Course Overview

Jaime Arguello
jarguell@email.unc.edu

August 24, 2015
Course Objectives

• How do search engines work?
 ‣ effectiveness and efficiency
• How do users behave with them?
 ‣ how do users determine usefulness of information?
 ‣ how can a search engine mimic this process?
• Why do search engines fail?
 ‣ the user? the corpus? the system? something else?
• How can they be evaluated (off-line)?
• How can they be monitored and tuned (on-line)?
Why are these important questions?

• Most of the world’s information is in natural language text
 ‣ the world wide web
 ‣ scientific publications
 ‣ books
 ‣ social media interactions

• The amount of this information is growing quickly; human capacity is not (evolution doesn’t move that fast)

• We need smarter tools

• IR provides tools for analyzing and organizing content to facilitate search, discovery, and learning
Course Structure

- Information retrieval is an interdisciplinary problem

- We need to understand both ends of the spectrum

- people who want to understand how computers can solve problems
- people who care about information retrieval
- people who want to understand how people behave with computers

Monday, August 24, 15
Course Structure

- IR: computer-based solutions to a human problem

- Understanding IR systems requires math!

Diagram:
- The system
- The user

First half of the semester
Second half of the semester
Road Map

• Introduction to ad-hoc retrieval
 ‣ controlled vocabularies
 ‣ full-text indexing
• Boolean retrieval
• Indexing and query processing
• Statistical Properties of Text
• Document Representation
• Retrieval Models
 ‣ vector space model
 ‣ language modeling
 ‣ others (depending on how quickly we progress)
Road Map

• Evaluation
 ‣ test-collection construction
 ‣ evaluation metrics
 ‣ experimentation
 ‣ user studies
 ‣ search-log analysis

• Studies of search behavior

• Federated Search (?)

• Clustering (?)

• Text Classification (?)
Grading

- 30% homework
 - 10% each
- 15% midterm
- 15% final exam
- 30% literature review
 - 5% proposal
 - 10% presentation
 - 15% paper
- 10% participation
Grading for Graduate Students

- H: 95-100%
- P: 80-94%
- L: 60-79%
- F: 0-59%
Grading for Undergraduate Students

- A+: 97-100%
- A: 94-96%
- A-: 90-93%
- B+: 87-89%
- B: 84-86%
- B-: 80-83%
- C+: 77-79%
- C: 74-76%
- C-: 70-73%
- D+: 67-69%
- D: 64-66%
- D-: 60-63%
- F: <= 59%
Homework vs. Midterm vs. Final

- The homework will be challenging. It should be, you have more time.
Literature Review

• See description on the syllabus
• Form groups of 2 or 3
• Choose an IR task (next slide)
• Write a short proposal (mostly for feedback)
• Review the literature
 ‣ not just the different solutions to the problem
 ‣ the best solutions to the problem!
• Write a paper (~30 pages double-spaced)
• Make a presentation
 ‣ 10 minute presentation + 5 minutes Q&A
Literature Review
example tasks

• Personalized information retrieval
• Session-based information retrieval
• Clustering of search results
• Book search
• Multimedia search (over items not inherently associated with text)
• Social-media data for event-detection and forecasting
• Query-log analysis for event-detection and forecasting
• Faceted search
• Federated search
Literature Review

Tips

• Be thorough
• Be scientific
 ‣ don’t focus on the writing of the papers you review
 ‣ focus on the science (the method and the evaluation)
• Be constructive
• Contribute new insight and structure
 ‣ your literature review shouldn’t read like a “list”
 ‣ connect dots that haven’t been connected
• Say what you think!
Course Tips

- Work hard
- Do the assigned readings
- Do other readings
- Be patient and have reasonable expectations
 - you’re not supposed to understand everything we cover in class during class
- Seek help sooner rather than later
 - office hours: manning 305, T, Th 10:00-11:00am
 - questions via email
- Keep laptop usage to a minimum (live in the present)
Questions?