Storage and Indexing

(Indexing Lecture Notes Complete)

Reading: Elmarsi Ch. 5.1; 5.6-5.9.1; 6.1 – 6.3. Don't worry about block and complexity calculations.

Computing Technology and Storage: 

Draw Example on Board to explain basics of computer processing and memory.  And how records are accessed.

Technology:

Memory (cache, RAM, hard disk, slower offline (tape, CD, DVD))

Processor: single, multi, multiple computers

Caveat:  Technology changes very fast.  Much of this may be old or incorrect by the time you get a job!    Important take away points are to understand when and why indexing is important, so you can make use of it if needed in the field.

Multi-processing, we won’t spend much time on because you don’t have control of this via most current DB applications.  But it’s been very effectively used over the last several years, some examples are search engines.

In talking about storage and indexing, we are talking about the internal level of the db architecture. In general terms, this has to do with how we are going to store the records, and how we are going to get access to them so that we can work with them. These are things that can be manipulated to enable us to get the best performance possible out of the db, although you’ll use these primarily with production databases such as MicroSoft SQL Server,  MySQL, or Oracle.

Motivation

<CLASS INTERACTION>

handout 6 pages of paper print out from database (I used date from linearization

spie94 exp1 *.2 files).   Divide into groups and race to see who can answer the following queries the fastest.    See the db_records* files in INLS 256 directory (or now moved to INLS 157 resources directory).  The readme file contains all the information needed to do the exercise and what questions to ask.

For all problems if they divided up the task by splitting the papers up between the people then they were multi-processing (i.e. example is Google which indexes, caches, and multiprocesses).

Storage can be divided into 2 types: primary and secondary.

Primary Storage in stored in main memory, or cache memory.  It gives very fast access to the contents. It has a relatively smaller capacity (although that is something that changes rapidly).  It is generally more expensive, (although that too changes). It is more volatile, and may be lost if the system goes down, although that is rare.  It is generally used for storing indexes to the database rather than the db itself.

Secondary Storage is stored on disc or tape or CD-ROM.   It gives slower access, because you have to pass data over connections of one sort or another (e.g. fiber).  It has a very large capacity (e.g., you can have any number of tapes).  It costs less than primary storage.  It is considered non-volatile.  While it may be damaged by a physical accident, e.g. a head crash, that is more unusual.  Because of its capacity, it is generally used to store the db.  It is also used (esp. tape) for backups.

The general process of a db query: 

1. The DBMS interprets the query, and 

2. goes to an index to find the location of the appropriate record(s),

3. The records are found and retrieved from the disk and 

4. brought into main memory for processing (e.g. further searching, sorting, etc.).

Each record is stored at an address in a file, a physical location.  You can just think of an address as a "slot number" where the record is found.  When a record is retrieved from disk, what actually happens is that a whole group of records, including the target record, is read into memory.  This group is called a block.  When you actually look at records sequentially, you are really only reading from the disk occasionally - just when you reach the end of the block.  Indexing methods can take advantage of block size and organization to minimize the size of the index.


Note that the book's discussion of maximizing efficiency by block allocation and packing applies mainly to mainframe DBs.

The db is stored in files on the disk, where you can think of a file as containing all the records in a table.  There are 2 kinds of operations that can be done on files and records: 1. retrieval operations and 2. update operations.

retrieval operations: are those where you just want to get the record and "look"

at it, not change it. 1. read, 2. copy, 3. print, 4. query, e.g.

Update operations: are those where you want to change the record in some way. 1. modify a value, 2. insert a record, 3. delete a record.

The first part of each operation requires a selection criterion, which tells you which records to operate on.  This could be finding the record with a particular value for a unique identifier, e.g. SS# = 123456789, or  finding a set of records that fit the criterion, e.g. finding all records with age < 50. Of course, you can specify very complex criteria, but only one will be used to make the first "cut" of records. Naturally, you want this initial collection to be done as efficiently as possible.  For instance, it is probably faster to use an index than to have to check each record individually.

The file organization is the way you physically organize the files in memory. The access methods are how you are going to get at the records to manipulate them. Different file organizations go well with different access methods, and some allow you to use several methods.  You want to use the combination of organization and access methods that will work best for the types of queries that will be asked most frequently.  E.g. you could just need to find a single record, when you know the value of the primary key.  Or, you could generally want to do something to all of them in order, e.g. send out bills to everyone in the db.

We can compare file organization to how books are arranged on the shelves.  We could just add them to the shelves as we buy them; or arrange them by color, or arrange them by topic, or arrange them by topic and within that by color.  

We can compare access methods to how we'd find books.  We can always just start at the beginning of the shelf and search sequentially; if books are arranged by color we'll see a large variety of topics in no specific order, if books are arranged by topic, we'll see a bunch of books on one topic, then a bunch on some other topic.  

We could use an index that would tell us where to look.  It could tell us the precise location of every single book.  If books are arranged by topic, it could tell us where the books on that topic start, and then we can search sequentially through just that topic.

Unordered Files: (without indexes)

This is equivalent to just putting the books on the shelves as they arrive.  As each new record comes in, add it to the end of the file.  This is called a heap, a pile or an unordered sequential file.

Inserting a record is easy - just add it at the end, in the first blank space available.

Searching for a record is difficult and time-consuming.  Since there is no order to the file, you just have to start at the beginning and do a sequential or linear search.  If you want to find all records that satisfy the search criterion, you must search until the very end of the file to be sure that you have found them all. Similarly, if you are searching for something that isn't there, you must search to the end to be sure.

Deleting a record means finding it first.  Then you can either erase it or (more commonly) mark it as deleted.  After you have deleted many records, the file starts looking like Swiss cheese, with lots of holes.  So periodically, you must

Reorganize the file, and recopy the records to fill in the holes.

Ordered Files: 

These are also called sequential files.  Here, you are going to keep the records in some order according to an ordering key.  This is a good organization when you are likely to want to use records in order of the key - e.g. produce an alphabetical list.  Going along and looking at each record sequentially makes sense, since they are ordered.  Overall, the advantage is that you can make use of sequential processing, e.g., searching.

Inserting a record is hard.  Ideally, first you would find the correct location for the record, and then "bump" all the other records down to make space for the record.  But this means recopying half of the records (on average) each time you insert.  The alternative is to have an "overflow" location where new records are put as they come in.  When you are looking for a record, you can look in its correct location, and then sequentially search the overflow area, which will presumably be relatively small. Then you can periodically reorganize the file.

Deleting a record can be done by marking it as before, after you have found it. But again, this is going to create holes, and you'll want to reorganize.

Searching is where a sequential file is really nice, assuming you want to search on the field by which it's organized.  A common technique is to use a binary search.  

1. Look at the record in the middle of the file. 

2. If it's the record you want, stop. 

3. If it isn't the record you want, compare it to the target; if you want one that's "smaller", look in the first half of the file, if "larger", look in the second half.  

4. Look at the record in the middle of the new section.  

5. Repeat from 2 until you have either found the record, or have found the place where it should be, and know that it isn't there. If there is an overflow area, you also have to remember to search that area.

<example with numbers>

If you want to search on another field, the file will be unordered, so you are stuck with sequential searching.  (Of course, indexes can help.)

Hashing: 

Hashing is a method of determining the address of a record (where to store and find it) based on the value of one of its fields.  This provides very fast access, because you never need to look up the address (e.g. in an index), you can calculate it directly. A very simple version would be if the "slots" where records were stored were numbered 0-n, and the records were also numbered 0-n (possibly with some missing).  In order to find a record, you look in the slot such that the address = the record number. Note that each record only has one hash address, unlike indexing, where each record could have any number of indexes.

In reality, hash addresses are calculated using slightly more complex functions than equality.  For example, suppose we are storing student records based on SS#. Clearly, we wouldn't want to use the identity function here, because we would have to allocate space for 999999999 records (1 for each potential person in the US!) The function we will use is

hash address = the remainder of SS#/13

What possible remainders can we get? 0 - 12.  That gives us 13 possible addresses for the records. (If this is what we were really doing, we'd divide by a MUCH larger number, to yield more possible addresses.)  To find out where each record is, we take the SS#, divide by 13, and that's the address.

123-45-6789 mod 13 = 1

234-56-7899 mod 13 = 7

864-93-5196 mod 13 = 8

963-77-5936 mod 13 = 6

058-32-9744 mod 13 = 5

532-87-1523 mod 13 = 2

274-98-6648 mod 13 = 1

The essence of this function is that you are mapping the keys into a smaller range than their natural numeric range.  How small a range? Well, allow for growth. In general, it is recommended to allow 20% extra space for growth.

Advantages: very fast access from information you are likely to already have.

Disadvantages:

1. There can only be one hash arrangement based on one hash key.  The other forms of access must be done by indexing.  

2. The sequential order of the records is unlikely to be meaningful in any way,  although there is work being done on order-preserving hash algorithms that keep records in the logical order of their hash key.

3. There are likely to be gaps of empty spaces of various sizes in the file - it won't be consistently loaded.  

4. Collisions - when two or more keys hash to the same address.

Collision handling (DON’T COVER—THIS IS FOR REFERENCE): 

1. Open addressing.  When a new record hashes to an address that is already full, search sequentially until the next empty space is found, and put it there.  In searching, start at hash

address and search sequentially until record is found. <example using SS#> (query: how to deal with record that is searched for but doesn't exist?)   The problem is that very soon, almost all records are being put in other slots, as the space fills up.  At some point, performance gets bad enough that space must be expanded, and everything rehashed.

2. When a new record hashes to an address that is already full, store it in an unsorted overflow area.  At some point, change the hash space (or algorithm) to move overflow records to the standard space.  Problem: need to find an algorithm that can avoid "clumping"  your keys.  Otherwise, you end up with some records that hash to same address, and lots of them are in the overflow area, but there are also still wide areas of open space in the file.

3. If the first hash results in collision, apply a second hash function to the hash key to get a "second choice" address.  If this doesn't work, then you can use open addressing.

4. Instead of storing the actual record at the hash address, store a pointer to the record.  A pointer is the address - you can think of it as a "forwarding address" or a "goto". You then follow the pointer to find the record.  There are two versions of this. 1. Store all the pointers to each record at the hash address (an address takes up much less space than a record).  This gives you a bucket of addresses, which you can then examine to find the desired record.  2. Store the pointer (address) to the first record in the hash address.  As part of that first record,  store a pointer to the second record that hashed to that address, and so on.  You create a linked list of records that all have the same hash address.  Generally, they will be linked together in sequential order of the key (e.g. in SS# order).

Given these problems of collisions, which may result in your having to look in two or more places to find a record, why use hashing rather than indexing?  It's going to depend on the characteristics of your records (will they hash well), and the size of the file. For a large file, you will also need large indexes, that may also require looking in several places to find the record. We'll see this as we talk about multi-layered indexes. 

Indexes 

Explain Indexing Shorter length (non-dense index), and shorter width (just index value and pointer to data, instead of all the data).

An index is a structure that links together an item identifier with its location.  For example, an index in a book may link together a topic with the pages on which it is mentioned.  In record handling, an index links together the value of a field (e.g. its unique identifier) with its address in storage.  We won't talk about how addressing works.  Generally, an index takes up less space than the records it points to.  It is common to have the index in main memory, with fast access, and the db in secondary storage, slower access, but by then you also have the address you're looking for.

The indexing field is the field on which the index is built.  It may have unique values for each entity, or many entities may have the same values.  It may be built on the key field (key field), or on any other field.  You may have more than one index on a table.

Indexes may be dense or nondense.  A dense index is one that contains an entry for every record in the file.  A nondense index is one that does not contain an entry for each record, but rather one for each group of records.

A primary index indexes the ordering key (primary key) of the file when there is a unique value for each record. (That's what the primary key ensures.)  A clustering index indexes the ordering field of the records when there is not a unique value for each record. A secondary index indexes the file on some field other than the ordering field. Because you can't take advantage of the physical order of the file, you must have an entry for each record.

Nondense indexes are frequently used on the ordering field of a record.  Remember that this is the field that determines the order in which the records are stored.  

If this is the primary key field, with a unique value for each record, it is a primary index.  Suppose we have employee records sorted in order of SS#.  An index can be built on SS# that records the position of every 10th SS#.  In order to find the record you want, you look in the index for the SS# that is just smaller than the one you want.  Go to that address, and look sequentially from there.  You are guaranteed to find the record, or discover that it isn't there without looking at more than 9 records. 

<Example 1, on overhead/web>

In reality, such nondense indexes generally record the address of whichever record is the first in each block, where a block is a unit of storage that is read into main memory all at once. See diagram in book, p. 105.  Note that the index contains fewer records than the db, and that each record is shorter.

Nondense indexes can also be used if the file was sorted on a field that is not unique for each record.  They are then called clustering indexes.  You will have an index entry for each possible value. The entry will point to the address of the beginning of the cluster of records with that value (the block in which the cluster begins). <Example 2, on overhead>

You can also have an index on the other fields in the record, but since you cannot take advantage of the ordering organization, you need a dense index, with an address for each record.  These are secondary indexes. If they are unique values for each record, you will have an entry for each record.  If they are not, there are three options for designing the index. 

1. have an index entry for each record - you will have several entries with the same value, so to get all the records with that value, you use several entries. Your entries will also need some other identifying field, such as the PK.

2.  have an entry for each value, which then has several addresses after it. To get all the records with that value, you use all the addresses. 

3. have one entry for each value. The address for each entry is the address of the list of addresses of the records, a level of indirection.  To get all the records with that value, you go to the correct entry, go to the address it lists, and get a list of all the addresses of the records you want.  then go to the records. <Examples 3,4,5, on overhead/web>

Operations with an index.  You can think of an index as a sequential file.  In order to find the entry you need, you can do a binary search.  When you insert a record into the db file, you must be sure to update the index.  This could mean adding a new index entry, substituting one value for another in the index, or if the files got "bumped down", redoing a substantial piece of the index.  Also, if there is an overflow file, the index will not help you find entries there.  When you delete the file, you may need to delete and update an index entry.  Each time you reorganize the file, you must reorganize the entry.

Again, the index can be ordered so you can do binary search on the index. Note that dense indexes allow you to answer some queries without actually looking at any records.  These are called existence queries, and are of the form Are there any records where the value of field x is y?  To answer it, all you need to do is ascertain that there is at least one record address stored in the index entry.

Multilevel indexes 

We've talked about creating indexes to help find records, where one of the advantages of the index is that it is smaller than the record (data) file.  On a really large data file, the index file can also start to get quite large - maybe too large to keep in main memory, or too large to read in in one block.  At this point, we can introduce another layer of indirection - an index to the index.  This treats the first level index file as an ordered file, with a unique value for each entry (e.g. address of a block). So now we can have another index for the first level file, that is also structured as a primary index, e.g. with one entry for each block (or cluster) of the index. This is the second level file.   This structure can be repeated until the top level index is of a suitable size.

To find a record, you start at the top-level index, and find the entry with the next smallest value (just as we did with the simple nondense index). That will give you the address of another index entry block. Find the appropriate entry, which will give you the address of the record block. <Example 6, on overhead/web>

Note that as you increase the number of indexes, and amount of housekeeping also increases.  Inserting a record means possibly adjusting all of the indexes.

You can think of the multilevel index as a kind of tree structure, where you follow pointers down from the root level until you get to the leaf node where the record address is stored.

B+ Trees 

The B+ tree was designed to minimize the number of times an index has to be adjusted. A tree is a way of sorting and storing information.  It is used in some indexing schemes, namely the b-tree and b+-tree.   Tree is made up of nodes and links.  Top node is special, and called root.  Lowest nodes, with no descendants, are called leaf nodes.

The B+-tree structure attempts to make the number of links as even as possible for the whole data set.  It is an indexing scheme, that contains indexes to the index. Suppose you have a very large file of student records with an index to SS#.  This will be a big index - LOTS of SS#s.  You could then treat the index as just another file, and build an index to it - alphabetically, by state, etc.  You then have a two-layered index - 2 indexes to get to a real record.  But, it saves you from having to search the SS# index sequentially.  3 levels of indexes are fairly common.

The bottom layer or leaf nodes of the tree contains all the values in the file, with pointers to the records or record blocks. (Note that this may be built on either an ordering field or some other field.)  Some values also appear in the interior nodes of the trees, to guide search through the tree. To find a record, start at the root of the tree, and follow the appropriate pointer down through the levels of the tree until you reach the value at the leaf node.

Index to the leaf nodes may be 2-3 layers.  This is the tree part of the index.  Each node in the tree has a complex structure, containing several index values and tree pointers to sub-trees of more index values. There is a lower and upper limit to the number of values that can be in each node.  For a B+-tree of order n, there can be no fewer than n/2 values in each node, and no more than n values in a node. Each node has space for that many values, but there may be empty spaces in a node. Node structure: for each value, there is a pointer to its descendants that are less than and greater than it.  A node with k values has k+1 pointers. All values appear in the leaf level.  Some values may be in the index, but if so, will only appear once.

<diagram of node and pointers, Example 7, on overhead>

To insert a new value:  

1. Follow the pointers down until you find where it should be in the leaf node.

2. If the leaf node has space, just insert the search key and appropriate record pointer.  

3. If the node is full (has n values), you must split the node into 2 nodes.

a. Insert the new value in the correct order. 

b. Split the old leaf node into two new nodes, with half (or half + 1) the values in each node. 

c. Now you must adjust its parent index node to reflect the change by inserting  a new index value and pointers.  Insert the last value in the new left-hand node in the appropriate place in the parent node.  If the parent node still has space, this is easy, but note that the split could propagate up the tree.

When the root node fills, it splits in the usual manner, and a new level is created with the new middle value.  So the tree grows up from the root. 

<example>

Deletion works in much the same way:

1. delete the value from the leaf node, and if it appeared in one of the index nodes, delete it from there too.  The only tricky part is if deleting a value causes the number of values in the node to drop below the lower threshold, then you must readjust it and its neighboring nodes.  There are two options.

2. If either its right or left sibling has enough values so that they can be split and still keep enough values in both nodes, 

a. redistribute the values accordingly, and 

b. Change the index value in the parent node so it is the rightmost value of the left sibling.

3. If neither sibling has enough values, then you must merge the node with a sibling.  This is the reverse of insertion.  

a. Order the values in both nodes into one node, and 

b. Remove the index entry from the parent node.  Note that the merge could propagate up the tree.

<example>
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