Test Collection Experimentation

Jaime Arguello
INLS 509: Information Retrieval

jarguell@email.unc.edu

Outline

Parameter Tuning

Cross-validation

Significance testing

Parameter Tuning motivation

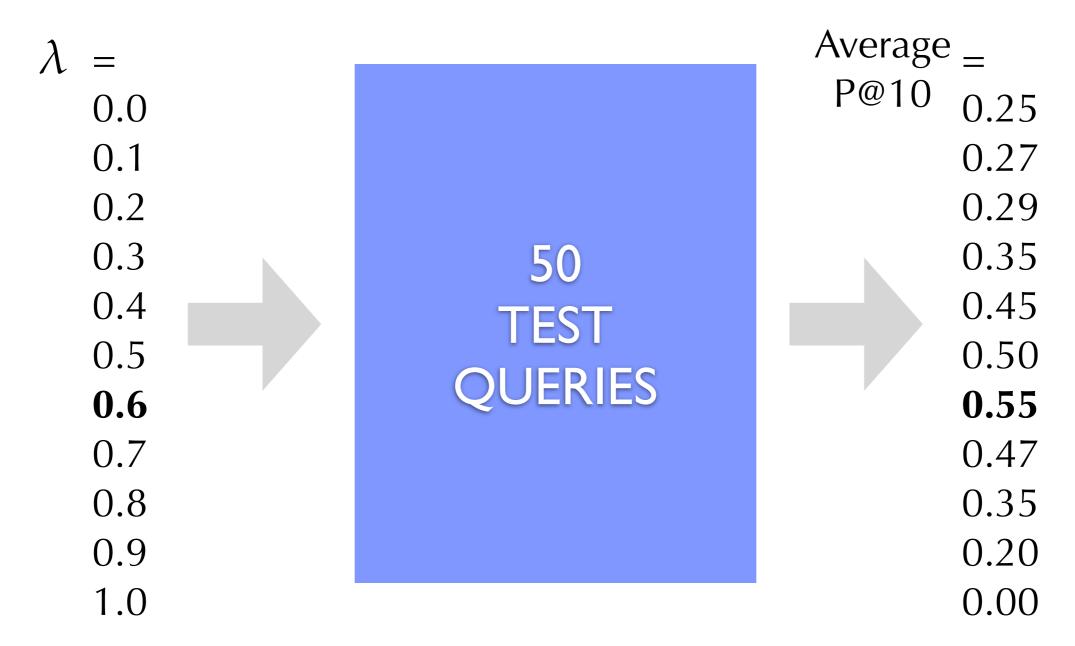
- Search algorithms have lots of moving parts
- We can think of these parameters as "knobs" that need to be tweaked or tuned
- Objective:
 - Find the parameter values that maximize performance (e.g., average P@10)
 - Estimate how well the system will perform using the optimal parameter values
- Can you think of some example parameters?

Query-likelihood model with linear interpolation

$$score(Q, D) = \prod_{q \in Q} (\lambda P(q|\theta_D) + (1 - \lambda)P(q|\theta_C))$$

- Parameter λ avoids zero probabilities when a document is missing a query-term
- How should we determine the best value of λ and how should we estimate performance with this value?

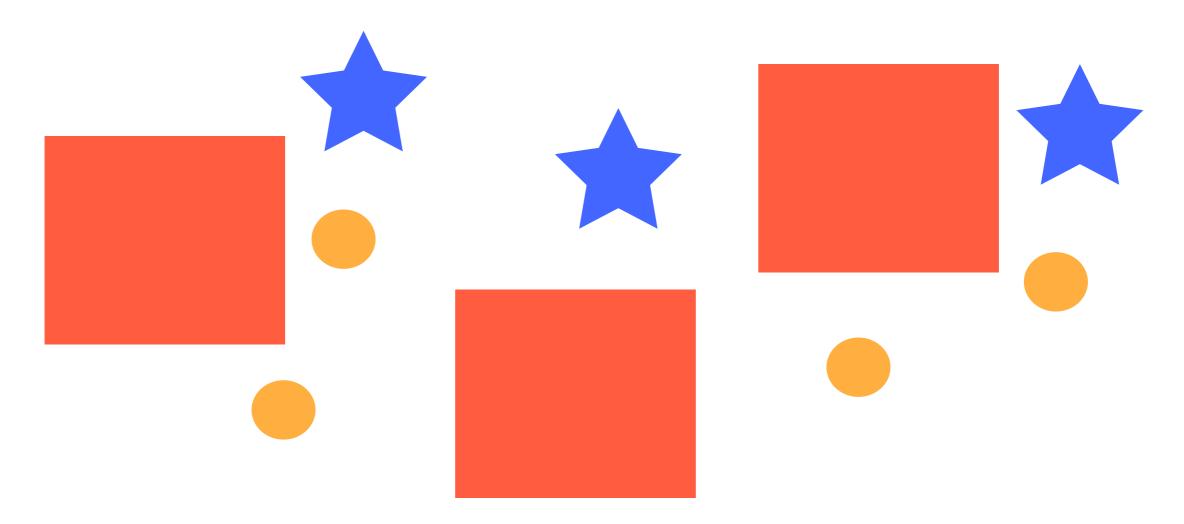
- How should we determine the value of λ ?
- Option -2: roll the dice, close your eyes, and hope for the best
- Option -1: take a conservative guess (e.g., $\lambda = 0.5$)?
- Option 0: take an "intuitive" guess (e.g., $\lambda = 0.7$)?
- Option 1: try out a range of values (e.g., $\lambda = 0.0$, 0.1, 0.2, ..., 1.0) and set it to the value that maximizes performance based on a sensible metric?



How well will the QL model do after parameter tuning?

Parameter Tuning toy example

Objective: distinguish between stars, squares, and circles



• Parameters: the relative importance between (1) size, (2) color, and (3) number of sides

- The goal is to estimate the model performance using the optimal parameter values
- What is the performance that we are really interested in?

- The goal is to estimate the model performance using the optimal parameter values
- What is the performance that we are really interested in?
- Performance on <u>previously unseen</u> queries!
- We care about generalization performance!
- Our sample of queries may contain regularities that are not meaningful
- We care about those regularities that generalize to new queries!



Why is **0.55** a bad estimate of performance on new queries?

• Option 2:

- 1. divide the set of 50 queries into two sets:
 - training set: a set of queries used to find the best parameter values (e.g., 40 queries)
 - test set: a held-out set used to evaluate model performance (e.g., 10 queries)
- 2. train: find the parameter value that maximizes average performance on the training set
- 3. test: evaluate the model (with the best training-set parameter value) on the test set

DATASET (50 queries)

- Split the data into two sets.
- Find the parameter value that maximize average performance on the training set.
- Evaluate the system with that parameter value on the test set.

TRAINING
SET
(40 queries)

 $\lambda = 0.6$

TEST SET (10 queries)

P@10 = 0.50

- Split the data into two sets.
- Find the parameter value that maximize average performance on the training set.
- Evaluate the system with that parameter value on the test set.

TRAINING
SET
(40 queries)

 $\lambda = 0.6$

TEST SET (10 queries)

P@10 = 0.50

Advantages and Disadvantages?

Single Train/Test Split

Advantage

- the data used to find the optimal parameter value is not the same data used to test!
- we are testing generalization performance.

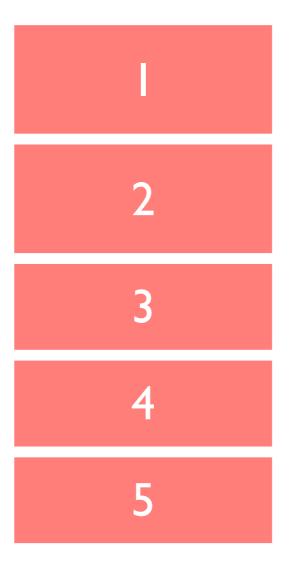
Disadvantage

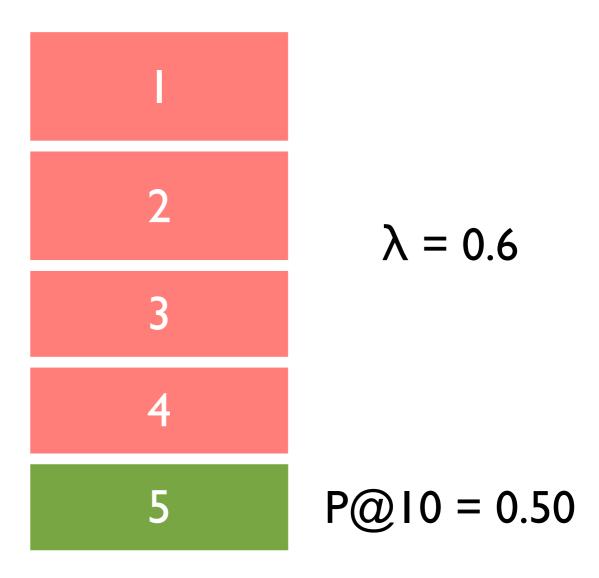
- we are putting all our eggs in one basket!
- out of pure coincidence, the training set may have regularities that don't generalize to the test set

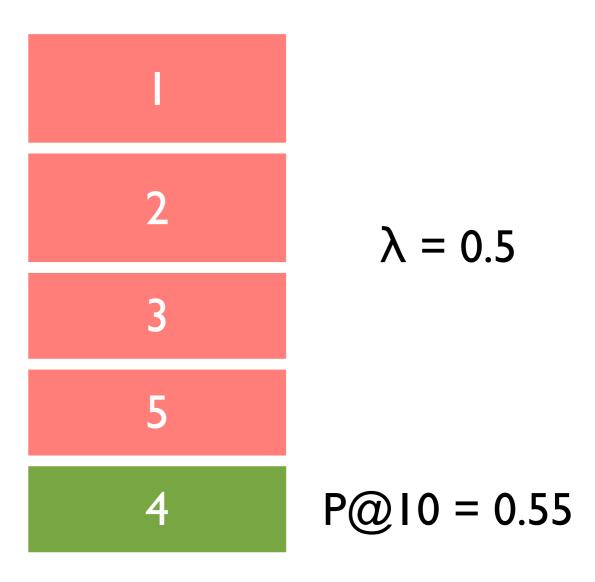
- Option 3: cross-validation
 - 1. divide the set of 50 queries into N sets of 50/N queries
 - 2. use the union of N-1 sets to find the best parameter values
 - 3. measure performance (using the best parameters) on the held-out set
 - 4. do steps 2-3 N times
 - 5. average performance across the N held-out sets
- This is called N-fold cross-validation (usually, N=10)

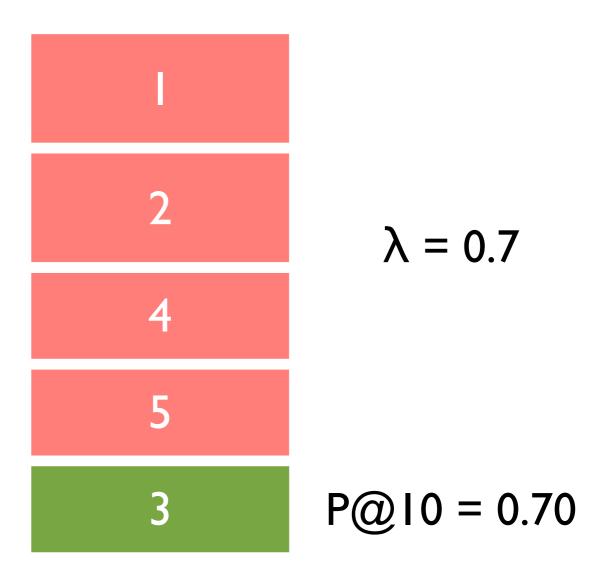
DATASET (50 queries)

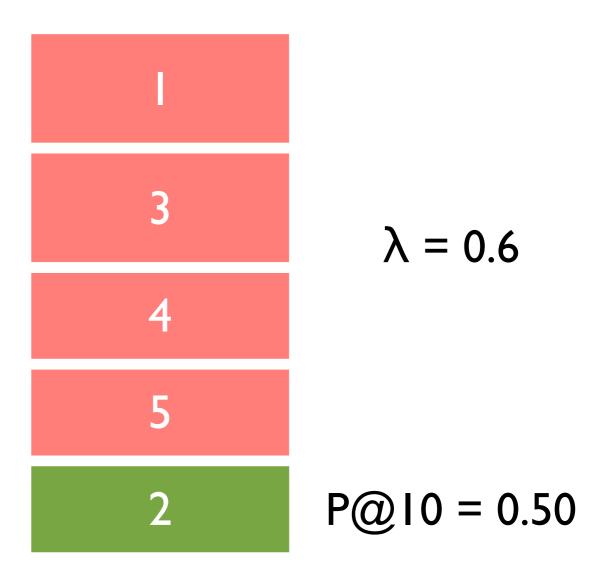
• Split the data into N = 5 folds of 10 queries each

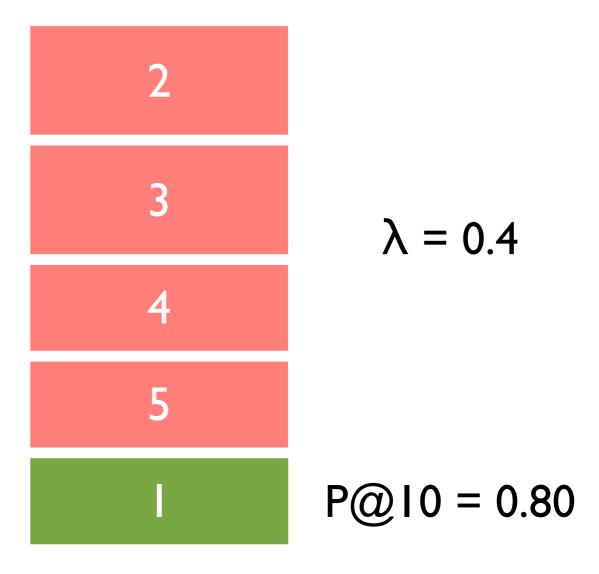




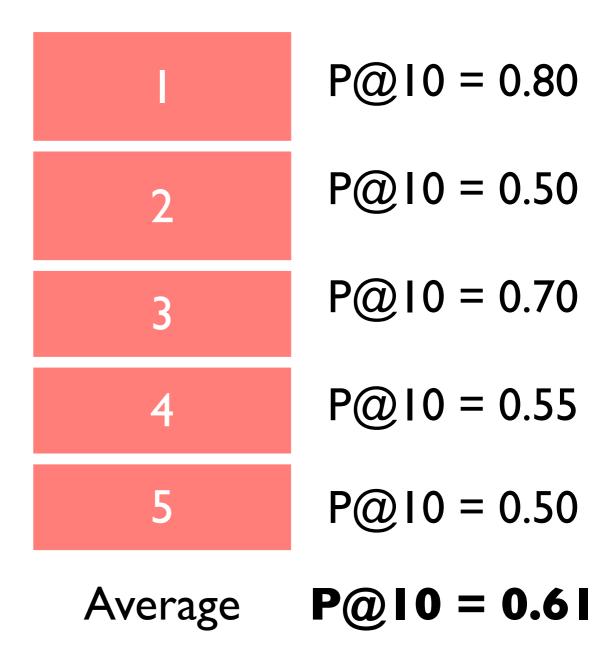




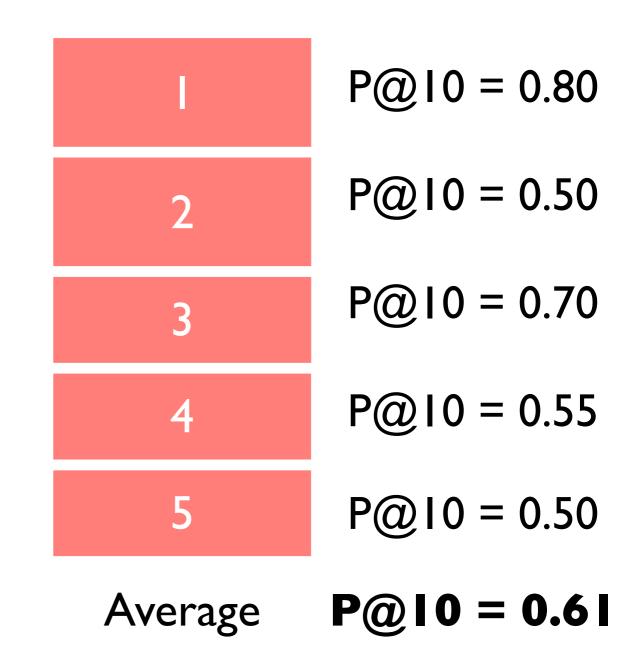




 Average the performance across held-out folds



 Average the performance across held-out folds



Advantages and Disadvantages?

N-Fold Cross-Validation

Advantage

multiple rounds of generalization performance.

Disadvantage

- ultimately, we'll tune parameters on the set of 50 queries and send our system into the world.
- a model trained on 50 queries should perform better than one trained on 40.
- thus, we may be underestimating the model's performance!

Significance Tests

Jaime Arguello INLS 509: Information Retrieval

jarguell@email.unc.edu

Outline

Parameter Tuning

Cross-validation

Significance testing

Comparing Between Systems

- The main goal in experimental IR is to develop retrieval techniques that are better than the state of the art and to understand why they are better
- Basic question: Is system B better than system A?
- More often: Is system A with 'special sauce' better than system A without 'special sauce'?

Comparing Systems P@10

For each system, tune and test the necessary parameters using N-fold cross-validation Use the same folds for both systems	Fold 1 2 3 4 5	System A 0.20 0.30 0.10 0.40 1.00 0.80	System B 0.50 0.30 0.10 0.40 1.00 0.90
Compare the difference in average performance across held out folds using a significance test	7 8 9 10 Average	0.30 0.10 0.00 0.90 0.41 Difference	0.10 0.20 0.50 0.80 0.48 0.07

Significance Tests motivation

- Why would it be risky to conclude that System B is better System A based on P@10?
- Put differently, what is it that we're trying to achieve?

Significance Tests motivation

System A

THE

WORLD

P@10

= 0.41

P@10

= 0.48

Significance Tests motivation

- In theory: the average performance of System B is greater than the average performance of System A for all possible queries!
- However, we don't have all queries. We have a sample (usually about 50).
- And, this sample may favor one system vs. the other!

Significance Tests definition

 A significance test is a statistical tool that allows us to determine whether a difference in performance reflects a true pattern or just random chance

Significance Tests ingredients

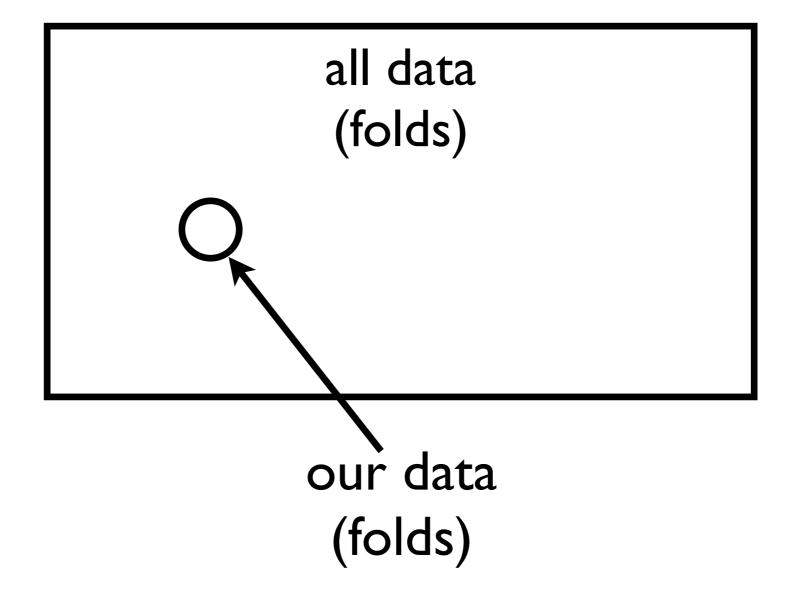
- Test statistic: a measure used to judge the two systems (e.g., the difference between their average P@10 values)
- Null hypothesis: no "true" difference between the two systems
- P-value: take the value of the observed test statistic and compute the probability of observing a value that large (or larger) under the null hypothesis

Significance Tests ingredients

- If the p-value is large, we cannot reject the null hypothesis
- That is, we cannot claim that one system is better than the other
- There is a high probability that the observed test statistic is due to random chance
- If the p-value is small (p<0.05), we can reject the null hypothesis
- That is, we can claim that the observed test-statistic is not due to random chance

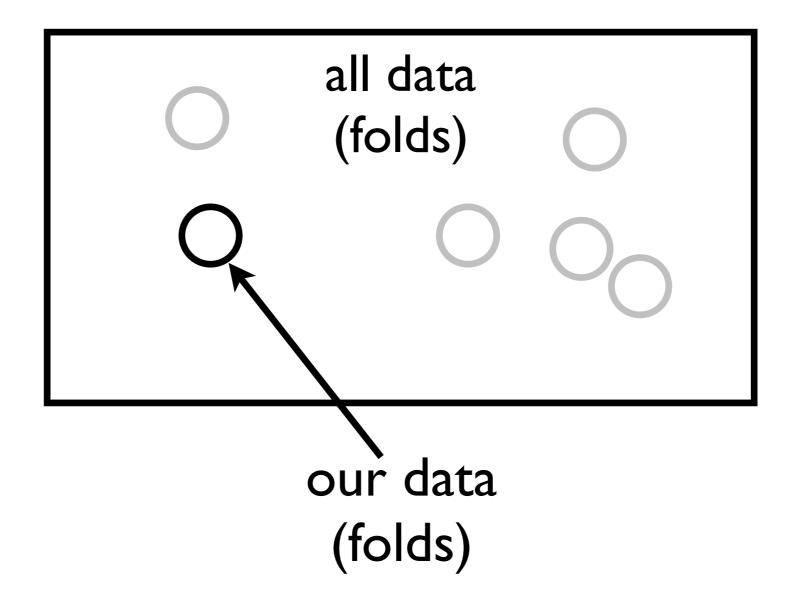
Bootstrap-Shift Test motivation

Our sample is a representative sample of all data



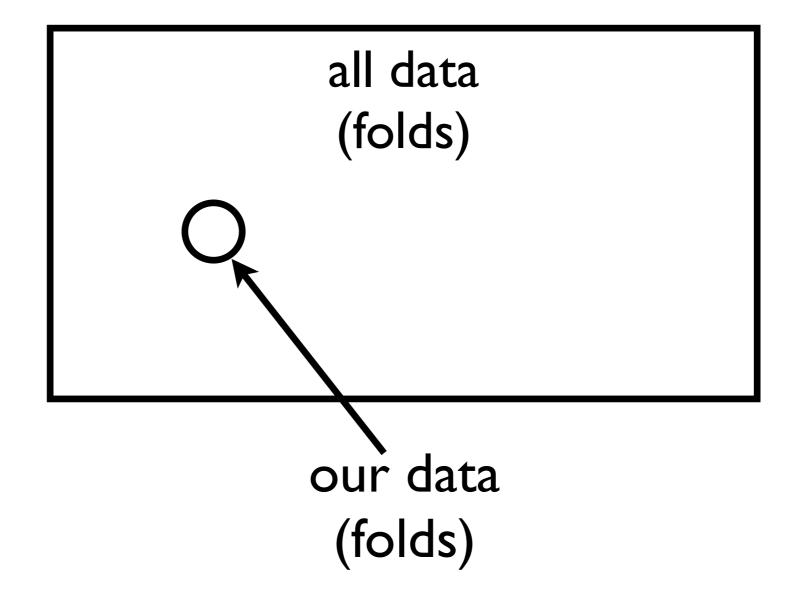
motivation

- Suppose we could sample many other folds.
- Assuming that the null hypothesis is true, what would be the average test statistic value across all those folds?



motivation

• If we sample (with replacement) from our sample, we can generate a new representative sample of all data



- **Inputs:** Array $T = \{\}$, N = 100,000
- Repeat N times:
 - **Step 1:** sample 10 folds (with replacement) from our set of 10 folds (called a subsample)
 - **Step 2:** compute test statistic associated with new sample and add to T
- Step 3: compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by <u>average</u>
- Output: % of numbers in T' greater than or equal to the observed test statistic

Fold	System A	System B
1	0.20	0.50
2	0.30	0.30
3	0.10	0.10
4	0.40	0.40
5	1.00	1.00
6	0.80	0.90
7	0.30	0.10
8	0.10	0.20
9	0.00	0.50
10	0.90	0.80
Average	0.41	0.48
	Difference	0.07

Fold	System A	System B	sample
1	0.20	0.50	0
2	0.30	0.30	1
3	0.10	0.10	2
4	0.40	0.40	2
5	1.00	1.00	0
6	0.80	0.90	1
7	0.30	0.10	1
8	0.10	0.20	1
9	0.00	0.50	2
10	0.90	0.80	0

iteration = I

Fold	System A	System I	3		
2	0.30	0.30			
3	0.10	0.10			
3	0.10	0.10			
4	0.40	0.40			
4	0.40	0.40			
6	0.80	0.90			
7	0.30	0.10			
8	0.10	0.20			
9	0.00	0.50			
9	0.00	0.50			
Average	0.25	0.35			
	Difference	0.1		$T = \{0.10\}$	
	iteration = I				

sample	System B	System A	Fold
0	0.50	0.20	1
0	0.30	0.30	2
3	0.10	0.10	3
2	0.40	0.40	4
0	1.00	1.00	5
1	0.90	0.80	6
1	0.10	0.30	7
1	0.20	0.10	8
1	0.50	0.00	9
1	0.80	0.90	10

 $T = \{0.10\}$

iteration = 2

Fold	System A	System	В	
3	0.10	0.10		
3	0.10	0.10		
3	0.10	0.10		
4	0.40	0.40		
4	0.40	0.40		
6	0.80	0.90		
7	0.30	0.10		
8	0.10	0.20		
9	0.00	0.50		
10	0.90	0.80		
Average	0.32	0.36		$T = \{0.10,$
	Difference	0.04		0.04
	iteration = 2			

Fold	System A	System B	
1	0.20	0.50	
1	0.20	0.50	
4	0.40	0.40	
4	0.40	0.40	
4	0.40	0.40	
6	0.80	0.90	
7	0.30	0.10	
8	0.10	0.20	
8	0.10	0.20	
10	0.90	0.80	$T = \{0.10,$
Average	0.38	0.44	0.04,
	Difference	0.06	0.04 ,
iteration = 100,000			0.06 }

- Inputs: Array $T = \{\}$, N = 100,000
- Repeat N times:
 - **Step 1:** sample 10 folds (with replacement) from our set of 10 folds (called a subsample)
 - **Step 2:** compute test statistic associated with new sample and add to T
- **Step 3:** compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by <u>average</u>
- Output: % of numbers in T' greater than or equal to the observed test statistic

• For the purpose of this example, let's assume N = 10.

Average = 0.12

- Inputs: Array $T = \{\}$, N = 100,000
- Repeat N times:
 - **Step 1:** sample 10 folds (with replacement) from our set of 10 folds (called a subsample)
 - **Step 2:** compute test statistic associated with new sample and add to T
- Step 3: compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by average
- Output: % of numbers in T' greater than or equal to the observed test statistic

• Output: (3/10) = 0.30

Average = 0.12

Significance Tests

summary

- Significance tests help us determine whether the outcome of an experiment signals a "true" trend
- The null hypothesis is that the observed outcome is due to random chance (sample bias, error, etc.)
- There are many types of tests
- Parametric tests: assume a particular distribution for the test statistic under the null hypothesis
- Non-parametric tests: make no assumptions about the test statistic distribution under the null hypothesis
- The randomization and bootstrap-shift tests make no assumptions, are robust, and easy to understand