Jaime Arguello

INLS 613: Text Data Mining

jarguell@email.unc.edu

September 18, 2017

Outline

Basic Probability and Notation

Bayes Law and Naive Bayes Classification

Smoothing

Class Prior Probabilities

Naive Bayes Classification

Summary

Crash Course in Basic Probability

Discrete Random Variable

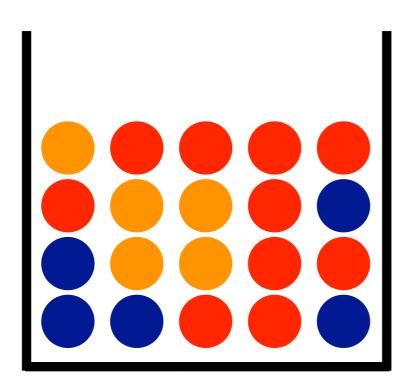
- A is a discrete random variable if:
 - A describes an event with a finite number of possible outcomes (discrete vs continuous)
 - A describes and event whose outcomes have some degree of uncertainty (random vs. pre-determined)

Discrete Random Variables Examples

- A = the outcome of a coin-flip
 - outcomes: heads, tails
- A = it will rain tomorrow
 - outcomes: rain, no rain
- A = you have the flu
 - outcomes: flu, no flu
- A = your final grade in this class
 - outcomes: F, L, P, H

Discrete Random Variables Examples

- A = the color of a ball pulled out from this bag
 - outcomes: RED, BLUE, ORANGE

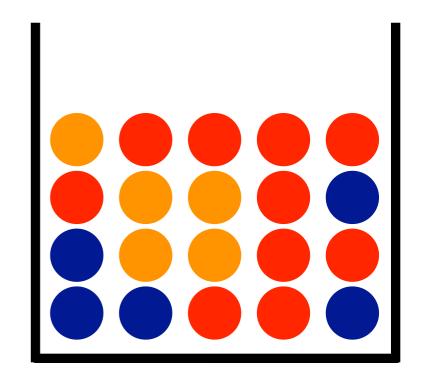


Probabilities

- Let P(A=X) denote the probability that the outcome of event A equals X
- For simplicity, we often express P(A=X) as P(X)
- Ex: P(RAIN), P(NO RAIN), P(FLU), P(NO FLU), ...

Probability Distribution

- A probability distribution gives the probability of each possible outcome of a random variable
- P(RED) = probability of pulling out a red ball
- P(BLUE) = probability of pulling out a blue ball
- P(ORANGE) = probability of pulling out an orange ball



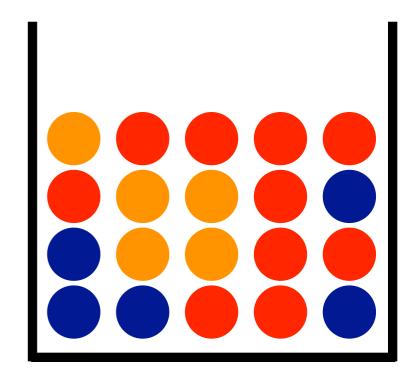
Probability Distribution

- For it to be a probability distribution, two conditions must be satisfied:
 - the probability assigned to each possible outcome must be between 0 and 1 (inclusive)
 - the <u>sum</u> of probabilities assigned to all outcomes must equal 1

```
0 \le P(RED) \le I
0 \le P(BLUE) \le I
0 \le P(ORANGE) \le I
P(RED) + P(BLUE) + P(ORANGE) = I
```

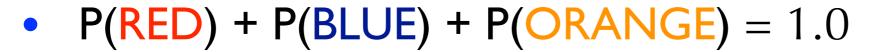
Probability Distribution Estimation

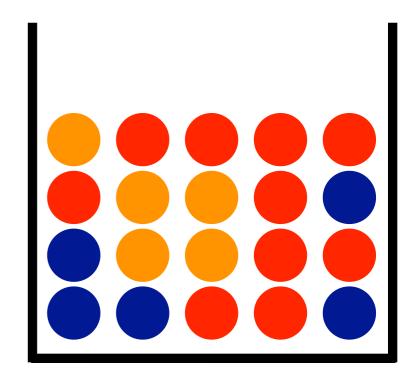
- Let's estimate these probabilities based on what we know about the contents of the bag
- P(RED) = ?
- P(BLUE) = ?
- **P(ORANGE)** = ?



Probability Distribution estimation

- Let's estimate these probabilities based on what we know about the contents of the bag
- P(RED) = 10/20 = 0.5
- P(BLUE) = 5/20 = 0.25
- P(ORANGE) = 5/20 = 0.25



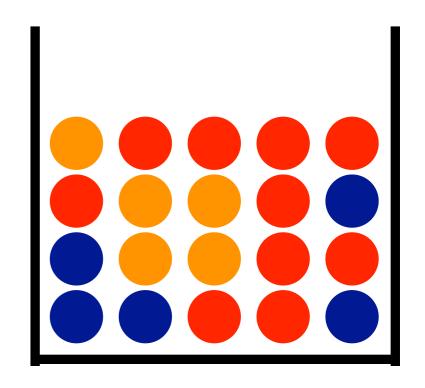


Probability Distribution

assigning probabilities to outcomes

- Given a probability distribution, we can assign probabilities to different outcomes
- I reach into the bag and pull out an orange ball. What is the probability of that happening?
- I reach into the bag and pull out two balls: one red, one blue.
 What is the probability of that happening?
- What about three orange balls?

P(RED) = 0.5 P(BLUE) = 0.25P(ORANGE) = 0.25



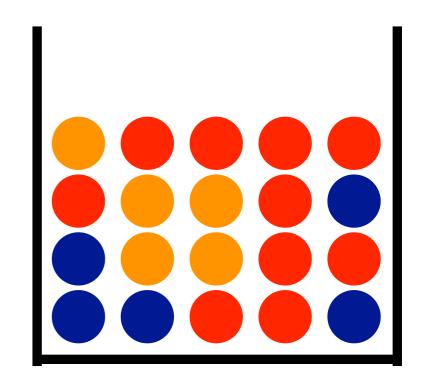
What can we do with a probability distribution?

- If we assume that each outcome is independent of previous outcomes, then the probability of a <u>sequence</u> of outcomes is calculated by <u>multiplying</u> the individual probabilities
- Note: we're assuming that when you take out a ball, you put it back in the bag before taking another

```
P(RED) = 0.5

P(BLUE) = 0.25

P(ORANGE) = 0.25
```

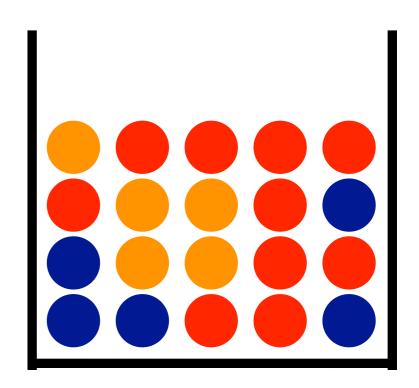


What can we do with a probability distribution?

- P() = ??
- P() = ??
- P() = ??
- $P(\bigcirc \bigcirc \bigcirc) = ??$
- P() = ??

$$P(RED) = 0.5$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$

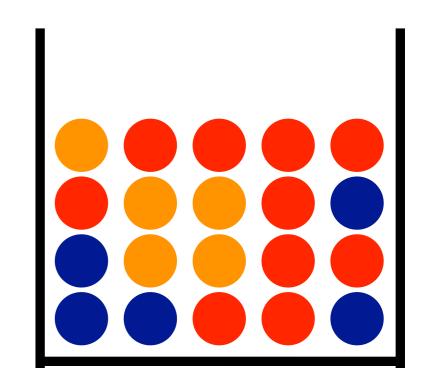


What can we do with a probability distribution?

- $P(\bigcirc) = 0.25 \times 0.25 \times 0.25$
- $P(\bigcirc \bigcirc \bigcirc) = 0.25 \times 0.25 \times 0.25$
- $P(\bigcirc \bigcirc \bigcirc) = 0.25 \times 0.50 \times 0.25$
- P($) = 0.25 \times 0.50 \times 0.25 \times 0.50$

$$P(RED) = 0.5$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$



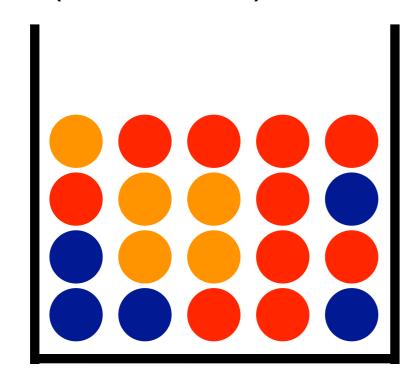
Conditional Probability

- P(A,B): the probability that event A <u>and</u> event B both occur
- P(A|B): the probability of event A occurring given prior knowledge that event B occurred

Conditional Probability

$$P(RED) = 0.50$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$

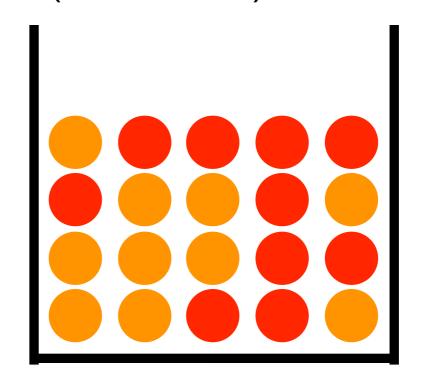


- P(| A) = ??

•
$$P(\bigcirc) = ??$$

$$P(RED) = 0.50$$

 $P(BLUE) = 0.00$
 $P(ORANGE) = 0.50$

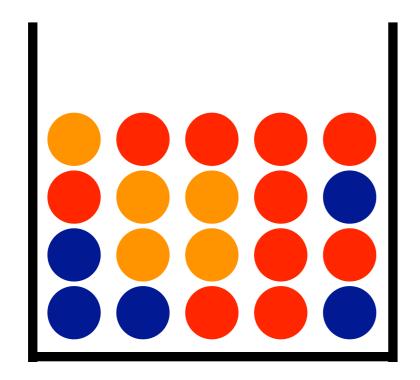


- P(| B) = ??

Conditional Probability

$$P(RED) = 0.50$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$



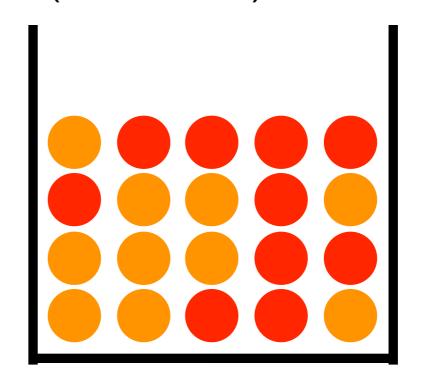
A

•
$$P(- | A) = 0.50$$

•
$$P(\bigcirc) = 0.016$$

$$P(RED) = 0.50$$

 $P(BLUE) = 0.00$
 $P(ORANGE) = 0.50$



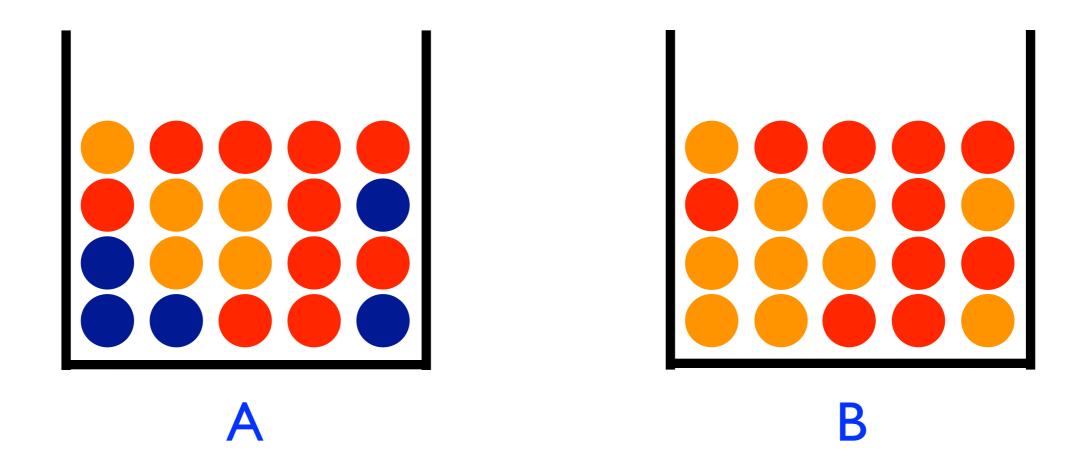
B

•
$$P(\bigcirc | B) = 0.25$$

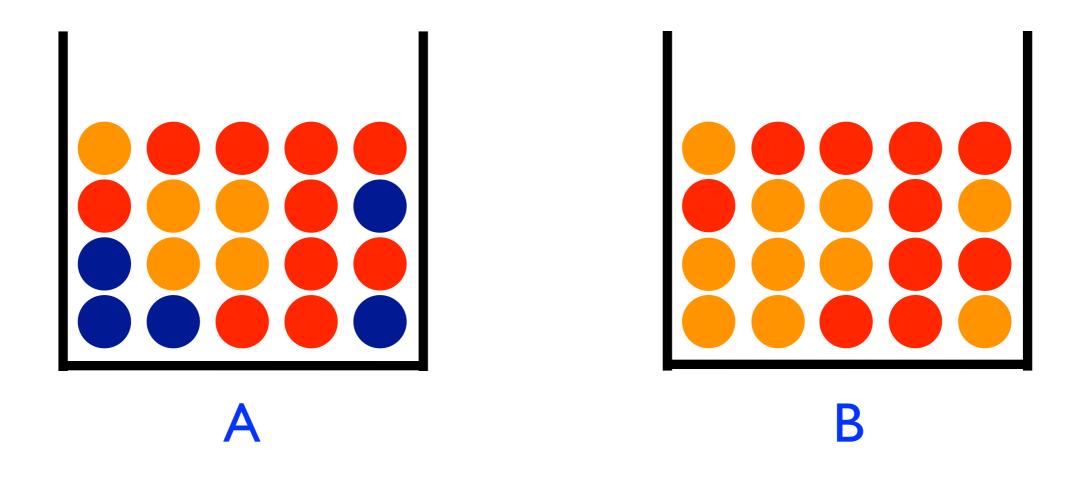
Chain Rule

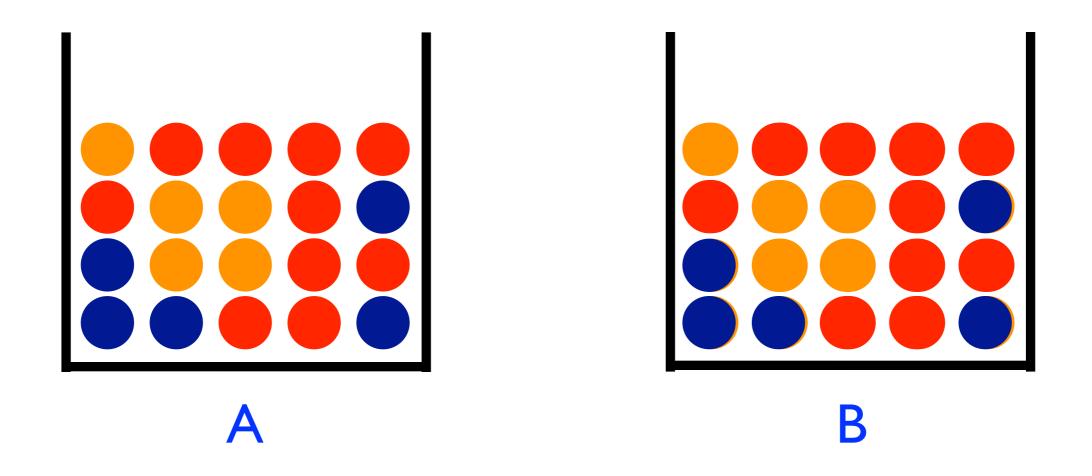
- $P(A, B) = P(A|B) \times P(B)$
- Example:
 - probability that it will rain today (B) and tomorrow (A)
 - probability that it will rain today (B)
 - probability that it will rain tomorrow (A) given that it will rain today (B)

- $P(A, B) = P(A|B) \times P(B) = P(A) \times P(B)$
- Example:
 - probability that it will rain today (B) and tomorrow (A)
 - probability that it will rain today (B)
 - probability that it will rain tomorrow (A) given that it will rain today (B)
 - probability that it will rain tomorrow (A)

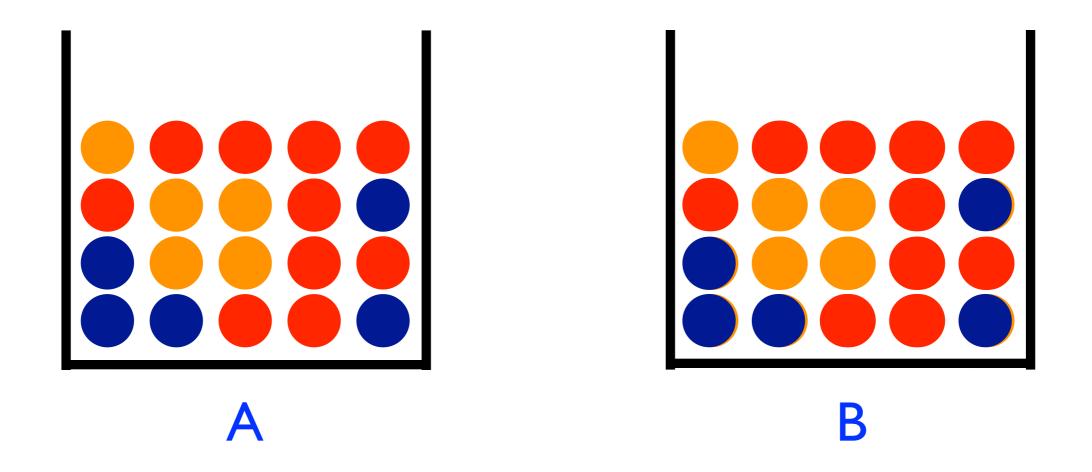


$$P(| A) ?= P(| A)$$





$$P(| A) ?= P(| A)$$



$$P(\bullet | A) = P(\bullet)$$

Outline

Basic Probability and Notation

Bayes Law and Naive Bayes Classification

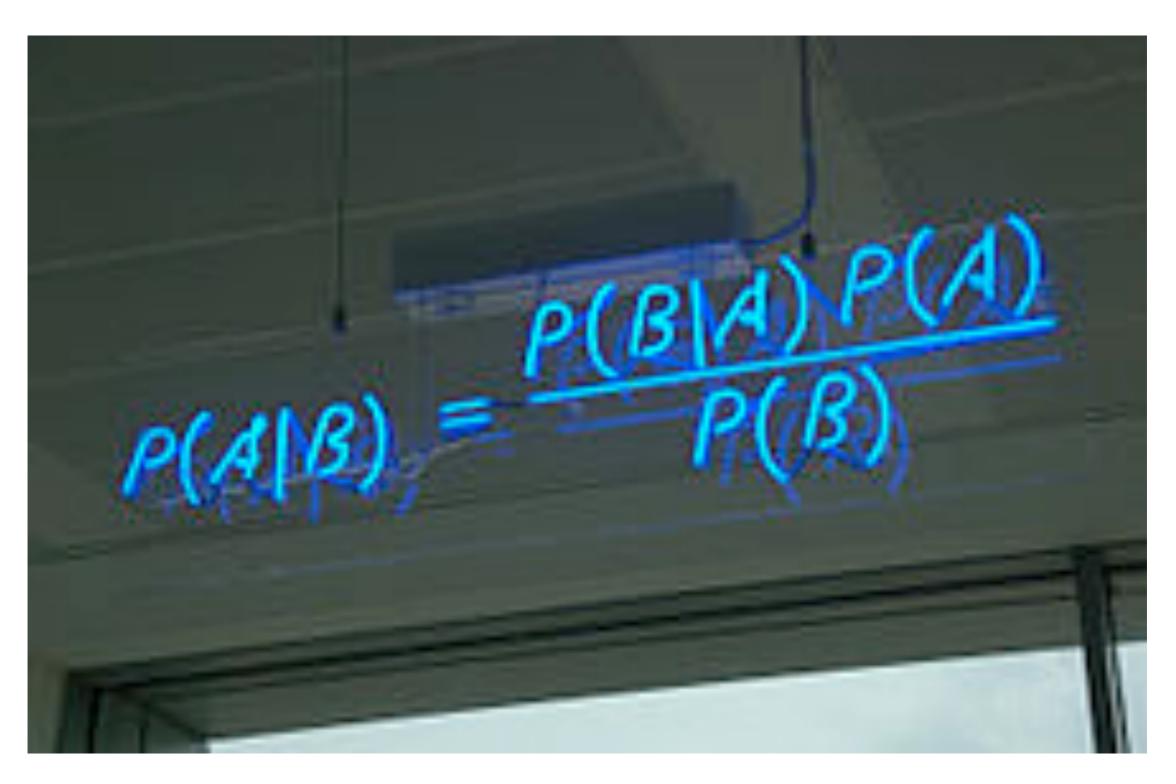
Smoothing

Class Prior Probabilities

Naive Bayes Classification

Summary

Bayes' Law



Bayes' Law

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Derivation of Bayes' Law

$$P(A,B) = P(A,B)$$

Always true!

$$P(A|B) \times P(B) = P(B|A) \times (B)$$
 Chain Rule!

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Divide both sides by P(B)!

example: positive/negative movie reviews

Bayes Rule

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Confidence of POS prediction given instance D

$$P(POS|D) = \frac{P(D|POS) \times P(POS)}{P(D)}$$

Confidence of NEG prediction given instance D

$$P(NEG|D) = \frac{P(D|NEG) \times P(NEG)}{P(D)}$$

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

$$P(POS|D) \ge P(NEG|D)$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

$$\frac{P(D|POS) \times P(POS)}{P(D)} \ge \frac{P(D|NEG) \times P(NEG)}{P(D)}$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

example: positive/negative movie reviews

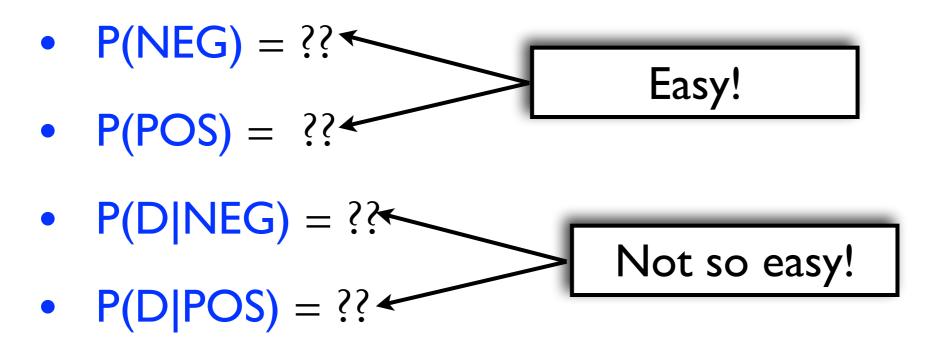
• Given instance D, predict positive (POS) if:

$$P(D|POS) \times P(POS) \ge P(D|NEG) \times P(NEG)$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

 Our next goal is to estimate these parameters from the training data!



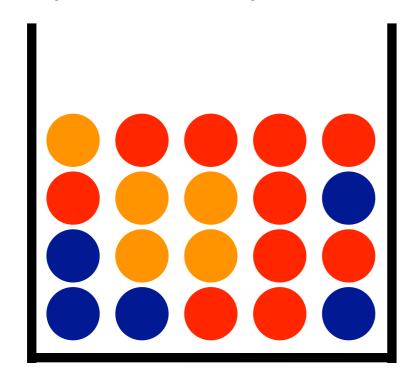
example: positive/negative movie reviews

- Our next goal is to estimate these parameters from the training data!
- P(NEG) = % of training set documents that are NEG
- P(POS) = % of training set documents that are POS
- P(D|NEG) = ??
- P(D|POS) = ??

Remember Conditional Probability?

$$P(RED) = 0.50$$

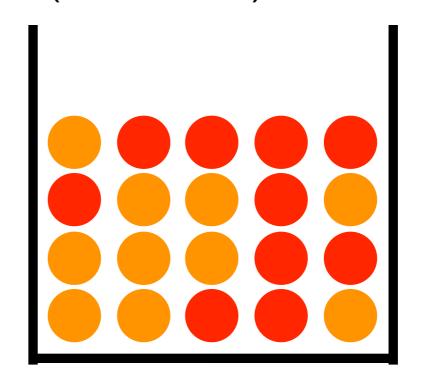
 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$



- P(| A) = 0.50
- P(| A) = 0.25

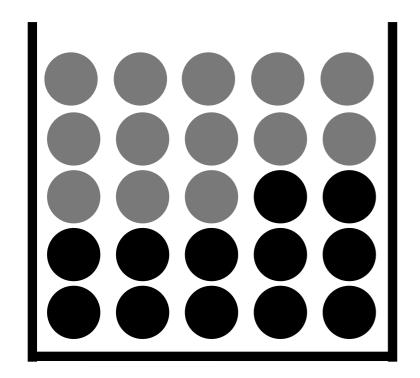
$$P(RED) = 0.50$$

 $P(BLUE) = 0.00$
 $P(ORANGE) = 0.50$

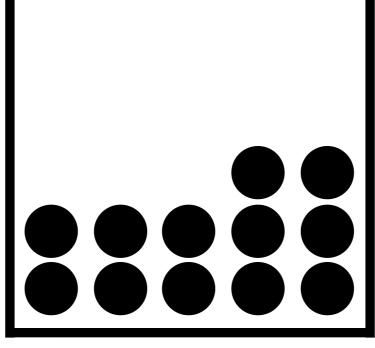


•
$$P(- | B) = 0.50$$

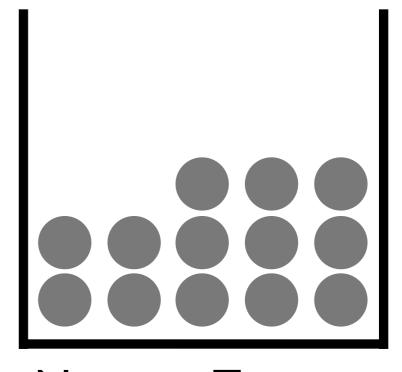
•
$$P(- | B) = 0.50$$



Training Instances



Positive Training Instances



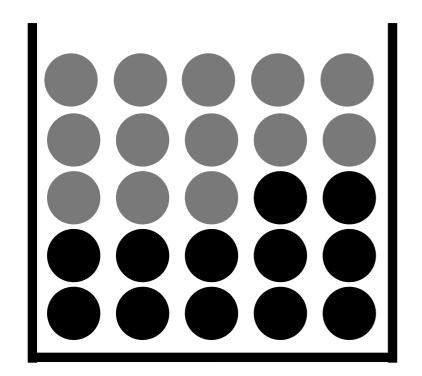
Negative Training Instances

$$P(D|POS) = ??$$
 $P(D|NEG) = ??$

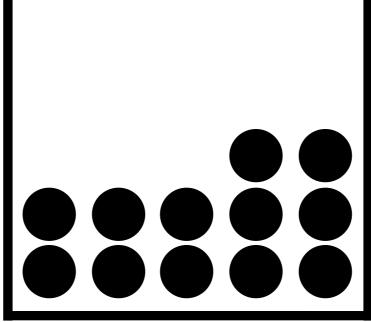
w_I	w_2	w_3	w_4	w_5	w_6	w_7	w_8		w_n	sentiment
I	0	I	0	I	0	0	I	•••	0	positive
0	I	0	I	I	0		I	•••	0	positive
0	I	0	I	I	0	-	0	•••	0	positive
0	0	I	0	I	I	0	I	•••	I	positive
:	•	•	•	•	•	•	:	•••	•	:
I	I	0	ı	ı	0	0	I	•••	I	positive

example: positive/negative movie reviews

We have a problem! What is it?

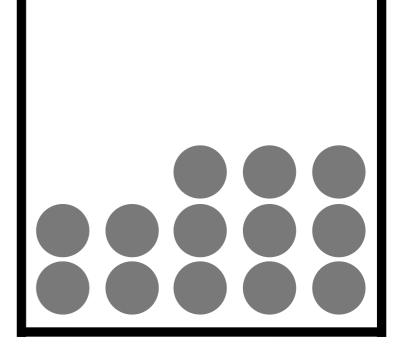


Training Instances



Positive Training Instances

$$P(D|POS) = ??$$



Negative Training Instances

$$P(D|NEG) = ??$$

- We have a problem! What is it?
- Assuming n binary features, the number of possible combinations is 2ⁿ
- $2^{1000} = 1.071509e + 301$
- And in order to estimate the probability of each combination, we would require multiple occurrences of each combination in the training data!
- We could never have enough training data to reliably estimate P(D|NEG) or P(D|POS)!

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature is independent of the value of other features
- In other words, the value of a particular feature is only dependent on the class value

w_I	w_2	w_3	w_4	w_5	w_6	w_7	w_8		w_n	sentiment
I	0	I	0	-	0	0	I	•••	0	positive
0	I	0	I	I	0	I	I	•••	0	positive
0	I	0	I	I	0	I	0	•••	0	positive
0	0	I	0	I	I	0	I	•••	I	positive
•	•	:	•	•••	•	•	:	•••	•	:
I	I	0	I	ı	0	0	I	•••	ı	positive

example: positive/negative movie reviews

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature is independent of the value of other features
- Example: we have <u>seven</u> features and D = [0][0][
- P(I0II0II|POS) =

```
P(w_1=1|POS) \times P(w_2=0|POS) \times P(w_3=1|POS) \times P(w_4=1|POS) \times P(w_5=0|POS) \times P(w_6=1|POS) \times P(w_7=1|POS)
```

P(I0II0II|NEG) =

$$P(w_1=I|NEG) \times P(w_2=0|NEG) \times P(w_3=I|NEG) \times P(w_4=I|NEG) \times P(w_5=0|NEG) \times P(w_6=I|NEG) \times P(w_7=I|NEG)$$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1 = | | POS)$?

w_I	w_2	w_3	w_4	w_5	w_6	w_7	w_8		w_n	sentiment
I	0	I	0	I	0	0	I	•••	0	positive
0	-	0	I	I	0	I	I	•••	0	negative
0	_	0	I		0	I	0	•••	0	negative
0	0	I	0	I	I	0	I	•••	I	positive
:	÷	•••	•	••••	•	•	•	•••	:	•
I	-	0	ı	I	0	0	I	•••	ı	negative

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1 = | POS)$?

	POS	NEG
w₁ = I	a	Ь
w ₁ = 0	C	d

$$P(w_1=I|POS) = ??$$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1 = | POS)$?

	POS	NEG
w₁ = I	a	b
w ₁ = 0	C	d

$$P(w_1 = I | POS) = a / (a + c)$$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1=1/0|POS/NEG)$?

	POS	NEG
w₁ = I	a	b
w ₁ = 0	C	d

$$P(w_1=1|POS) = a / (a + c)$$
 $P(w_1=0|POS) = ??$
 $P(w_1=1|NEG) = ??$
 $P(w_1=0|NEG) = ??$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1=1/0|POS/NEG)$?

	POS	NEG
w₁ = I	a	Ь
w ₁ = 0	C	d

$$P(w_1 = I | POS) = a / (a + c)$$

$$P(w_1=0|POS) = c / (a + c)$$

$$P(w_1 = I | NEG) = b / (b + d)$$

$$P(w_1=0|NEG) = d / (b + d)$$

example: positive/negative movie reviews

Question: How do we estimate P(w₂=1/0|POS/NEG)?

	POS	NEG	$P(w_2= POS) = a / (a + c)$
$w_2 = \blacksquare$	a	b	$P(w_2=0 POS) = c / (a + c)$
			$P(w_2=I NEG) = b / (b + d)$
$\mathbf{w}_2 = 0$	С	d	$P(w_2=0 NEG) = d / (b + d)$

 The value of a, b, c, and d would be different for different features w₁, w₂, w₃, w₄, w₅,, w_n

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$P(D|POS) \times P(POS) \ge P(D|NEG) \times P(NEG)$$

example: positive/negative movie reviews

• Given instance **D**, predict positive (**POS**) if:

$$P(POS) \times \prod_{i=1}^{n} P(w_i = D_i | POS) \ge P(NEG) \times \prod_{i=1}^{n} P(w_i = D_i | NEG)$$

example: positive/negative movie reviews

• Given instance D = [0][0][, predict positive (POS) if:

```
P(w_1=I|POS) \times P(w_2=0|POS) \times P(w_3=I|POS) \times P(w_4=I|POS) \times P(w_5=0|POS) \times P(w_6=I|POS) \times P(w_7=I|POS) \times P(POS)
```

 \geq

$$P(w_1=I|NEG) \times P(w_2=0|NEG) \times P(w_3=I|NEG) \times P(w_4=I|NEG) \times P(w_5=0|NEG) \times P(w_6=I|NEG) \times P(w_7=I|NEG) \times P(NEG)$$

example: positive/negative movie reviews

We still have a problem! What is it?

example: positive/negative movie reviews

• Given instance D = [0][0][, predict positive (POS) if:

```
P(w_1=I|POS) \times P(w_2=0|POS) \times P(w_3=I|POS) \times P(w_4=I|POS) \times P(w_5=0|POS) \times P(w_6=I|POS) \times P(w_7=I|POS) \times P(POS)
```

 $P(w_1=I|NEG) \times P(w_2=0|NEG) \times P(w_3=I|NEG) \times P(w_4=I|NEG) \times P(w_5=0|NEG) \times P(w_6=I|NEG) \times P(w_7=I|NEG) \times P(NEG) \times P(NEG)$

Otherwise, predict negative (NEG)

What if this never happens in the training data?

Smoothing Probability Estimates

- When estimating probabilities, we tend to ...
 - Over-estimate the probability of observed outcomes
 - Under-estimate the probability of unobserved outcomes
- The goal of smoothing is to ...
 - Decrease the probability of observed outcomes
 - Increase the probability of unobserved outcomes
- It's usually a good idea
- You probably already know this concept!

Smoothing Probability Estimates

- YOU: Are there mountain lions around here?
- YOUR FRIEND: Nope.
- YOU: How can you be so sure?
- YOUR FRIEND: Because I've been hiking here five times before and have never seen one.
- YOU: ?????

Smoothing Probability Estimates

- YOU: Are there mountain lions around here?
- YOUR FRIEND: Nope.
- YOU: How can you be so sure?
- YOUR FRIEND: Because I've been hiking here five times before and have never seen one.
- MOUNTAIN LION: You should have learned about smoothing by taking INLS 613. Yum!

Add-One Smoothing

• Question: How do we estimate P(w₂=1/0|POS/NEG)?

	POS	NEG
w ₂ = [a	Ь
$w_2 = 0$	C	d

$$P(w_2 = | POS) = a / (a + c)$$

$$P(w_2=0|POS) = c / (a + c)$$

$$P(w_2 = | | NEG) = b / (b + d)$$

$$P(w_2=0|NEG) = d / (b + d)$$

Add-One Smoothing

• Question: How do we estimate $P(w_2=1/0|POS/NEG)$?

	POS	NEG	$P(w_2=I POS) = ??$
$w_2 = \blacksquare$	a + I	b + I	$P(w_2=0 POS) = ??$
			$P(w_2 = I NEG) = ??$
$\mathbf{w}_2 = 0$	c +	d + I	$P(w_2=0 NEG) = ??$

Add-One Smoothing

• Question: How do we estimate P(w₂= 1/0 | POS/NEG)?

	POS	NEG
w ₂ =	a + I	b + I
$w_2 = 0$	c +	d + I

$$P(w_2=I|POS) = (a + I) / (a + c + 2)$$

 $P(w_2=0|POS) = (c + I) / (a + c + 2)$

$$P(w_2=I|NEG) = (b + I) / (b + d + 2)$$

$$P(w_2=0|NEG) = (d + 1) / (b + d + 2)$$

example: positive/negative movie reviews

• Given instance **D**, predict positive (**POS**) if:

$$P(POS) \times \prod_{i=1}^{n} P(w_i = D_i | POS) \ge P(NEG) \times \prod_{i=1}^{n} P(w_i = D_i | NEG)$$

- Naive Bayes Classifiers are simple, effective, robust, and very popular
- Assumes that feature values are conditionally independent given the target class value
- This assumption does not hold in natural language
- Even so, NB classifiers are very powerful
- Smoothing is necessary in order to avoid zero probabilities