

Cascading
 Foreign key relationships

 What if you want to delete a parent?

What Could Possibly Go Wrong?

Enforced referential integrity

Triggers

Cascades

Stored procedures

Calamity

Knuckleheadedness

Basic MySQL Syntax

 START TRANSACTION or BEGIN begins a new
transaction.

 COMMIT follows through on the current transaction,
making its changes permanent.

 ROLLBACK rolls back the current transaction,
canceling its changes.

Sample ATM Transactions
 START TRANSACTION

 Deduct $200 from my savings account

 Add $200 to my checking account

 No problems reported from the MySQL server

 COMMIT the current transaction

 START TRANSACTION
 Deduct $100 from checking for tonight’s date

 ATM whirrs and clicks. Produces nothing. ERROR

 ROLLBACK cancels the MySQL transaction.

-- start a new transaction
start transaction;

-- remove $200 from savings account
UPDATE Accounts
SET Savings = (Savings - 200)
WHERE CustomerNumber = 23456;

-- add $200 to checking account
UPDATE Accounts
SET Checking = (Checking + 200)
WHERE CustomerNumber = 23456;

-- commit changes
commit;

try {
// Begin a transaction

$db->beginTransaction();

// Run queries; if one fails, an exception should be thrown

$db->query('UPDATE Accounts SET Savings = (Savings - 200) WHERE
CustomerNumber = 23456;');

$db->query(UPDATE Accounts SET Checking = (Checking + 200) WHERE
CustomerNumber = 23456;');

// If no “exception was thrown” (no query failed), we commit the transaction
$db->commit();

} catch (Exception $e) {

// Something went wrong. Must rollback the transaction
$db->rollback();

}

Concurrent Users

Concurrency
Lock Granularity

Record and field locking

File, block, and database locking

Read and write locks

Try to lock, wait, lock, unlock.

Timestamp... Grab a number…

Table Locks

Some transactions require exclusive access
to the entire database

 Global queries

 Global updates

 Data dumps

 Synchronizations

 Backups

Database Logs and Backups
The server can be configured to keep a log of

every transaction

Resets logs after a successful backup

The DBMS sets checkpoints

More common: backup

Both the database and logs

Multiple backups in multiple sites

LOCKSS

