Sentiment Analysis

Jaime Arguello INLS 613: Text Data Mining

jarguell@email.unc.edu

October 31, 2016

Definitions

- Subjectivity analysis: detecting whether a span of text describes the author's internal state (e.g., opinions, evaluations, emotions, speculations)
- Opinion mining: detecting whether a span of text expresses a positive/negative judgement
- Affect Detection: detecting whether a span of text conveys a particular emotion (e.g., anger, hope, disgust)

Applications

- Review summarization
- Recommendation systems
- Detecting "flames" in social media
- Summarization of multiple viewpoints
- Text-based forecasting or "now-casting"
- eRulemaking

Challenges

Challenges

- Sarcasm
- Negation
- Modal verbs (e.g., could, should, would)
- Absence of "opinionated" text (e.g., Go read the book.)
- Polarity strength
- Target resolution
- Topic-specific predictiveness of features
- • • •

Features

- Unigrams (presence vs. frequency)
- Higher-order n-grams (mixed results)
- Corpus frequency (Hapax legomena -- objective text is repeated)
- Part-of-speech ("love"--> love_NOUN)
- Position information ("good" --> good_END)
- Valence shifters ("don't like" --> NOT_like)
- Target oriented features ("long" --> BATTERY_LIFE_long)
- Genre-specific features ("scary" --> HORROR_scary)
- Dependency parse features (http://nlp.stanford.edu:8080/parser/index.jsp)

Pang and Lee, EMNLP 2002

	Features	# of	frequency or	NB	ME	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

	Proposed word lists	Accuracy	Ties
Human 1	positive: dazzling, brilliant, phenomenal, excellent, fantastic	58%	75%
	negative: suck, terrible, awful, unwatchable, hideous		
Human 2	positive: gripping, mesmerizing, riveting, spectacular, cool,	64%	39%
	awesome, thrilling, badass, excellent, moving, exciting		
	negative: bad, cliched, sucks, boring, stupid, slow		

Approaches

- Classification
- Regression
- Building genre-specific classifiers
- Inferring term-polarity with seeds/conjunctions (and, but)
 - Elegant, but over-priced; clever and informative
- Inferring labels heuristically (stars, emoticons)
- Self-training
- Co-training
- Domain adaptation

Domain Adaptation

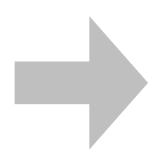
- Challenges
 - Some features may not appear in the target domain
 - Some features may have the opposite polarity

Domain Adaptation

source domains

target domain

books


mobile phones

music albums

movies

laptops

restaurants

kitchen appliances

Related Tasks

- Detecting positive/negative judgement
- Predicting degree of positivity/negativity (regression)
- Extracting sentences that provide justification
- Extracting sentences that express comparison
- Predicting agreement/disagreement
- Viewpoint detection (pro vs. against)
- Detecting issue frames around debate