements will be posted on Sakai. Announcements may include information about the week's work, or other timely information.

Messages
I may use the message tool to send individual messages to you; I may also copy the message to your email address. You can also use the tool to send a message to me.

Email
Email is the best way to contact me.
Note that I receive a large amount of email and while I try to reply to student emails within 48 hours, there are times that it may take me 2-3 days to reply. Therefore, it is important that you
get started on assignments early, so there is time for me to respond to any questions you may have. I cannot guarantee that I will be able to answer last-minute questions (e.g., within 2 days of the assignment due date).

Sakai
All enrolled students should have access to the UNC Sakai site for this course: http://sakai.unc.edu/
We will use Sakai for almost all course activities.

Course Materials
All materials can be found in Sakai. The course syllabus, schedule, and information about tools and other resources will be there at the beginning of the semester.

Materials for each week are located in the Lesson for that week on the Sakai site. You should work through each week's materials in the order they are listed. Unit materials, including videos and slides, exercises, and discussion topics will be published Tuesday mornings at 8:30 a.m. Once published, they will be available for you to study through the end of the semester.

Discussion Forum
We will use the Sakai discussion forum for a variety of interactions and exchanges. I will start some topics, for example, to pose questions or puzzles for you to discuss. You can also start topics, for example, to start a discussion about current issues or news involving databases, or asking a question of general interest about course content of technology.

The Discussion Overview provides additional information about the discussions for this course.

Assignments
All Graded Exercises, Assignments, and Project Deliverables must be submitted using the Sakai Assignments tool. In my experience, Sakai is a reliable method for submitting assignments. It is the responsibility of each student to make sure they have access to Sakai and can submit assignments when they are due.

If for some reason you are unable to submit an assignment to Sakai, as a last resort you may email it to me along with a note about the problem you encountered. Then, as soon as you are able to, it is your responsibility to submit the exact same assignment to Sakai. The email serves as a record that you tried to submit the assignment on time, but to receive credit, your assignment must be uploaded to Sakai.

Drop Box
You each have a drop box in Sakai that is accessible only to you and me. You may store work in progress here. If you have a question about an assignment, and it would be helpful for me to see your work, you may store the draft in your drop box, and refer to it in your emailed question. I will look at only that file to respond to your question.

Do NOT submit homework by putting it into your drop box; all assignments should be submitted in the assignment.

Tests
Tests will be administered using the Tests & Quizzes Tool. Each of the 5 tests covers material from 1 major topic area:

1. Database Concepts
2. Entity-Relationship Models
3. Relational Concepts and Mapping
4. SQL

Tests will be published Sunday at 8:00 a.m. and must be completed by Tuesday 6:00 p.m. You may take the test at any time during that period, but once you have started, you must complete it in one sitting. To help your planning, I will post the approximate amount of time I expect each test to require, but remember that this is only a rough estimate – everyone works at a different pace.
Schedule Overview
INLS 523-02W, Database Systems I Online Spring 2018, Stephanie W. Haas

This tentative schedule outlines the major topics and events planned for the semester. See the Unit Lessons in the Sakai site for details.

Lesson 1, Wednesday 1/10/18 – Tuesday 1/16/18. Startup and Introduction
Special Note: items are due Tuesday this week because Monday is a holiday (MLK Day). For the rest of the semester, MOST (but not all) items will be due on Mondays.
Material: Video, slides, transcripts
1 Self-Check Exercise
Required Discussion due Tuesday 1/16/18, 6:00 pm
Database Experience Survey (ungraded) due Tuesday 1/16/18, 6:00 pm
Assignment: Assign A1, Startup due Tuesday 1/16/18, 6:00 pm

Due Tuesday 1/16/18, 6:00 pm: Discussion, Database Experience Survey, A1

Lesson 2, Tuesday 1/16/18 – Monday 1/22/18. Database Concepts
Material: Video, slides, transcripts
Self-Check Exercise
Required Discussion due Monday 1/22/18, 6:00 p.m.
Graded Exercise, due Monday 1/22/18, 6:00 p.m.
Test 1: DB Concepts, opens Sunday 1/21/18 8:00 a.m., due Tuesday 1/23/18, 6:00 p.m.
Project: Assign P1 (requirements, use cases, questions), due Monday 2/5/18, 6:00 p.m.

Due Monday 1/22/18, 6:00 pm: Discussion, Graded Exercise
Due Tuesday 1/23/18, 6:00 p.m. Test 1

Lesson 3, Tuesday 1/23/18 – Monday 1/29/18. Entity Relationship Models (1)
Material: Video, slides, transcripts
Self-Check Exercise: Entity Relationship (1)
Required Discussion due Monday 1/29/18, 6:00 pm
Optional Discussion due Monday 1/29/18, 6:00 pm
Graded Exercise due Monday 1/29/18, 6:00 pm

Due Monday 1/29/18, 6:00 p.m.: 2 Discussions, Graded Exercise

Lesson 4. Tuesday 1/30/18 -- Monday 2/5/18 Entity Relationship Models (2)
Material: Video, slides, transcripts
Self-Check Exercise
Optional discussion due Monday 2/5/18, 6:00 p.m.
Graded Exercise due Monday 2/5/18, 6:00 p.m.
Assignment: Assign A2 due Monday 2/19/18, 6:00 p.m.

Due Monday 2/5/18, 6:00 p.m.: Discussion, Graded Exercise, P1
Lesson 5. Tuesday 2/6/18 – Monday 2/12/18. Extended ER Models

Material: Video, slides, transcripts
Self-Check Exercise
Optional Discussion due Monday 2/12/18, 6:00 p.m.
Test 2: ER & EER, opens Sunday 2/11/18, 8:00 a.m., due Tuesday 2/13/18, 6:00 p.m.

Due Monday 2/12/18, 6:00 p.m.: Discussion
Due Tuesday 2/13/18, 6:00 p.m.: Test 2

Lesson 6. Tuesday 2/13/18 – Monday 2/19/18. Relational Concepts

Material: Video, slides, transcript
Self-Check Exercise
Graded Exercise due Monday 2/19/18, 6:00 p.m.
Project: Assign Project P2 (ER), due Monday 3/5/18, 6:00 p.m.

Due Monday 2/19/18, 6:00 p.m.: Graded Exercise, A2

Lesson 7. Tuesday 2/20/18 – Monday 2/26/18. ER-DB Mapping

Material: Video, slides, transcripts, reading
2 Self-Check Exercises
Graded Exercise due Monday 2/26/18, 6:00 p.m.
Test 3: Relational Concepts & ER-DB Mapping, opens Sunday 2/25/18, 8:00 a.m., due Tuesday 2/27/18, 6:00 p.m.
Assignment: Assign A3 Mapping, due Monday 3/12/18, 6:00 p.m.

Due Monday 2/26/18, 6:00 p.m.: Graded Exercise
Due Tuesday 2/27/18, 6:00 p.m.: Test 3

Lesson 8. Tuesday 2/27/18 – Monday 3/5/18. SQL (1)

Material: Video, slides, transcripts
2 Self-Check Exercises
Optional Discussion due Monday 3/5/18, 6:00 p.m.
Graded Exercise due Monday 3/5/18, 6:00 p.m.

Due Monday 3/5/18, 6:00 p.m.: Optional Discussion, Graded Exercise, P2
Lesson 9. Tuesday 3/4/18 – Monday 3/12/18. SQL (2)
Special Note: items are due Monday 3/12/18, which is the first day of Spring Break. Or course, you can submit them earlier!

Material: Video, slides, transcripts
2 Self-Check Exercises
Graded Exercise: SQL (2) due Monday 3/12/18, 6:00 p.m.
Assign A4 SQL: due Monday 4/2/18, 6:00 p.m.

Due Monday 3/12/18, 6:00 p.m.: Graded Exercise, A3

Monday 3/12/18 – Sunday 3/18/18, Spring Break

Lesson 10. Tuesday 3/20/18 – Monday 3/26/18. SQL (3)

Material: Video, slides, transcripts
Self-Check Exercise
Graded Exercise due Monday 3/26/18, 6:00 p.m.
Assign P3 Mapping: due Monday 4/9/18, 6:00 pm

Due Monday 3/26/18, 6:00 p.m.: Graded Exercise

Lesson 11. Tuesday 3/27/18 – Monday 4/2/18. SQL (4)

Material: video, slides, transcripts
Self-Check Exercise
Optional Discussion due Monday 4/2/18, 6:00 p.m.

Due Monday 4/2/18, 6:00 p.m. Discussion, A4

Material: video, slides transcripts.
Self-Check Exercise
Graded Exercise due Monday 4/9/18, 6:00 p.m.
Optional Discussion due Monday 4/9/18, 6:00 p.m.
Test 4: SQL, opens Sunday 4/8/18, 8:00 a.m., due Tuesday 4/10/18, 6:00 p.m.

Due Monday 4/9/18, 6:00 p.m. Discussion, Graded Exercise, P3
Due Tuesday 4/10/18, 6:00 p.m. Test 4

Lesson 13. Tuesday 4/10/18 – Monday 4/16/18. Functional Dependencies, Normalization (1)

Material: videos, slides, transcripts
Self-Check Exercise: FDs & Normalization (1)
Required Discussion due Monday 4/16/18, 6:00 p.m.
Graded Exercise due Monday 4/16/18, 6:00 p.m.

Material: video, slides, transcripts
2 Self-Check Exercises
Graded Exercise due Monday 4/23/18, 6:00 p.m.
Assignment: Assign A5, Functional Dependencies and Normalization, due Monday 4/30/18, 6:00 p.m.
Project: Assign Project P4, Implementation: due Tuesday 5/8/18, 4:00 p.m.

Due Monday 4/23/18, 6:00 p.m. Graded Exercise

Lesson 15. Tuesday 4/24/18 – Monday 4/30/18. Data Quality and Wrap-up

Special Note: Classes end 4/27/18. P4 is due at the time scheduled for a final exam. Watch the due dates!

Material: Video, slides, transcript
Self-Check Exercise
Required Discussion due Monday 4/30/18, 6:00 p.m.
Test 5: Good Design, Functional Dependencies, and Normalization, opens Sunday 4/29/18, 8:00 a.m., due Tuesday 5/1/18, 6:00 p.m.

Due Monday 4/30/18, 6:00 p.m. Discussion, A5
Due Tuesday 5/1/18, 6:00 p.m. Test 5

Due Tuesday 5/8/18, 4:00 p.m. P4