Jaime Arguello
INLS 613: Text Data Mining

jarguell@email.unc.edu

September 14, 2015

Outline

Basic Probability and Notation

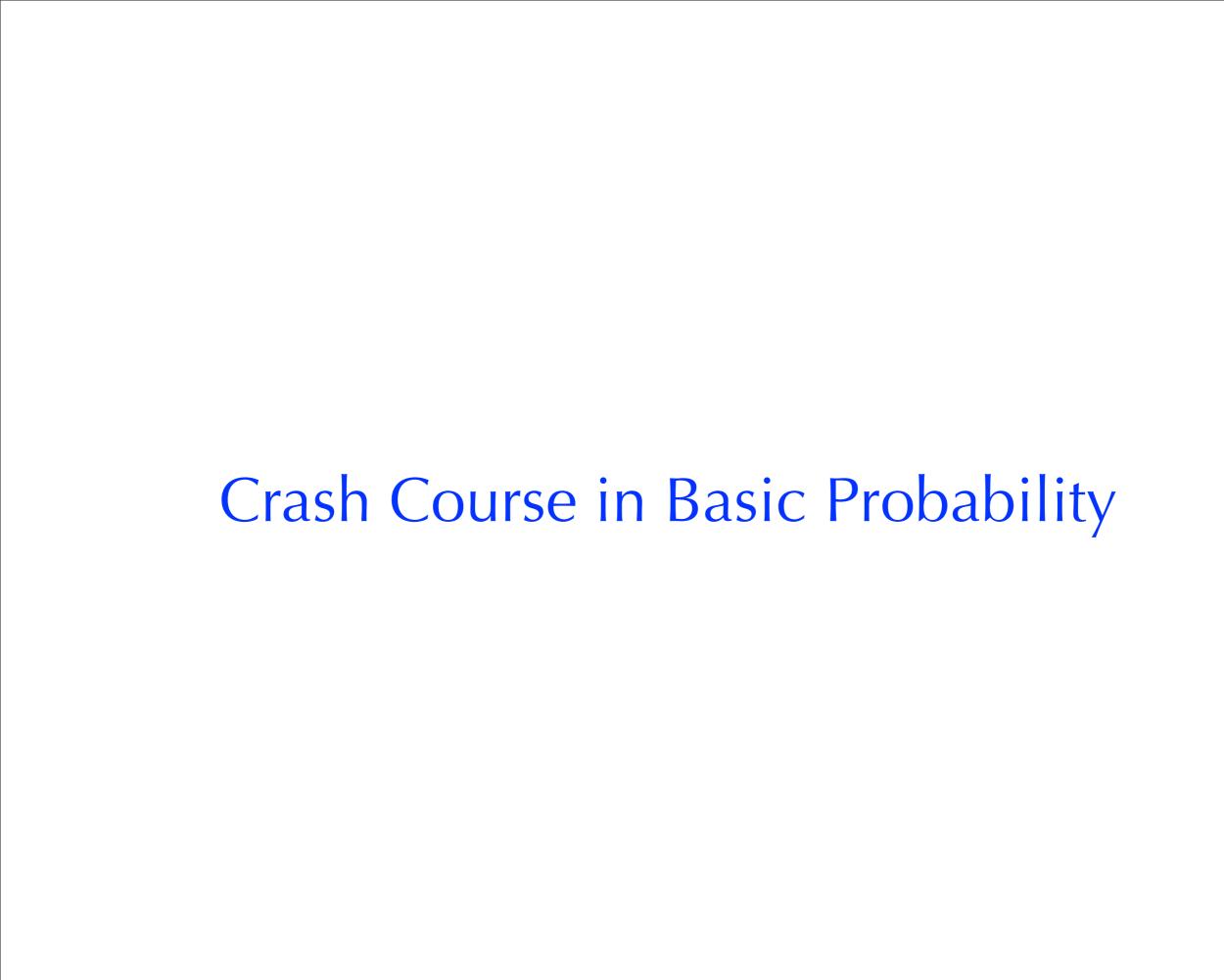
Bayes Law and Naive Bayes Classification

Smoothing

Class Prior Probabilities

Naive Bayes Classification

Summary



Discrete Random Variable

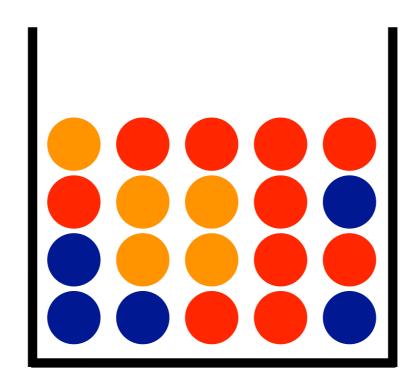
- A is a discrete random variable if:
 - A describes an event with a finite number of possible outcomes (discrete vs continuous)
 - A describes and event whose outcomes have some degree of uncertainty (random vs. pre-determined)

Discrete Random Variables Examples

- A = the outcome of a coin-flip
 - outcomes: heads, tails
- A = it will rain tomorrow
 - outcomes: rain, no rain
- A = you have the flu
 - outcomes: flu, no flu
- A = your final grade in this class
 - outcomes: F, L, P, H

Discrete Random Variables Examples

- A = the color of a ball pulled out from this bag
 - outcomes: RED, BLUE, ORANGE

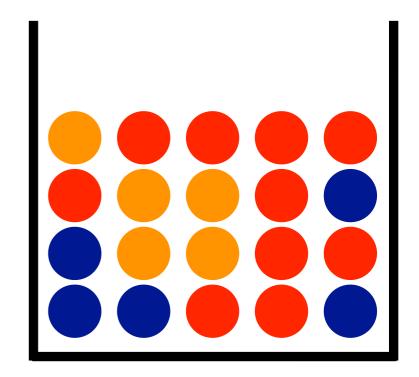


Probabilities

- Let P(A=X) denote the probability that the outcome of event A equals X
- For simplicity, we often express P(A=X) as P(X)
- Ex: P(RAIN), P(NO RAIN), P(FLU), P(NO FLU), ...

Probability Distribution

- A probability distribution gives the probability of each possible outcome of a random variable
- P(RED) = probability of pulling out a red ball
- P(BLUE) = probability of pulling out a blue ball
- P(ORANGE) = probability of pulling out an orange ball



Probability Distribution

- For it to be a probability distribution, two conditions must be satisfied:
 - the probability assigned to each possible outcome must be between 0 and 1 (inclusive)
 - the <u>sum</u> of probabilities assigned to all outcomes must equal 1

```
0 \le P(RED) \le I

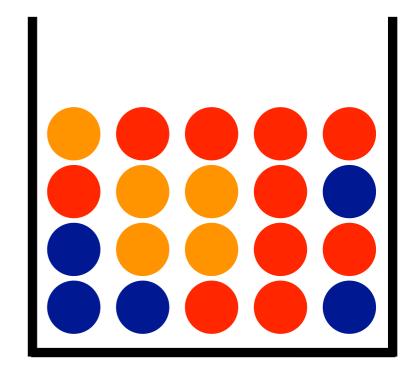
0 \le P(BLUE) \le I

0 \le P(ORANGE) \le I

P(RED) + P(BLUE) + P(ORANGE) = I
```

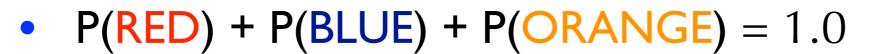
Probability Distribution Estimation

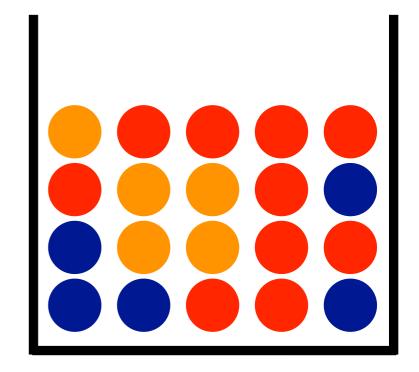
- Let's estimate these probabilities based on what we know about the contents of the bag
- P(RED) = ?
- **P(BLUE)** = ?
- **P(ORANGE)** = ?



Probability Distribution estimation

- Let's estimate these probabilities based on what we know about the contents of the bag
- P(RED) = 10/20 = 0.5
- P(BLUE) = 5/20 = 0.25
- P(ORANGE) = 5/20 = 0.25



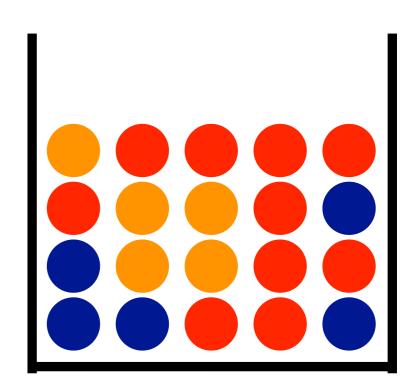


Probability Distribution

assigning probabilities to outcomes

- Given a probability distribution, we can assign probabilities to different outcomes
- I reach into the bag and pull out an orange ball. What is the probability of that happening?
- I reach into the bag and pull out two balls: one red, one blue.
 What is the probability of that happening?
- What about three orange balls?

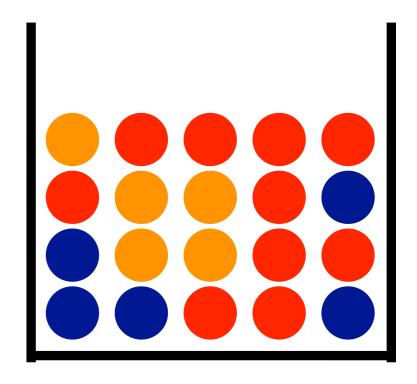
P(RED) = 0.5 P(BLUE) = 0.25P(ORANGE) = 0.25



What can we do with a probability distribution?

- If we assume that each outcome is independent of previous outcomes, then the probability of a <u>sequence</u> of outcomes is calculated by <u>multiplying</u> the individual probabilities
- Note: we're assuming that when you take out a ball, you put it back in the bag before taking another

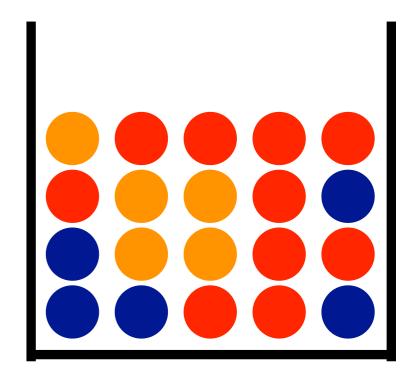
P(RED) = 0.5 P(BLUE) = 0.25P(ORANGE) = 0.25



What can we do with a probability distribution?

$$P(RED) = 0.5$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$



What can we do with a probability distribution?

•
$$P(\bigcirc) = 0.25 \times 0.25 \times 0.25$$

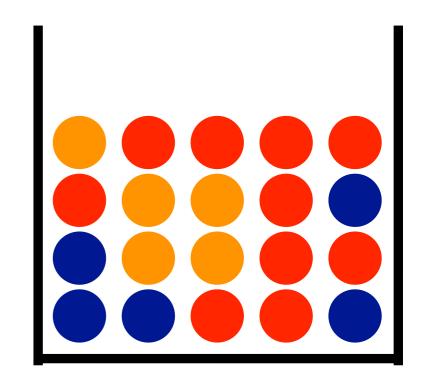
•
$$P(\bigcirc \bigcirc \bigcirc) = 0.25 \times 0.25 \times 0.25$$

•
$$P(\bigcirc \bigcirc \bigcirc) = 0.25 \times 0.50 \times 0.25$$

•
$$P($$
 $) = 0.25 \times 0.50 \times 0.25 \times 0.50 \times 0.25 \times 0.50$

$$P(RED) = 0.5$$

 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$



Conditional Probability

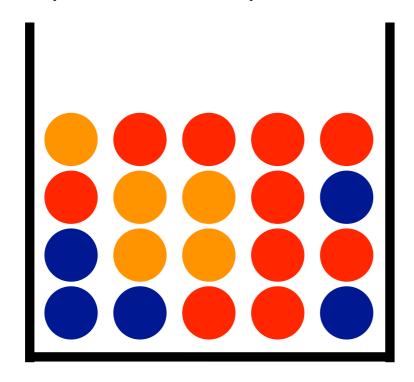
- P(A,B): the probability that event A <u>and</u> event B both occur
- P(A|B): the probability of event A occurring given prior knowledge that event B occurred

Conditional Probability

$$P(RED) = 0.50$$

 $P(BLUE) = 0.25$

$$P(ORANGE) = 0.25$$

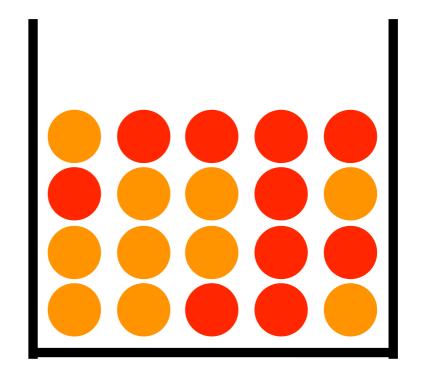


•
$$P(| A) = ??$$

$$P(RED) = 0.50$$

$$P(BLUE) = 0.00$$

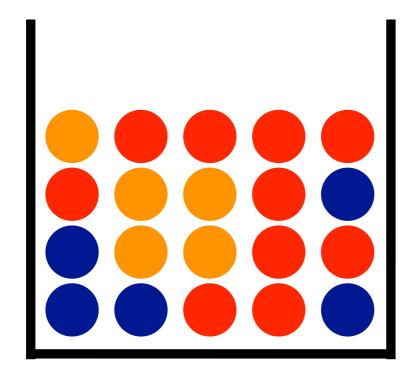
$$P(ORANGE) = 0.50$$



Conditional Probability

$$P(RED) = 0.50$$

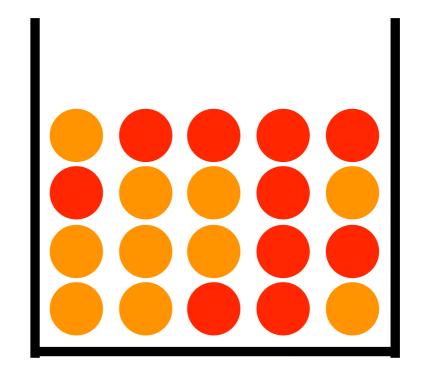
 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$



- P(| A) = 0.50

$$P(RED) = 0.50$$

 $P(BLUE) = 0.00$
 $P(ORANGE) = 0.50$

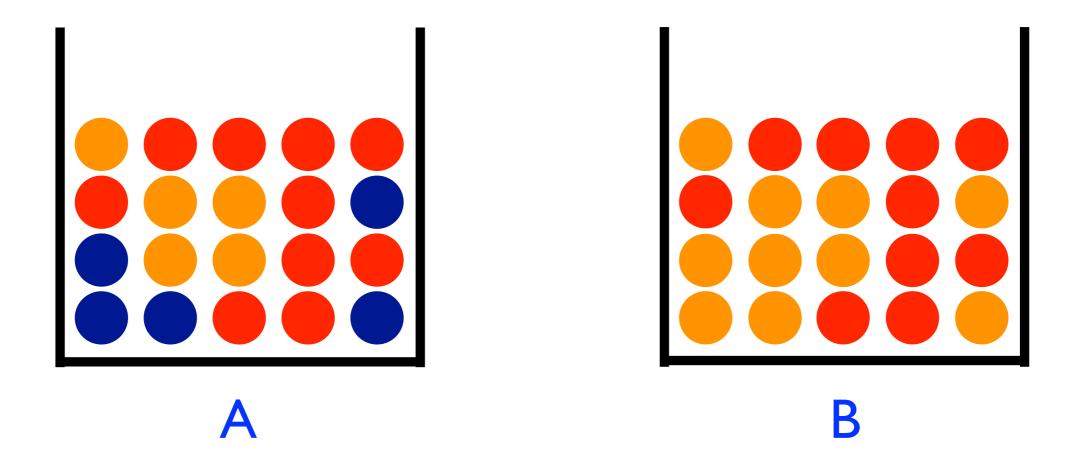


B

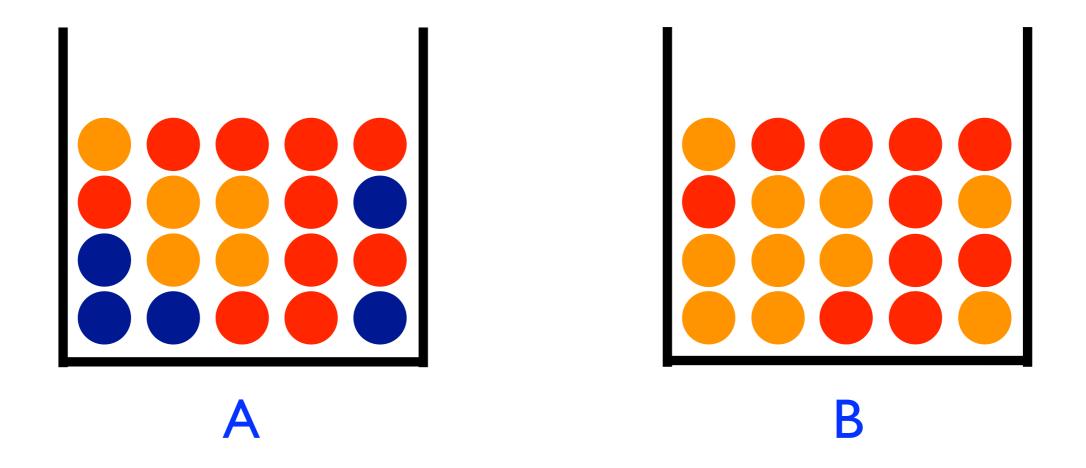
Chain Rule

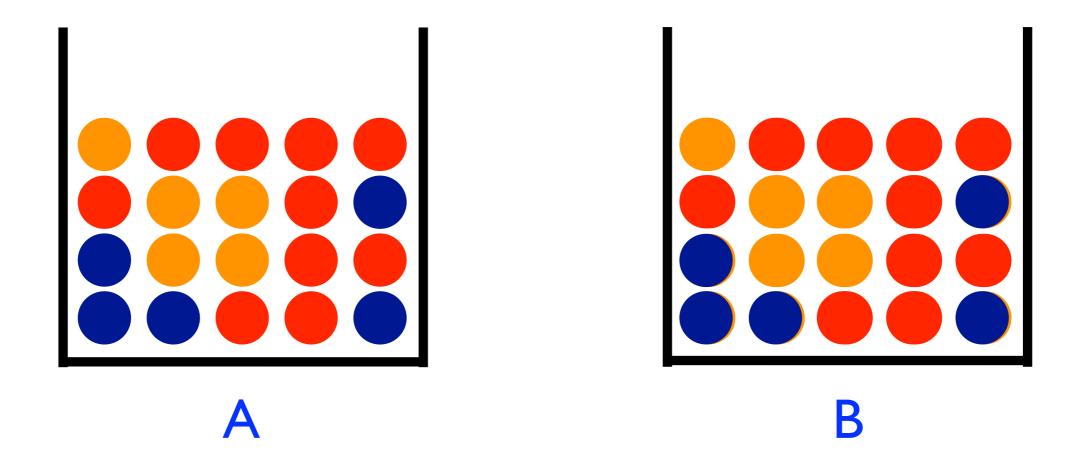
- $P(A, B) = P(A|B) \times P(B)$
- Example:
 - probability that it will rain today (B) and tomorrow (A)
 - probability that it will rain today (B)
 - probability that it will rain tomorrow (A) given that it will rain today (B)

- $P(A, B) = P(A|B) \times P(B) = P(A) \times P(B)$
- Example:
 - probability that it will rain today (B) and tomorrow (A)
 - probability that it will rain today (B)
 - probability that it will rain tomorrow (A) given that it will rain today (B)
 - probability that it will rain tomorrow (A)

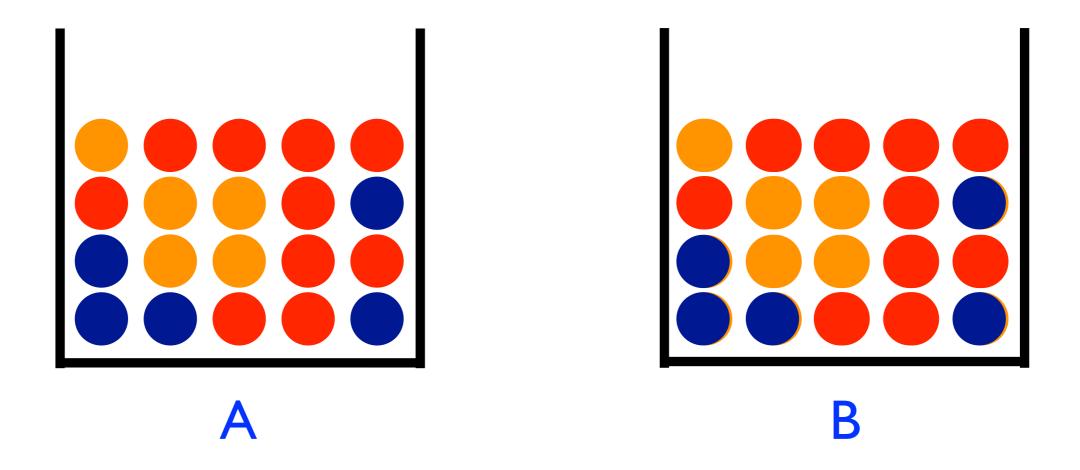


$$P(\bigcirc | A) ?= P(\bigcirc)$$





$$P(\bigcirc | A) ?= P(\bigcirc)$$



$$P(\bullet | A) = P(\bullet)$$

Outline

Basic Probability and Notation

Bayes Law and Naive Bayes Classification

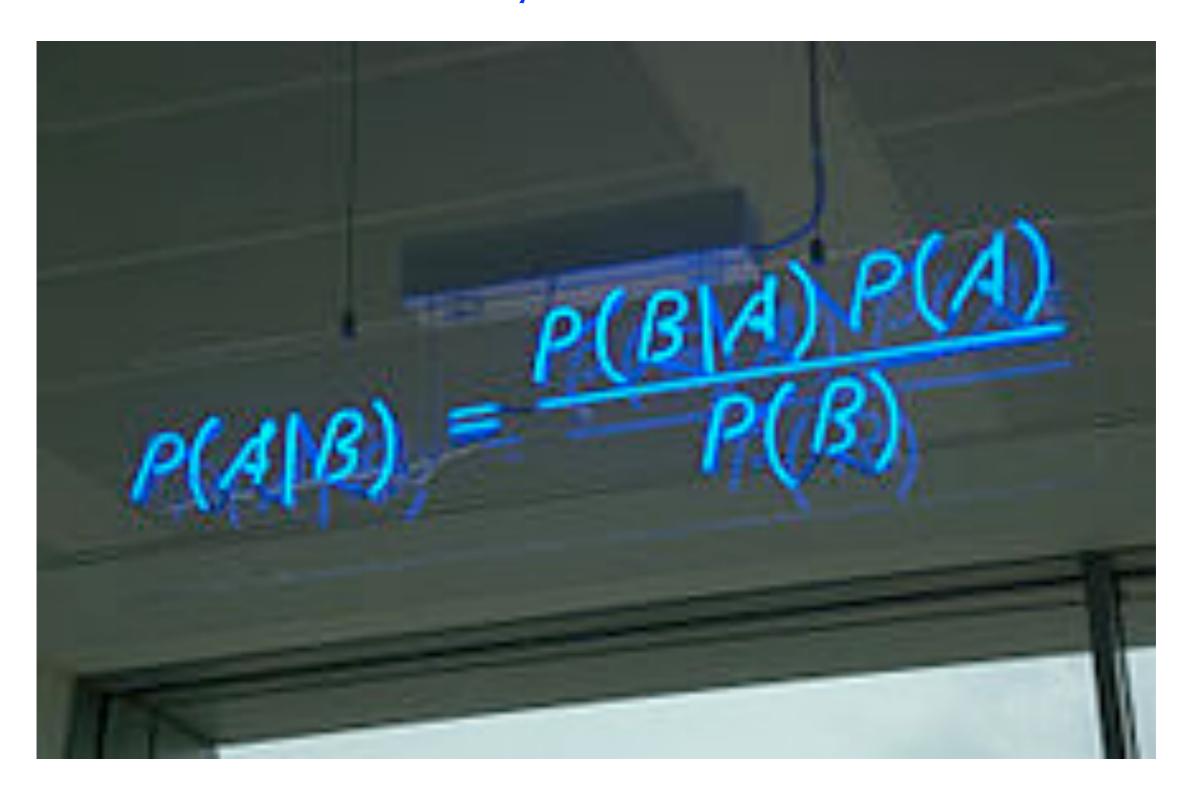
Smoothing

Class Prior Probabilities

Naive Bayes Classification

Summary

Bayes' Law



Bayes' Law

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Derivation of Bayes' Law

$$P(A,B) = P(A,B)$$

Always true!

$$P(A|B) \times P(B) = P(B|A) \times (B)$$
 Chain Rule!

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Divide both sides by P(B)!

example: positive/negative movie reviews

Bayes Rule

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Confidence of POS prediction given instance D

$$P(POS|D) = \frac{P(D|POS) \times P(POS)}{P(D)}$$

Confidence of NEG prediction given instance D

$$P(NEG|D) = \frac{P(D|NEG) \times P(NEG)}{P(D)}$$

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

$$P(POS|D) \ge P(NEG|D)$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$\frac{P(D|POS) \times P(POS)}{P(D)} \ge \frac{P(D|NEG) \times P(NEG)}{P(D)}$$

Otherwise, predict negative (NEG)

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

example: positive/negative movie reviews

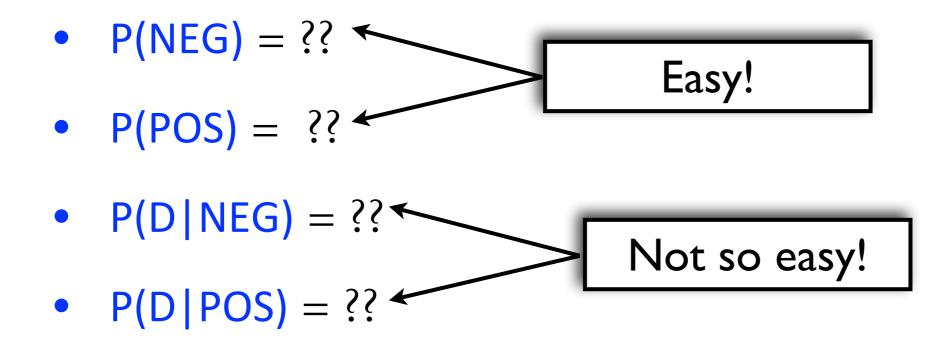
• Given instance D, predict positive (POS) if:

$$P(D|POS) \times P(POS) \ge P(D|NEG) \times P(NEG)$$

• Otherwise, predict negative (NEG)

example: positive/negative movie reviews

 Our next goal is to estimate these parameters from the training data!



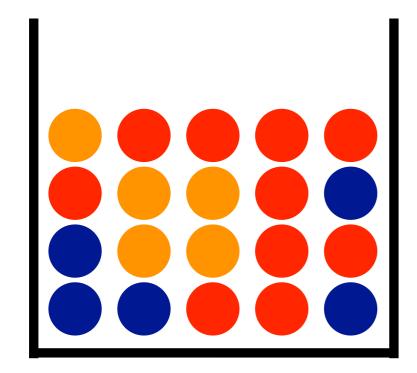
example: positive/negative movie reviews

- Our next goal is to estimate these parameters from the training data!
- P(NEG) = % of training set documents that are NEG
- P(POS) = % of training set documents that are POS
- P(D|NEG) = ??
- P(D|POS) = ??

Remember Conditional Probability?

$$P(RED) = 0.50$$

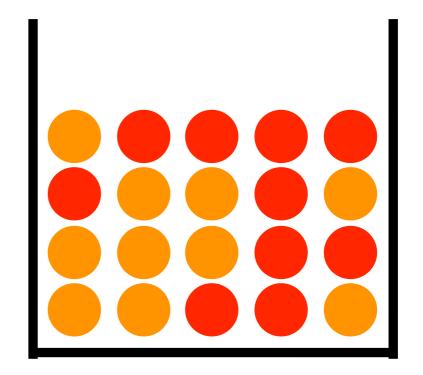
 $P(BLUE) = 0.25$
 $P(ORANGE) = 0.25$



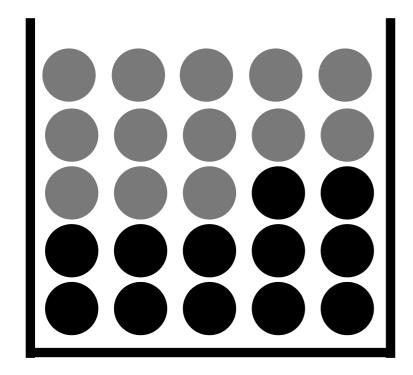
- P(| A) = 0.50
- P(| A) = 0.25

$$P(RED) = 0.50$$

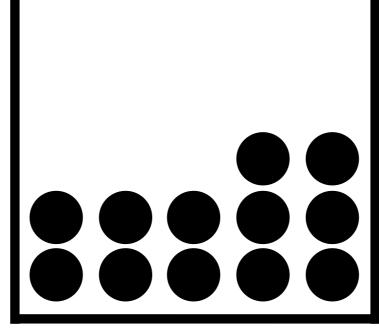
 $P(BLUE) = 0.00$
 $P(ORANGE) = 0.50$



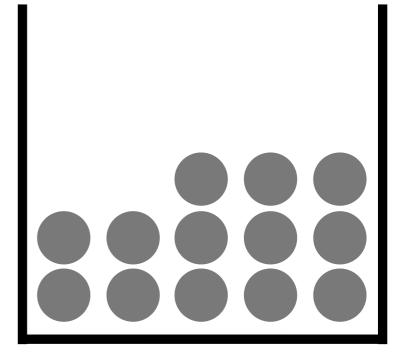
- P(| B) = 0.50
- P(| B) = 0.50



Training Instances



Positive Training Instances



Negative Training Instances

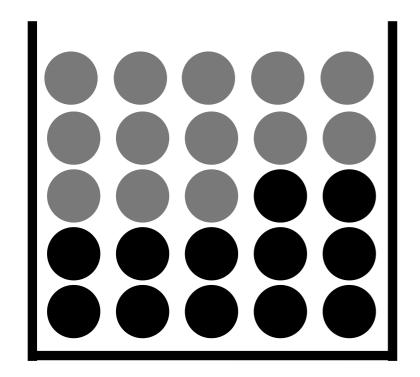
$$P(D|POS) = ??$$

$$P(D|NEG) = ??$$

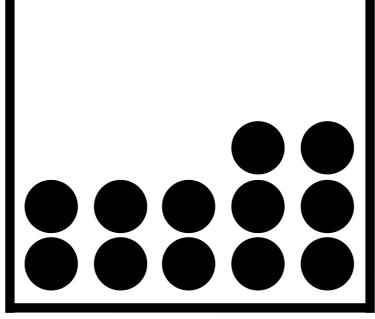
w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8		w_n	sentiment
1	0	1	0	1	0	0	1		0	positive
0	1	0	1	1	0	1	1		0	positive
0	1	0	1	1	0	1	0		0	positive
0	0	1	0	1	1	0	1		1	positive
:						::			::	:
1	1	0	1	1	0	0	1	•••	1	positive

example: positive/negative movie reviews

We have a problem! What is it?

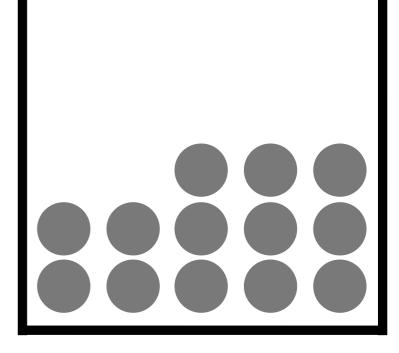


Training Instances



Positive Training Instances

$$P(D|POS) = ??$$



Negative Training Instances

$$P(D|NEG) = ??$$

- We have a problem! What is it?
- Assuming n binary features, the number of possible combinations is 2ⁿ
- $2^{1000} = 1.071509e + 301$
- And in order to estimate the probability of each combination, we would require multiple occurrences of each combination in the training data!
- We could never have enough training data to reliably estimate P(D|NEG) or P(D|POS)!

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature is independent of the value of other features
- In other words, the value of a particular feature is only dependent on the class value

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8		w_n	sentiment
1	0	1	0	1	0	0	1	•••	0	positive
0	1	0	1	1	0	1	1		0	positive
0	1	0	1	1	0	1	0	•••	0	positive
0	0	1	0	1	1	0	1		1	positive
			::	::	:	:	::		:	:
1	1	0	1	1	0	0	1	•••	1	positive

example: positive/negative movie reviews

- Assumption: given a particular class value (i.e, POS or NEG), the value of a particular feature is independent of the value of other features
- Example: we have <u>seven</u> features and D = 1011011
- P(1011011 | POS) =

```
P(w_1=1|POS) \times P(w_2=0|POS) \times P(w_3=1|POS) \times P(w_4=1|POS) \times P(w_5=0|POS) \times P(w_6=1|POS) \times P(w_7=1|POS)
```

• P(1011011 | NEG) =

```
P(w_1=1 | NEG) \times P(w_2=0 | NEG) \times P(w_3=1 | NEG) \times P(w_4=1 | NEG) \times P(w_5=0 | NEG) \times P(w_6=1 | NEG) \times P(w_7=1 | NEG)
```

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1=1|POS)$?

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8		w_n	sentiment
1	0	1	0	1	0	0	1		0	positive
0	1	0	1	1	0	1	1	•••	0	negative
0	1	0	1	1	0	1	0	•••	0	negative
0	0	1	0	1	1	0	1	•••	1	positive
:	::	::				::	::		:	:
1	1	0	1	1	0	0	1		1	negative

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1=1|POS)$?

	POS	NEG
$w_1 = 1$	a	b
$w_1 = 0$	C	d

$$P(w_1=1 | POS) = ??$$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1=1|POS)$?

	POS	NEG
$w_1 = 1$	a	b
$w_1 = 0$	C	d

$$P(w_1=1 | POS) = a / (a + c)$$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1=1/0 | POS/NEG)$?

	POS	NEG
$w_1 = 1$	a	b
$w_1 = 0$	C	d

$$P(w_1=1|POS) = a / (a + c)$$
 $P(w_1=0|POS) = ??$
 $P(w_1=1|NEG) = ??$
 $P(w_1=0|NEG) = ??$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_1=1/0 | POS/NEG)$?

	POS	NEG
$w_1 = 1$	a	b
$w_1 = 0$	C	d

$$P(w_1=1|POS) = a / (a + c)$$
 $P(w_1=0|POS) = c / (a + c)$
 $P(w_1=1|NEG) = b / (b + d)$
 $P(w_1=0|NEG) = d / (b + d)$

example: positive/negative movie reviews

• Question: How do we estimate $P(w_2=1/0 | POS/NEG)$?

	POS	NEG	$P(w_2=1 POS) = a / (a + c)$
$w_2 = 1$	a	Ь	$P(w_2=0 POS) = c / (a + c)$
		الم	$P(w_2=1 NEG) = b / (b + d)$
$W_2 = 0$	C	a	$P(w_2=0 NEG) = d / (b + d)$

• The value of a, b, c, and d would be different for different features w₁, w₂, w₃, w₄, w₅,, w_n

example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

$$P(D|POS) \times P(POS) \ge P(D|NEG) \times P(NEG)$$

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$P(POS) \times \prod_{i=1}^{n} P(w_i = D_i | POS) \ge P(NEG) \times \prod_{i=1}^{n} P(w_i = D_i | NEG)$$

example: positive/negative movie reviews

• Given instance D = **1011011**, predict positive (**POS**) if:

$$P(w_1=1|POS) \times P(w_2=0|POS) \times P(w_3=1|POS) \times P(w_4=1|POS) \times P(w_5=0|POS) \times P(w_6=1|POS) \times P(w_7=1|POS) \times P(POS)$$

$$\geq P(w_1=1|NEG) \times P(w_2=0|NEG) \times P(w_3=1|NEG) \times P(w_4=1|NEG)$$

 $x P(w_5=0 | NEG) x P(w_6=1 | NEG) x P(w_7=1 | NEG) x P(NEG)$

example: positive/negative movie reviews

We still have a problem! What is it?

example: positive/negative movie reviews

• Given instance D = **1011011**, predict positive (**POS**) if:

```
P(w_1=1|POS) \times P(w_2=0|POS) \times P(w_3=1|POS) \times P(w_4=1|POS) \times P(w_5=0|POS) \times P(w_6=1|POS) \times P(w_7=1|POS) \times P(POS)
```

 $P(w_1=1|NEG) \times P(w_2=0|NEG) \times P(w_3=1|NEG) \times P(w_4=1|NEG) \times P(w_5=0|NEG) \times P(w_6=1|NEG) \times P(w_7=1|NEG) \times P(NEG) \times P(NEG)$

Otherwise, predict negative (NEG)

What if this never happens in the training data?

Smoothing Probability Estimates

- When estimating probabilities, we tend to ...
 - Over-estimate the probability of observed outcomes
 - Under-estimate the probability of unobserved outcomes
- The goal of smoothing is to ...
 - Decrease the probability of observed outcomes
 - Increase the probability of unobserved outcomes
- It's usually a good idea
- You probably already know this concept!

Smoothing Probability Estimates

- YOU: Are there mountain lions around here?
- YOUR FRIEND: Nope.
- YOU: How can you be so sure?
- YOUR FRIEND: Because I've been hiking here five times before and have never seen one.
- YOU: ?????

Smoothing Probability Estimates

- YOU: Are there mountain lions around here?
- YOUR FRIEND: Nope.
- YOU: How can you be so sure?
- YOUR FRIEND: Because I've been hiking here five times before and have never seen one.
- MOUNTAIN LION: You should have learned about smoothing by taking INLS 613. Yum!

Add-One Smoothing

• Question: How do we estimate $P(w_2=1/0 | POS/NEG)$?

	POS	NEG	Р
$w_1 = 1$	a	b	P
$w_1 = 0$	С	d	P
			P

$$P(w_2=1 | POS) = a / (a + c)$$

$$P(w_2=0 | POS) = c / (a + c)$$

$$P(w_2=1 | NEG) = b / (b + d)$$

$$P(w_2=0 | NEG) = d / (b + d)$$

Add-One Smoothing

• Question: How do we estimate $P(w_2=1/0 | POS/NEG)$?

	POS	NEG
$w_1 = 1$	a + I	b + I
$w_1 = 0$	c +	d + I

$$P(w_2=1|POS) = ??$$

$$P(w_2=0|POS) = ??$$

$$P(w_2=1|NEG) = ??$$

$$P(w_2=0|NEG) = ??$$

Add-One Smoothing

• Question: How do we estimate $P(w_2=1/0 | POS/NEG)$?

	POS	NEG
$w_1 = 1$	a + I	b + I
$w_1 = 0$	c +	d + I

$$P(w_2=1 | POS) = (a + 1) / (a + c + 2)$$

 $P(w_2=0 | POS) = (c + 1) / (a + c + 2)$

$$P(w_2=1 | NEG) = (b + 1) / (b + d + 2)$$

$$P(w_2=0 | NEG) = (d+1) / (b+d+2)$$

example: positive/negative movie reviews

Given instance D, predict positive (POS) if:

$$P(POS) \times \prod_{i=1}^{n} P(w_i = D_i | POS) \ge P(NEG) \times \prod_{i=1}^{n} P(w_i = D_i | NEG)$$

- Naive Bayes Classifiers are simple, effective, robust, and very popular
- Assumes that feature values are conditionally independent given the target class value
- This assumption does not hold in natural language
- Even so, NB classifiers are very powerful
- Smoothing is necessary in order to avoid zero probabilities