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[image: image2.png]FIGURE 122 Regression with Positively Autocorrelated Error Terms.
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t-test for coefficient calculate the 1-tailed P-value associated with b1 by dividing the (2-tailed) P-value shown on the regression printout by 2. If the 1-tailed P-value is less than α=.05, one concludes H1:(β1> 0); t*~t(α, n–p)
test whether several regression coefficients are simultaneously = 0 using comparison of full versus reduced model and appropriate F-test SSEF<=SSER, because model with more parameters always fits data as well or better. SSEF not much less than SSER suggests that extra variables in F do not help reduce SSE much. SSEF much less than SSER suggests that extra variables in F improve the fit a lot. Test difference between SSER and SSEF. using test statistic F*=((SSER–SSEF)/(dfR–dfF))/(SSEF/dfF); dfR=n–pR, dfF=pF or F*=((R2F–R2R)/(dfF–dfR))/(1–R2F/dfF). The df of the difference between SSER and SSEF is equal to the # of parameters set to 0 by the hypothesis. In the tables, dfR –dfF= numerator (top), dfF=denominator (side). Small F* suggests H0: β2=β3=β4=0. Large F* suggests that H1: not all β2=β3=β4=0. Decision rule is if F*<=F(1–α; dfR–dfF, dfF), A: H0, but if F*>F(1–α; dfR–dfF, dfF), A: H1
Produce a partial regression plot Assume the multiple regression model Y=β0+β1X1+β2X2+β3X3+ε. 

To do a partial regression plot for X3: Y=Constant+X1+X2 to take out the effect of X1+X2; get the residuals (the unexplained variance of Y without X1+X2), then X3=Constant+X1+X2; get residuals (what’s left in X3 without X1+X2) then plot residuals for Y on Y axis, residuals for X3 on X axis to see relationship between Y and X3.

interpret the meaning of TOL/VIF (VIF)k measures how much the variance of the standardized regression coefficient bk* is inflated by collinearity. Rule of thumb: take TOL< .1 or VIF>10 as indication that collinearity may be a problem.  (VIF is inverse of TOL; VIFk = 1/TOLk or TOL=1–R2k (the % of the variation left in the X variable to be associated with the Y variable);inverse VIF=1/(1–R2k)
what constitutes evidence of collinearity 

· large changes in bk when adding or deleting variables(s) or observation(s) 

· bk non significant for a theoretically important Xk 

· bk with sign opposite of expected (from theory or previous results) 

· large correlations(s) in rXX 

· wide s{bk} for important Xk(s) 

· bks are non significant even though F for whole regression is significant 

interpretation of leverage in the X dimension.  Sum of leverage values always adds up to p. range of leverage is from 0 to 1. Three ways to identify high-leverage:

· look at a box plot or stem-and-leaf plot of hii for (an) extreme value(s) of hii 

· rule of thumb #1: consider hii large if it is larger than twice the average hii. Sum of hii is p, so average hii is p/n. Thus flag observations for which hii > 2p/n 

· rule of thumb #2: take hii> 0.2 to indicate "MODERATE", 0.2 <hii< 0.5 to indicate "MODERATE HIGH", and hii> 0.5 to indicate "VERY HIGH" leverage.

how to flag a case that's outlying (a case that is separated from the remainder of the data)with respect to the Y-dimension 

· Standardized (aka Semi-Studentized) Residual ei*: calculate by dividing the raw residual by the estimated standard deviation of the residuals s{e} as ei*=ei/(MSE)1/2, or the residual ei/√MSE, equivalent to a z-score for residuals. 

· (Internal) Studentized Residual ri: instead of standardizing with the /√MSE, use more precise estimate of the standard deviation of ei. Thus s2{ei}=MSE(1–hii) and s{ei}=(MSE(1–hii))1/2 so that ri=ei/s{ei}=ei/(MSE(1–hii))1/2. This refinement takes into account that the residual variance varies over observations. 

· (External) Deleted Residual di: in the previous formula, ei=Yi–^Yi may be artificially small if case i has high leverage which forces ^Yi to be close to Yi (thereby reducing the variance of ei). Thus, estimate the residual for case i based on a regression that excludes (or deletes) case i. This is the deleted residual defined as di=Yi–^Yi(i) where the notation ^Yi(i) means the fitted value of Y for case i using a regression with (n–1) cases excluding (or "deleting") case i itself.  (di is also called "external", because case i is not involved in the regression producing the residual.)  An equivalent formula for di that only involves the regression with the n cases is di=ei/(1–hii).

· (External) Studentized Residual or Studentized Deleted Residual ti (THE ULTIMATE RESIDUAL) combines the refinements introduced above and is defined as ti=di/s{di}or as ti=ei((n–p–1)/(SSE(1–hii)–ei2))1/2 which only involves the regression with the n cases. 

· Using ti in Testing for Y-outliers: One already knows from above that ti=di/s{di}~t(n–p–1). But one cannot just test at the α= .05 level by looking for absolute values of ti>1.96, because there are n possible residuals so it is a situation of multiple tests. Thus one can use the Bonferroni criterion which divides the original α by the number of tests, which is n. The Bonferroni-corrected critical value to flag outliers is thus t(1–α/2n; n–p–1), takes into account multiple tests and the more tests, the higher the chance one will be significant. Cases with ULTIMATE residuals greater in absolute value than this critical value are considered bad outliers. 

how to flag a case that's outlying with respect to the X-values: 

In multiple regression X-outlying observations are identified using the hat matrix H.  hii Measures the Leverage of an Observation hii is related to the distance between Xi and X(bar), which is the vector of the means of the X variables, called the centroid of X.  Plotting observations in the SIZE x SEASON space shows that observations distant from the centroid have larger leverage. A larger value of hii indicates that a case has greater leverage in determining its own fitted value ^Yi. Since σ 2{ei}=σ 2(1–hii) it follows that the larger hii, the smaller σ 2{ei}, and the closer ^Yi will be to Yi. (At the limit, if hii=1, ^Yi is forced to be equal to Yi.) 

how to flag a case that's influential; it’s influential if excluding it from the regression causes a substantial change in the estimated regression function. (i.e., the estimated regression function is substantially different depending on whether the case is included or not in the data set) Cook’s is most important for diagnosing influential cases
COOK's Distance Di measures the influence of case i on all n fitted values ^Yi (not just the fitted value for case i as DFITS). Di=(^Y–^Y(i))'(^Y–^Y(i))/pMSE where the numerator is the sum of the squared differences between the fitted values of Y for regressions with case i included or deleted. An equivalent formula that only involves the regression with the n cases is Di=(ei2/pMSE)(hii/(1–hii)2). The formula shows that Di is large when either the residual ei is large, or the leverage hii is large, or both. In practice, one finds that Di is almost a quadratic function of DFITS. As Di is ~ proportional to squared DFITS, it tends to amplify the distinctiveness of influential cases. 

Using Di (COOK) in Identifying Influential Cases: relate the values of COOK to the corresponding percentiles of F(p, n–p) distribution. Look at the Cook’s % value in the F tables and use the percentile found to determine a bad outlier.  If the percentile value is... 

· less than about 10 or 20 percent ... the ith case has little apparent influence... or moderate influence

· near 50 percent or more ... the ith case has a major influence... or bad influence

Summarize diagnostics for outliers and influential cases. What diagnostics to use for routine work? influential cases are more common in small data sets
· look at index plot of Cook's Di (or DFITS) as a good summary measure of influence; use the test of COOK based on a comparison with an F distribution to test apparent influential observations 

· look at a stem-and-leaf or box plot of STUDENT (studentized deleted residual); look especially for the observations flagged by COOK 

· look at a stem-and-leaf or box plot of LEVERAGE (hii); look especially for the observations flagged by COOK 

· look at partial regression plots to see how the "suspects" affect individual regression coefficients 

what method(s) exist for robust outlier detection in the presence of several outliers Hadi is good because it’s robust (less sensitive than OLS to the presence of influential outliers) to multiple outliers, avoids swamping (multiple outliers that clump and pull the regression line, concealing them as outliers) and masking (one set of outliers canceling out another set of outliers).  There are several approaches to robust regression such as 

· least absolute residuals (LAR) regression minimizes the sum of absolute (rather than squared) deviations of Y from the regression function 

· least median of squares (LMS) regression minimizes the median (rather than the sum) of squared deviations of Y from the regression function 

· trimmed regression excludes a certain percentage of extreme cases at both ends of the distribution of residuals 

· iteratively reweighted least squares (IRLS) iteratively reweights cases in inverse proportion to its residual (standardized by the robust estimator of dispersion MAD discussed below) to discount the influence of extreme cases; IRLS refers to a family of methods distinguished by different weighting functions (such as Huber, Hampel, bisquare, etc.) 

· Iteratively Reweighted Least Squares (IRLS) with MAD Standardized Residual: IRLS methods discount the weight of outlying cases in the regression as a function of residuals standardized using a robust estimate of σ called median absolute deviation (MAD); MAD = (1/.6745) median{|ei–median{ei}|}; where the term .6745 is a correction factor to make MAD an unbiased estimate of the standard deviation of residuals from a normal distribution. The robust standardized residual ui for observation i is ui=ei/MAD.  Given ui the cases are weighted according to a variety of functions. 

properties of remedial measures for collinearity Once collinearity has been diagnosed, a number of strategies may be considered, starting with the most obvious ones: 

· collinearity does not affect the precision of the predictions ^Yh or ^Yh(new) as long as Xh follows the same pattern of collinearity as the bulk of the data (i.e., Xh has low hii relative to the centroid of X); so if the main purpose of the analysis is prediction, collinearity is not an issue 

· when collinear variables are not jointly significant in the model, they can simply be dropped from the model 
· if collinearity is in a polynomial regression, transform Xi into (Xi–Xbar.) 

· often collinearity arises when the Xs are conceptually related, alternative measures of the same theoretical concept; if so either (1) drop one or more of the collinear variables (keeping in mind the danger of specification bias); (2) incorporate collinear variables into a single index (by summing or averaging); (3) calculate one or several principal components on the subset of collinear variables and use the component(s) in the regression instead of the original variables; or (4) if estimating the separate effect of collinear variables that are conceptually related (i.e., alternative measures of the same concept) is not essential, one may be content to simply test their joint effect on the dependent variable
· in some cases, pattern of collinearity can be broken by collecting additional data; more often feasible in experimental than in observational studies 

· in some cases, some bk can be estimated from another data set, and the effect of the corresponding Xk "removed" by transforming Y into Yi'=Yi–bkXik 

· if all else fails, use ridge regression (lower variance, but introduces some bias)

detection of heteroskedasticity 

· Modified Levene Test: (robust [i.e., not many assumptions] and does not assume normality of errors) Split sample into 2 groups and compare variance across the 2). Principle: find out whether error variance σi2 increases or decreases with values of an independent variable Xk (or with values of ^Y) by splitting observations into 2 groups: low values of Xk and high values of Xk (or low ^Y and high ^Y), then test whether the medians of the absolute values of the residuals for the 2 groups differ. This yields a standard t-test. 

· Breusch-Pagan Test: (large sample test; assumes normality of errors; assumes σi2 is a specific function of one or several Xk) Variance of the residual to the Y variable. Principle: compare the SSR from regressing ei2 on the Xk to SSE from regressing of Y on the Xk, with each SS divided by its df; resulting ratio is distributed as χ2 with p–1 df. 

· Goldfeld-Quandt Test: (does not assume large sample) Principle: sort cases with respect to variable believed related to residual variance; omit about 20% middle cases; run separate regressions in the low group (obtain SSElow) and high group (obtain SSEhigh); test F-distributed ratio SSEhigh/SSElow. 

distinction between fixed-X and random-X sampling in the context of the bootstrap fixed X sampling when the Xk are considered fixed (as in experimental studies); Preserve distribution of values of X, run regression first with replacements. random X when the Xk are considered random (as in observational studies). Repeated regressions with replacement for outliers.

consequences of serial correlation of errors for model estimation Because of serial correlation 

· the OLS and true regression lines may differ sharply from sample to sample depending on the initial disturbance ε0 compare (a), (b) and (c)
· MSE may underestimate true variance of εt compare variability of residuals around regression line in (a) and (b) thus standard errors of estimate of the regression coefficients may also be underestimated 

In general, serial correlation of the disturbances may have the following effects with OLS estimation [1]estimated regression coefficients are still unbiased but no longer minimum variance (= inefficient) [2]MSE may underestimate variance of error [3]s{bk} may underestimate true standard error of estimate thus, statistical inference using t and F no longer justified 

remedial measures for serial correlation of errors Add Omitted Predictors to Model: Autocorrelation is caused by unmeasured variables that have similar values from period to period. Identifying & including these variables may eliminate serial correlation. Omitted variables may be "simulated" by adding a linear or exponential trend or seasonal indicators. Using Transformed Variables: If one knows ρ, get rid of serial correlation by using OLS with transformed data. In practice the value of ρ is unknown. These methods are based on transforming the variables, using alternative ways of estimating ρ. Cochrane-Orcutt Procedure (Y): transform the data to get rid of autocorrelation. Get estimate of ρ from SYSTAT. Hildreth-Lu Procedure (X): brute force search for the optimal value of ρ that minimizes the sum of squared errors of the transformed regression. First Differences Procedure: simplest transformation procedure as it implicitly assumes ρ=1 (estimates of ρ are often close to 1).  It involves two regressions with the transformed data: (1)a first regression without a constant term to estimate the regression coefficients (since the first differences transformation "wipes out" the constant term) (2) a second regression with a constant term to recalculate the D-W D statistic only (because D-W requires a constant in the model) 
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what constitutes evidence of heteroskedasticity, the unequal variance of the errors ei? A: a "funnel shape" plot of the residuals ei against the estimates ^Yi 
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properties of alternative tests for heteroskedasticity WLS is a remedy, not a test.  It gives less weight to observations with large error variance, and vice-versa. 
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doing a Durbin-Watson test given the D statistic a formal test for autocorrelation.  D close to zero indicates serial correlation.  D-W test setup is: 


Table B7 gives  values dL and dU such that 


if D > dU conclude H0 (ρ = 0)


if dL <= D <= dU the test is inconclusive


if D < dL conclude H1 (ρ > 0)








consequences of collinearity for model estimation Unless it’s perfect collinearity, it doesn’t violate OLS, but…the fundamental problem with collinearity is that the pattern of intercorrelations among variables makes the X'X matrix nearly singular, which makes estimation of the regression coefficients imprecise/unstable.
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These examinations usually narrow down the search to a small number of cases and reveal their "personality", i.e. the ways in which they are "deviant", possibly suggesting already remedial strategies. It is rarely necessary to look further than this. 
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The quickest way to detect influential cases is to plot COOK against the case number (this is called an index plot) and flag cases that stand out. 
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interpretation of the first-order autoregressive model The variance-covariance matrix of ε is non-diagonal with a specific structure; which is why the model is called "generalized", as in "generalized least squares".  Even though the first-order autoregressive model is simple, it is often a good approximation of actual situations. First Order Autocorrelation in SYSTAT is between 0<rho<1, so anything above 0.5 is a significant reading. εt=ρεt–2+ut  Pay attention to weather and time. If you have an unmeasured factor that affects the error term at time 2, two terms are autocorrelated (as in weather & employment)





detection of serial correlation of errors in time series data if it looks like a machine gun spread of data points, the error term does not work for the assumptions of the model





consequences of heteroskedasticity for model estimation 


heteroscedasticity does not bias coefficient estimates: β is inefficient


heteroscedasticity means that OLS is not the best (=most efficient, minimum variance) estimator; tests are wrong due to incorrect estimates of β
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