1SQL/MySQL Module

2CONSTRAINTS

5DB Indexing and Tuning module.

12Overview of Database Tuning

14Database Application Development and Internet Applications module

18Internet Applications (Chapter 7)

20XML

30Data Mining

34Databases:

SQL/MySQL Module

· Mysql web site

· getting started document

· tables (mysql txt files, access files)

· show how to load tables and run query

Work Q27 and explain aggregates in GROUP BY versus SELECT (i.e. in select if you use aggregate operation you can only use aggregate operators; elsewise you’ll need to nest see Q27, or use a GROUP BY).

Work 5.2.6, 5.2.9 (working examples in my notes).
Assign them to carefully read and work examples in chapter 5 of Ramakrishnan. Especially review section 5.5 (aggregate operators, group by). Work examples in class. Important points to review:

· Set comparison operators (5.4.3, p148).

· EXISTS, IN , UNIQUE (and negated versions, i.e. NOT EXISTS, etc.)

· Operator ANY | ALL where operator is {< , <=, = , <>, >=, >}

· SOME is the equivalent of ANY

· IN is equivalent to =ANY; NOT IN is equivalent to <>ANY

· Explain Q22, Q23.

· Aggregate operators and uses and

· Work Q27 and explain aggregates in GROUP BY versus SELECT (i.e. in select if you use aggregate operation you can only use aggregate operators; elsewise you’ll need to nest see Q27, or use a GROUP BY).

· Extensions in SQL 1999 (statistics etc) ask them to investigate

· Use of ANY/ALL versus aggregates (p153)

· pp 154-157. Q32. Ask them what is there any difference between using HAVING EVERY age < 60 and age < 60 in the WHERE clause (show in 5.14 and 5.15).
· Q33

· Q37; work in MySQL.
CONSTRAINTS [SQL/MySQL module]
Ask them to list the ways you can enforce integrity: (think back to how you did in Access for ideas)

· Domain/value (in table definitions)

· Foreign Keys

· What about manager must make more than employees they supervise? (integrity constraints)

Understanding Integrity Constraints exercise. four groups (domain/type constraints, table check constraints, assertions, triggers).
· table definition, show examples 165-166. check statements

· domain definition example 166 (check statements)

· CREATE DOMAIN ratingval INTEGER DEFAULT 1

· CHECK (VALUE >= 1 AND VALUE <= 10)
· assertion constraints (independent of tables)

· triggers

talk about choice of which to use (review 5.9).

domain constraints:

· define range of permissible values for domain

· provides abbreviation for this type

· cannot do “strong type checking”

distinct types

· to define distinct datatype for enforcing operations only between objects of same type.
· Limitation of domain constraint is that you cannot type check; object oriented extension is to use “distinct types” in SQL 1999 which is implemented in most SQL versions. This allows strong type checking (p167).

· Example CREATE TYPE ratingtype AS INTEGER
table constraints:

· when involves only one table

· when provoking events are limited to insertions or updates on attributes, domains, tuples.
· Won’t work if table is null (see example bottom of p167).

Use the CHECK on attributes, domains, and tuples if it meets conditions above, as it’s most efficient, and implemented directly by DBMS system. If you can’t, and need more powerful expression then go to ASSERTION or TRIGGER (Elmasri p257).
assertions:

· for things more involved than "checks" on a single table
· things naturally involving more than one table.

· For when table check not sufficient because table might be null.
· DBMS is responsible for making sure assertations are not violated (ie. not formally defined). Thus, the DBMS would check the FROM clause to see what table need to be watched for changes.

triggers:

· can define events that it responds to

· can define conditions that determine whether to execute or not

· more complete set of actions update/delete/insert, data definition (create tables, views), change security policies.

· can execute before or after event change is made.
· Walk through example figure 5.20 p170.
MySQL and constraints:
· table constraints (check, foreign keys) statements parsed, but no action taken

· domain constraints not supported (CREATE TYPE), or not implemented (CHECK)

· assertions not supported

· triggers not supported

Access: doesn't support any of these
Syntax for making CHECK statements: three main types

Simple value check.

CREATE TABLE emp2 (

…

salary REAL,

…

CHECK (salary >= 10000)

);

CREATE TABLE suppliers (

supplier_id numeric(4),

supplier_name varchar2(50),

CONSTRAINT check_supplier_id CHECK (supplier_id BETWEEN 100 and 9999)
);

((SQL) OPERATOR (SQL))

CHECK (
(Select COUNT(*)

FROM aircraft

WHERE aircraft.crusingrange > 10000) > 5)

CHECK (

(Select COUNT(*)

FROM parts_on_hand) >

(SELECT COUNT(*)

FROM outstanding_orders)

)

(NOT EXISTS (SQL SET RESULT))

CHECK (

NOT EXISTS (

SELECT *

FROM emp

WHERE SALARY > 10000)

)
TRIGGERS: (pages 168-173 Ramakrishnan, pages 757-71 Elmasri)

 Event

 Condition

 Action

CREATE TRIGGER <Trigger_name>

AFTER|BEFORE <triggering event> ON <Table>

FOR EACH ROW

WHEN <condition>

 <trigger actions in SQL>

Example:

CREATE TRIGGER TOTALSAL1

AFTER INSERT ON Employee

FOR EACH ROW

WHEN (New.dno IS NOT NULL)

 UPDATE Department

 SET total_sal=total_sal + NEW.salary

 WHERE DNO=NEW.dno

after watched operation (insert) is caught on Employee table, the

tuples affected (inserted) are referred to as "New"; and the WHEN

statement is used to check that it's not null, and then update and

update the department table attribute value "TOTAL_SAL" for that

dept.

The above example is a row-level trigger. It executes for each

tuple (row) in Employee that is tuple affected. The other type is a

statement level trigger which is executed just once per activation.

It is typically used to initialize counts, etc.

The "trick with triggers" is that you don't know the exact order

that triggers will be executed if more than one if fired off at once

(by same event). This can make it confusing to track down what's

happening. Keep this in mind when designing triggers.

DELETE command used in Assertions, Triggers

DELETES

do just a select statement except say DELETE instead, i.e.

DELETE

FROM emp

WHERE emp.salary > 50000;

two ways

Using the newest MySQL 4.0.2 syntax; I prefer when you have more

than one table since you can more clearly state what tables you are

deleting from, and which you are just using to determine what rows

to delete.

DELETE

FROM table_X

USING table_X, table_Y

WHERE <conditions>;

Using MySQL 4.0.0 DELETE syntax. This example also show

multi-table delete syntax.

DELETE

FROM table_X, table_Y, table_Z

WHERE <conditions, joining X,Y,Z, etc>;

DB Indexing and Tuning module.

Indexing.

Cover from 256 notes.
· In class computer simulation of searching/indexing
· Powerpoint slides showing examples.

· In Class work example: Employee database index choice given real system physical memory constraints

Primary topics are

· Structure of computer and understanding tradeoffs

· File organization, types of indexes (unordered, ordered, hash, B+Tree). Show examples on board. Generally, both the index and the whole tables existed on disk. Which is why B+Tree index representation were good (you paid at most 2-3 levels of disk access to get to leaf page with pointer to record). Now more and more fits into memory, changing practices. I.e. you can now hold whole index table in memory often, implies more use of hash functions (see adaptive hash functions in MySQL documentation).
· Guidelines for indexing (chapter 20.2 Ramakrishnan)

· Setup indexing on their db1_* accounts, and work practices

Storage Choices OVERVIEW

[image: image1.jpg]Factor

le Organization

Sequential

Indexed

Hashed

Storage space

Sequential retrieval
on primary key

Random retrieval
on primary key

Multiple-key
retrieval
Deleting records

Adding new records

Updating records

No wasted space

Very fast
Impractical

Possible but requires
scanning whole file

Can create wasted space
or require reorganizing

Requires rewriting a file

Usually requires

No wasted space for data but extra space
for index

Moderately fast
Moderately fast

Very fast with muitiple indexes

if space can be dynamically allocated, this is
easy but requires maintenance of indexes

If space can be dynamically allocated, this is
easy but requires maintenance of indexes

Easy but requires maintenance of indexes

Extra space may be needed to allow
for addition and deletion of records
after the initial set of records is
loaded

Impractical, unless using a hash
index

Very fast

Not possible unless using a hash
index

Very easy

Very easy, but multiple keys with the
same address require extra work

Very easy

rewriting a file

Query optimization quick summary of heuristics commonly used

1. do selects and projects as early as possible to limit size of tables

2. do the most restrictive operations (field 7 = “R”) as early as possible.

3. do joins intelligently (i.e. not as Cartesian products followed by selects)

4. do joins as late as possible

5. replace combinations of queries with equivalent ones that are faster to compute. Elmasri has comprehensive list of equivalence rules. (page 611 3rd edition).

GUIDELINES

How do we go about figuring out what index choices to make???

Book provides great guidelines. However, it implicitly also assumes you’re taking into account query optimization. See Ramakrishnan guidelines in 20.1, 20.2. We’ll talk about additional assumptions, and show by working through examples and explanations. We’ll also cover some examples of how to do in MySQL.
Generate workload description:

1. List of queries (frequency, ratio of all queries/updates)

2. list of updates and their frequencies

3. performance goals for each type of queries and update

For each query in the workload, we must identify

1. Which relations are accessed

2. which attributes are retained (in SELECT clause)

3. Which attributes are used in selection or join conditions in WHERE

Similar for updates.

Choice of Index:

· Which relations to index, and which field or combination of fields to choose as index search keys.

· Need to take into account the query optimization that DBMS will do since that affects what will actually be occurring in retrievals

· Make list of possible index choices and their value

· Consider all the index choices for a table (relation) and then choose which ones to index.

· Remember you get ONE FREE index matched to what you order the file by. Everything else is SECONDARY index and expensive.

Choice of conceptual schema (physical changes to the DB):

· alternative schemas (BCNF vs 3NF, etc)

· Denormalization (schema decomposition)

· Vertical partitioning (further decompose relations)

· Views (views to mask changes in schema from end users)

Review after it’s live to see if your assumptions match reality (user behavior) and reevaluate choices.

Introduce by using example of Internet bookstore (Barns & Nibbles). Do design and implementation process to make indexes as they see fit for the internet bookstore. Use the ER diagram (tables) from figure 2.20 page 50 in Ramakrishnan. Work and discuss

Internet Bookstore Example: Expected queries/operations we think might be most frequent:

· Search books by ISBN (PK, equality test=unclustered hash index)

· Search books by title or by author (book suggests unclustered hash index, inexpensive to maintain because doesn’t change often; what is possible problem with this—maybe they don’t get author or title exactly right, in which case hash doesn’t work well)

· Whenever customer finds book interesting to them (book bookid), want to display to them recommended books (based on the one they were looking at, and other peoples experience). (hash or clustered on recommended.bookid)

· Placing an order (clustered B+ tree on ordernum, since this gets you date too; note that this loses the ability to cluster on another attribute such as customer_id for order, searching for all customer orders will be slower)

· Looking up orders by customer ID (orders table has order #, shipping IDs, Customer ID).

· Updates to book quantities

Related to Looking up orders by customer ID query: Several months later customer called in and said “Clients complain that it’s too slow to respond to what is the status of their orders”. (solution: separate completed orders from live orders tables so you can respond quickly to the smaller “live/outstanding” orders table).

Tell them a good resource is MySQL manual 7.4.5 How MYSQL Uses Indexes, and the reader comments are informative too.

Index Choice Guidelines

Whether to index? Only if some query or update would benefit—there are costs to having indexes. Choose indexes that speed up more than one query.

Ordering of File At most one index on a given relation can be ordered. (You get ONE FREE!). This applies whether it’s unique (like primary index) or clustered.

· Do you want to order your file? (or leave it as a heap?).

· What will you order it by?

· Range queries benefit the most from clustering

· It doesn’t make sense to cluster a hash index since only range type queries benefit from clustering (which hash indexes are not good at)

· If index only solution is possible, then you need dense index, so you wouldn’t get the savings of a non-dense index that you could with clustered file organization. Thus, often index only on non-clustered attribute(s).

Choice of Search Key

· Exact match = use hash index

· Range selection or combination, use B+ tree.
Multi-attribute Search Keys Consider when

· WHERE clause on more than one attribute from relation

· Enable index only evaluation strategies

Hash versus B+ tree B+Tree is generally better (supports range and equality). Use hash when:
· Index is intended to support index nested loop joins; the index relation in the inner relation and the search key includes the join columns. (equality selection is generated for each tuple in the outer selection).
· Very important equality query and no range queries.

Big Picture versus Little Picture. Think this through for EACH index of interest, then REVISIT your overall choices of all indexes for the database, to coordinate your choices and choose only the most important ones. Remember that databases will usually generate, by default, an index on primary keys for each table, unless you change this.

Impact of Index Maintenance draw up wish list, consider impacts

If maintaining slows down updates, consider dropping.

Keep in mind that index can speed up updates

Example 1: page 656
SELECT E.ename, D.mgr

FROM Employees E. Dept D

WHERE D.dname = ‘Toy’ AND E.dno = D.dno

Walk through using the guidelines.

Relations (attributes) involved: Employees (dname, dno), Dept (dno, mgr). Dept.mgr only for reporting, rest for selection. So we have E.dname, E.dno, D.dno. Think about query processing; what does it tell us? Most restrictive are WHERE conditions (D.dname = ‘Toy’, then join conditions E.dno = D.dno). So most important would be index on D.dname. Since equality choose to make Hash index on D.dname. What about E.dno and D.dno? Nothing is gained by indexing D.dno since you already have indexed and retrieved matching records by D.dname index. You just need to match these against E.dno. So index on E.dno, again using hash index since equality.
Example 2: page 656

SELECT E.ename, D.mgr

FROM Employees E. Dept D

WHERE D.dname = ‘Toy’ AND E.dno = D.dno AND E.age =25

Multiple choices: We still do hash index on D.dname for same reasons. But now do we do join with E first, then selection on E.age or do we do selection on E.age=25 and then join? It would help to know how restrictive E.age=25 is. If very small then maybe do this first, then join. Also, if for another query we want to have index on E.age, then use it and do join last. If neither of these is true then maybe better to do same has index on E.dno to do join first, and the WHERE condition of E.age=25 on the fly (as you look at the join records).
Example 3: page 657

SELECT E.ename, D.dname
FROM Employees E. Dept D

WHERE E.sal BETWEEN 10000 AND 20000

 AND E.dno = D.dno AND E.hobby=’STAMPS’
Hash D.dno (only D attribute). Which of E to do? Sal, hobby, dno. Best to choose to index by one of restrictive Sal or hobby, then will have E.dno as part of record, which you then compare to inner loop selection of D.dno which should be hashed for fast access since equality condition. May not be able to tell which condition is more restrictive, Salary or hobby. Use estimations, or better yet, database statistics after it’s been running for a while. If this query is very important, then maybe best to build both, so that database query optimizer can make best choice given the two access mechanisms. How could we build both (best individual choice for hobby would be hash because of equality; best for salary is likely clustered ordered index file because of range condition E.sal BETWEEN 10000 AND 20000. Can these two co-exist? No, they require two physically different structures (hash, ordered by sal). Instead could keep ordered by sal (physical file), and then have secondary index on hobby. So choose Hash Dept on dno, and clustered B+tree (physical ordering) on E.sal (range) and secondary index B+ tree on E.hobby.
Example 4: how to save index space while keeping same (similar speed up) for when you can use just first part of longer character string

Normal MySQL CREATE INDEX

CREATE INDEX index_x ON table_name (attribute);

CREATE INDEX INDEX_subject ON metadata(subject);

Using shortened index….

CREATE INDEX part_of_name ON table_name (attribute(20)); uses only first 20 char
CREATE INDEX shortname ON Employee (lastname(10)); uses only first 10 char

Example 5: Co-clustering
SELECT P.id, A.componentID

FROM Parts P, Assembly A

WHERE P.pid=Apartid AND P.cost=10

Suppose many parts have cost 10. Then best situation is to have index on Parts.cost, and be able to find the matching assembly records. This can be done by co-clustering in the database file itself the assembly records with the corresponding parts records having the same PartID. Then we can search out P by index on cost (in this problem), and once there we automatically have the assembly parts. This saves 2-3 index page I/O operations. So if this was critical action it might be worth it.
	P.pid=5
	P.pname=wheel
	P.cost=9
	P.supplierid = 15

	A.partid=5
	A.componentid=18
	A.quantity=2
	

	A.partid=5
	A.componentid=19
	A.quantity=1
	

	P.pid=6
	P.pname=door_handle
	P.cost=18
	P.supplierid = 19

	A.partid=6
	A.componentid=229
	A.quantity=3
	

	A.partid=6
	A.componentid=10
	A.quantity=12
	

	A.partid=6
	A.componentid=18
	A.quantity=2
	

	A.partid=6
	A.componentid=11
	A.quantity=1
	

	P.pid=7
	P.pname=light
	P.cost=180
	P.supplierid = 10

	A.partid=7
	A.componentid=30
	A.quantity=1
	

Example 6: Index only
The beauty of index only solutions are that they save you from going out to the actual database file, by being able to calculate the results (partial or final) from just the index itself.
Ask them to very efficiently report all the parts made by a given supplier X.
SELECT P.pid

FROM Parts P

WHERE P.supplierid = X

If we make an index on Parts of (supplierid,pid) then we can answer this very efficiently (binary scan to find supplierid, the just report the list of values from pid fields from the index itself!

	SupplierID
	Pid
	Pointer_to_Memory

	….
	
	272834928

	7
	10
	293874248

	7
	16
	293874248

	8
	12
	224324248

	8
	16
	224324248

	8
	18
	224324248

	9
	5
	224324248

	….
	
	26838389

The catch is that you need to think carefully about what needs to be in the index to do index only solutions. For instance, you can’t do with Hash (no physical index). You must have all the values (dense) to search over all values, or do aggregate calculations over the values.

A common index only type example is when you have two tables, where you do joins across two indexes.
List the dept number and manger’s name for all departments
SELECT D.dno, E.ename
FROM Departments D, Employees E

WHERE D.managerid=E.eid
How do we process this query? The department table probably fits in one disk page so is easily completely retrieved. We just need to step through it, and then find matching employee record for the manager of the department. Can do with index only check of index on E.eid. So index Employees on eid, then can test this as inner loop join matching the D.mangerid value of records as you step through the dept records. But, we need to report ename as well. So we would need ename from the Employee complete table on disk. If we want to do this as fast as possible we could avoid going out to disk completely by having the index of (eid,ename) on E, and index (dno,mangerid) on D. We can then do the join comparison across the two index files (without going to the database itself), and report D.dno and E.ename from the matched index records. Since we’re looping through the index file records for both D and E, we have to have index files not hash tables.
List the maximum salary of employees at each age (…,28, 29,30, ..)

SELECT MAX(E.salary)

FROM Employees E

GROUP BY E.age

Index dense (to get all values) by E(age,salary). Then index only (no disk access), and very efficient as just have to scan the records in a row at same age.

Note another related speed-up is because even if you cannot do index only solution, you may be able to reduce disk accesses because you can figure out which “unique” disk blocks are needed by looking at index only (and just retrieve a disk block once, even though you might have multiple records in single block).

Talk about Index wizards. Had because large set of possibilities. Hard to determine optimal mix. Index advisor are common on commercial products (DB2, Microsoft SCQL ones are mentioned in book). Estimate candidate indexes, then calculate efficiencies based on Database schema and queries.
For fulltext searching: MySQL index type “FULLTEXT”. Then use MATCH() function to generate relevance ranked full text matches.

Example

CREATE FULLTEXT INDEX FT_INDEX_subject ON metadata(subject);

Note: this will take a number of minutes!!!

Index Types (MySQL):

PRIMARY KEY, UNIQUE, FULLTEXT: B-trees

MEMORY: hash

SPATIAL column types : R-trees

Overview of Database Tuning

Reasons to Tune: usage of the DB changes, have more information (statistics) available, or queries are slower than expected (request DB show plan for query optimization, and it shows not using index as expected).

Tuning Indexes:

Used to be separate optimizers from database engine (that optimized queries). This was problematic because the need to be tightly integrated. Recently, they have become integrated (new releases come out together, and Index Tuner uses information from DB engine query optimizer).

Tuners must choose “best” indexes from very large set of possible indexes. Relatively impossible (not cost efficient) to evaluate all of them. So use information from optimizer, knowledge of queries (logs showing most often used queries, etc). Generate candidate indexes (SQL code to generate them), which the DB admin may accept or manually select from. Examples in book are DB2 Index Advisor, and MicroSoft SQL Server 2000. There are some 3rd party solutions for MySQL (MyProfiler).
Tuning conceptual schema: Schema may not be optimal given usage, changes. Decomposition types:

Vertical Partitioning: reduce normalization, i.e. settle for 3NF instead of BCNF, or maybe not even 3NF. Say add fields to certain relations to speed up queries.

Horizontal Partitioning: two relations with same schema (say orders table from Barns and Nibbles, with “completed” and the “outstanding” orders).

Tuning queries: Rewrite query to speed up.

For additional practical details on optimization with MySQL databases, see the optimization chapter in the MySQL documentation.

Database Application Development and Internet Applications module
Discuss working with genomic database system, which has many of the processes (nucleotide sequence matching, similarity comparisons) available in programming language, but you cannot accomplish in SQL. But the main databases (nucleotide sequences, annotations, etc) are in Oracle. How do you interface the two? Your boss asks you to choose between the options of embedded SQL, dynamic SQL, or this new thing JDBC? And will cursors be necessary??

Important to combine formal databases (optimized for storage, integrity, SQL queries with additional power of programming languages). How do you achieve this?
Overview

Embedded SQL in general purpose language:

Description: Embed SQL commands into languages (usually C, C++, Java)

Examples:

· Embedded code in language (C, C++, etc)

· SQLJ

API, Library of Function Calls, Dynamic:

Description: Have a standard interface (API) to SQL, so you can make calls to database functions (defined in the standard) from programming language. This is independent of programming language so can support many languages.

Examples:

· ODBC

· JDBC (Java version of ODBC)

· SQL/CLI (CSL Call Level Interface, replacing ODBC)

Database Programming Language

Description:

· New language written specifically to support data environment, usually based on previously existing computer programming language.

Examples:

· Oracle’s PL/SQL

Embedded SQL

SQL commands are “embedded” into programming language (C, Java). A DBMS specific preprocessor transforms the SQL commands into the host language (followed by the language processor). Thus, the resulting executable code works only for that DBMS specific machine, although it could be recompiled for other machines. A more system independent solution is ODBC and JDBC (see below).

Example in C

 EXEC SQL

INSERT INTO Sailor VALUES (:c_sname, :c_sid, :c_rating, c_age);

:variable name to refer to variable from host program (see p188 for how to declare them to be accessible to SQL commands.

Besides mechanisms for handling access to and definition of variables, there also needs to be handling of error conditions SQLCODE and SQLSTATE (newer). This variable allows the return of error conditions in standard format.

Dynamic SQL

Prepare a SQL command in programming language and then execute it. Example

Char command[] = {“DELETE FROM Sailors WHERE rating > 5”}; /* creates cmd */
EXEC SQL PREPARE readytogo FROM :c_sqlstring; /* parses and compiles */

EXEC SQL EXECUTE readytogo; /* executes */

/* more realistic example, where we use dynamic values to create dynamic command */

sprintf(command_string, “DELETE FROM Sailors WHERE rating > %d”, rating);

Disadvantage: Dynamic SQL has runtime overhead versus Embedded SQL which is prepared (compiled).

Cursors

Needed because of impedance mismatch: SQL operates on sets of records, while languages like C do not cleanly support mechanisms for operating on sets of records. (open a set, fetch next record, move to specific record position, close a set). A cursor can be thought of as ‘pointing’ to a row in the collection of answers to the query associated with it.
DECLARE sinfo CURSOR FOR

SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating > :c_minrating;

OPEN sinfo;

While (1) {

FETCH sinfo INTO :c_sname, :c_age;
/* check SQLSTATE = NO_DATA exit loop when true (i.e. no more data) */
}

ODBC Open Database Connectivity

JDBC Java Database Connectivity

Both expose generic database capabilities through an Application Programming Interface (API). This allows a single executable program to connect to different DBMS and systems, and to have multiple connections to the same or different DBMS active at once. This is in contrast to embedded SQL which is tied to specific programming language, and recompiling would be required to connect to different DBMS.

SQLJ (SQL JAVA)

Similar to JDBC, but more like embedded SQL. SQL J code is easier to read than JDBC. Important difference: vendors provide their own proprietary versions of SQL. To be independent of vendors it’s important to follow SQL-92 or SQL-99 standards. Using Embedded SQL allows the programmer to use vendor specific constructs (which means less independent of platform), while using SQLJ and JDBC for adherence to the standards, resulting in the code being more portable across platforms.

Stored Procedures

Defining a named procedure (programming code module that accomplishes some specific task, for instance comparing two nucleotide sequences and returning a similarity score), that resides on the database server and can be executed there. Advantages: more efficient than moving large dataset from DB server to client to do processing, especially when the rest of the interactions are on the server, and the server is probably handles large datasets more efficiently. Also, once the procedure is defined, other users can take advantage of it. Leads to development of specialized classes (datatypes, operations) for things like video, genetics, etc.

Summary Overview:

Embedded SQL

Pros:

· Query text is in programming code.

· Easy to syntax check.

· Easy to see/view by programmer (readable)

Cons:

· Loss of flexibility of changing command at runtime

· Works well for simple queries when when program variables are known beforehand, but not so well for complex situations where queries need to be generated at run-time.

API:

Pros:

· More flexible than embedded SQL

Cons:

· Initially more complex programming

· No syntax checking at compile time since queries are handed through to DBMS.

Database Programming Language:

Pros:

· Avoids the database impedance mismatch since it unifies programming language and database commands.

Cons:

· Requires programmers learn a new database language.

Locks you into specific language from individual vendors

Internet Applications (Chapter 7)
HTTP

HTML/XML/SGML

1 tier vs 2 tier vs 3 tier

Advantages of 3 tier system:

Heterogeneous systems: utilize strengths of different packages, easy to replace modify
Thin clients: only need minimal computation power (typical client is web browser)
Integrated data access: access data from many different sources transparently at middle tier.
Scalability to many clients: thin clients = low overhead, middle tier used shared/pooled resources

Software development: modularizes the code development, uses standard interfaces, APIs.
Presentation Layer:

Technologies: HTML forms, JavaScript, Style Sheets

HTML forms:

Communication between presentation and application tiers: GET (form contents goes in query URI, and is visible to user, and book-markable) or POST (form contents transferred privately in separate data block).

action?name=value1&name2=value2?name3=value3 /* if no action default to name */
page.jsp?username=John+Doe&password=secret

Javascript:

Scripting language at client tier with which we can add programs to webpages that run directly on the client.
Browser detection: can customize actions based on browser type

Form Validation: can perform consistency checks on the data

Browser control: ability to open pages in customized windows (i.e. annoying pop-ups)

Style Sheets: ways to adapt the same content for different presentations formats (think PDA, versus laptop, versus wall projector, B&W versus color display).

CSS: Cascading Style Sheets

XSL: (XML based version, more powerful), contains

XSLT (XSL Transformation)

XPATH (XML Path)

Important IDEA: separation of Content from Presentation (XML vs HTML, CSS, XSL)

Style sheets also separate the transformative aspects of the page from the rendering.

Middle Tier:

Initially general purpose programs in C, C++, Perl. Evolved to “application servers” to provide generic powerful resources, which scale well.

CGI: (Common Gateway Interface) defines how data gets from client form to middle level.

Application servers:

Draw picture from 7.16 and 7.17 page 254, to illustrate difference. (overhead with multiple CGI instances versus pool of servlets in application server).
Servlets: Java servlets are code (Java) in middle tier, ie.er webservers or application servers.

JavaServerPages (JSP): JavaServer Pages are written in HTML with servlet-like code embedded with special HTML tags. JSPs are better suited for quick customizations, interfaces, as compared with servlets which can handle more complex application logic.

Management of multiple sessions at tier levels to avoid overhead

Many languages used for web programming including

· ASP (active server pages, Visual Basic or JScript)

· Pearl

· Cold Fusion

· PHP (what we’ll use for our class example, since easy, and connects well to DBs).
· C, C++, C#

Maintaining State:

 Middle/Lower tier: for data that needs to persist over multiple sessions; can do in memory (volatile), or better in most cases files at middle tier, or database records at database server tier. Examples: past customer orders (DB), click stream data recording of users movements (middle), personalized layout, etc).
Presentation tier: HTTP is stateless, so use Cookies for maintaining information (name,value pairs). Cookies are non-essential, persist across sessions because of cache, and are transferred to middle tier every session.
Internet book shop (exercise 5). Work through in class. Draft an implementation using a three tier architecture to support searching books, adding selections to a shopping basket, purchasing items in shopping basket, and giving recommendations when they bring up a selection in the search form.

XML:

Introduce XML and various concepts. Review a little of the online quiz exercise, in particular the examples of XML code and CSS. Show them Zen Garden web site for CSS to peak their interest.

Define X* including…
XML

XSL

XSLT

XSL-FO

XPath

XLink

XPointer

Colliding worlds concept from Ramakrishnan (Databases, Information Retrieval, with XML helping bridge the gap). Why are they colliding now? The Web! Historically databases have been structured data managed by large application in controlled environment. Information retrieval has been similar to this in that it has involved searched a defined corpus (set of documents, perhaps of business information system). These two were mostly separate. Then along comes the web and… information searching expands to encompass diverse, separate collections searched as one (i.e. search engines on the web). Databases go online, and we see federation of many independent ones, and connections from the information retrieval systems and search engines.

Searching in IR system was usually by librarian types. Database systems also by experienced users (or more novice users through simplified interfaces). With the Web, searches are usually through very simple interfaces, and apply to wide variety of resources.

What are main differences between Databases and IR?
Searches vs Queries: searches in IR, formal Queries in Databases. IR search results based on search terms, may be ranked; DB results are exact answer to query, and no ranking.

Updates and Transactions: in DB only.
How does XML fit in? XML came about because of the need to marry Web based interactions with data in databases. HTML is sufficient to define displayable documents, but lacks the structure necessary to represent and exchange information with a Database. So XML bridges the gap. XML is derived from SGML (by librarian types for describing document collections). XML is simple, yet powerful version for the masses, i.e. the Web. Databases always had metadata describing their content. Most IR systems did. Now the web is getting this too through XML. Thus documents may contain information about the author, descriptions of content, and relationships to other content. XML also separate content from presentation better than HTML, which mixes this.
HTML example: show how it defines display of content, but not type of content.

XML example: show how it defines the type of content; separately is a mapping of content type to presentation attributes. This allows quick and convenient changing of presentation (changing colors and bolding), and also transformation changes (to display on cellphone instead of desktop monitor).

Structured data versus semi-structured. In a structured environment (database), there is a predefined schema which the data objects must conform to. Schema and data content are in separate data structures. In a semi-structured environment, schema and data content can be mixed, and the schema information thus may be continually revised as more is read in (i.e. not fully defined before hand). This difference equates to knowing beforehand, or making the effort to define a model that represents all the content you’ll be describing. So if you’ll have a collection of documents, you’ll say before hand what the document types are and their attributes, and which are mandatory, etc. for a structured environment. For a semi-structured environment, you would define them as you go, say adding new types (web pages), and different instances of the same type (say book citations, could contain subsets of attributes of others).

XML DTD, Schema contrast simple definitions of DTD and Schema with ER diagram notation. Use company example from pages 848-854 of Elmasri.

Is XML a Database?

Discuss. Summarize results on board.

Bourett’s XML & Databases web pages has a great discussion. Answer is….

Formally yes (collection of data).

Informally, sort of.

XML DOES HAVE

· Storage: XML documents

· Schemas: DTD,XML Schema

· Query Languages: XQuery, XPath, XQL, XML-QL, QUILT

· Programming Languages: SAX, DOM , JDOM

XML DOES NOT HAVE

· Efficient storage

· Indexes

· Security

· Transactions

· Data integrity

· Multiuser access

· Triggers

· Queries across documents, etc.

Ask them to list examples where they would use formal DB system versus use XML.

Choice: which to use? Data centric vs Document Centric

Data centric:

· Regular structure

· Machine consumption

· Fine grained data

· Little or no mixed content

· Order of siblings (PCDATA) is not important, (sets of information)

Examples: all the things you’ve been using databases for (.

Document centric:

· Human consumption

· Less regular or irregular structure

· Larger grained data (smallest might be document)

· Order of siblings, PCDATA is important

· Usually written by hand (XML, PDF, SGML)

Examples: books, email, advertisements, most any handwritten XHTML document

The division between the two is increasingly blurring as DBs commonly include support for XML output, or native storage of XML documents. Similarly, XML supports storage of document fragments in external (relational) DBs.

Approaches to Storing XML documents (Elmasri p855)

1. Using DBMS to store documents as text. A relational or object DBMS can store the entire XML document as text field. Useful if DBMS has special module for document processing. Can use regular string indexing on text field.

2. Using DBMS to store document contents as data elements. Works if you have documents that follow DTD or XML Schema. Then have defined structure, and match this to DBMS schema. Need to have mapping algorithm to map between DBMS schema and XML so you can reproduce the XML document from elements in database. Algorithm can either be part of DBMS, or separate middleware piece (not part of DBMS).

3. Design specialized system for storing native XML data. Newer types of DBMS have evolved to store native XML data as hierarchical tree model.

4. Create or publish customized XML documents form pre-existing relational databases. Because of the legacy issues with data already in relational DBMSs, have algorithms for reformatting the data into XML for exchange or display on the web.

XML Schemas, DTDs versus DBMS schema. First, let’s understand XML documents and XML Schemas better. Review XML Schema on w3cshools.com website and examples I put online in our class 157 xml directory, in particular the shiporder example (done in three versions) at the end of the XML schema section (in w3school and on 157 xml web directory), and the university order (primary key and foreign key definitions).
How do we decide how to construct the schema (XSD) file? From ER diagram, relational database schema. Then cover Elmarsi p850-852 to look at different representations possible for same ER diagram.
What XSD constructs do we use for

cardinality? Multivalued attributes (minOccurs, maxOccurs), Elmasri p 850-854
PK: key (Elmasri p 850-854, xml/university2 example)
FK: keyref (Elmasri p 850-854, xml/university2 example)

Union: either or (different ways, choice, or in regular expression)

Constraints on values/domains: Elmasri p 850-854, w3schools

Value Types: date, datetime, time, gDay, positiveInteger, decimal, boolean, binary

Restrictions: limit value range, specific format, enumerated values (w3school: restrictions)

Draw ER diagram for course, section, student on board.
[image: image2.jpg]Number

COURSE

:

sections, Number

;

SEGTION

;

Students attended (ssn

N

STUDENT

o

Grade

FIGURE 26.8 Hierarchical (tree) view with couese as the root.

[image: image3.jpg]<«sd:element name="root">
<xsd:sequence>
<«sd:element name="course" minOccurs="
<xsd:sequence>
<xsd:ielement name="cname" type="xsd:string" /s
<xsd:element name="cnumber" type="xsd:unsignedInt" />
<xsd:element name="section" minOccurs="0" maxOccurs="unbounded">
<xsd:sequences
<xsd:element name:
<xsd:element nam
<xsd:element nam
<xsd:element nam
sequence>
<xsd:element nam
<xsd:element name=
<xsd:element name:
<xsd:element name=
</xsd:sequence>
</xsd:element>
</xsd:sequences
</xsd:elements
</xsd:sequence>
</xsd:elements>
</xsd:sequences
</xsd:eTement>

0" maxOccurs="unbounded">

'secnumber" type="xsd:unsignedInt" />

year" type="xsd:string" />

quarter" type="xsd:string" />

student" minOccurs="0" maxOccurs="unbounded">

ssn" type="xsd:string" />
sname" typ
class" type="xsd:string" />
grade" type="xsd:string" />

FIGURE 26.9 xmL schema document with coust as the root.

[image: image4.jpg]STUDENT

1

N

SECTION

FIGURE 26.10 Hierarchical (tree) view with stupent as the root,

U o

[image: image5.jpg]<sd:element name="root">
<xsd:sequences
<sd:element name="student" minOccurs 0" maxOccurs:
<xsd:sequences
<xsd:element name

"unbounded"'>

ssn" type="xsd:string" />
"sname" type="xsd:string" />

'class" type: xsd:string" />

'section" minOccurs="0" maxOccurs="unbounded">

Tement
<xsd:sequences
<xsd:element
<xsd:element
<xsd:element

'secnumber"” type="xsd:unsignedInt" />

'year" type="xsd string" />

‘quarter” typ xsd:string” />
<xsd:element ‘cnumber" type="xsd:unsignedInt" />
<xsd:element cname" type="xsd:string" />
<xsd:element name="grade" type="xs

</xsd:sequence>
</xsd:element>
</xsd: sequences

</xsd:element>

</xsd:sequences

</xsd:element>

FIGURE 26.11 XxmL schema document with stuoest as the root,

Now let’s look at a practical example of how the same thing could be represented in XML Schema versus DBMS by looking at tree/ER diagrams. Work through example in Elmasri p856-862, for #4 below, to show conversion from relational database to XML for simple (graph from ER diagram can be represented as tree based) and complex (cycles in graph, which must be broken out).
Storage: When would we want to store our information in a native XML database?

<Let class answer>

· Data is in semi-structured format. Structure is varied enough so that representing in relational DB would result in large number of columns with NULL values (wasted space, inefficient retrievals) or large number of tables (inefficient storage)

· Faster Retrieval Speed if primary access is through a single view of the data. For instance you want to retrieve a complete sales order. Single access via XML; maybe three tables from relational Database (purchase order#, ContentItem,Customers) requiring three disk reads, plus joins… however, not efficient if you need multiple views into information.

· Want to execute XML queries directly. Now that relational DBs are supporting XML query languages this is of less importance.

· Data is only needed in XML format. If needed in another format, then requires reading XML, parsing and converting to another format).

Note that these are more use only if….conditions. In general I recommend relational database for most stuff that is datacentric or close to it; and using tools to directly support XML from the relational database.

As the lines between the two blur, how you convert between the two becomes increasingly important. There are two ways to map between XML and relational DB: (summarized from Bourret online readings)

Table-Based Mapping

Models the XML documents as single tables or set of tables. Used by middleware products. Can be simply generated from relational database. Requires the XML documents to have the form

<table>

 <row>

 <column1> </column1>

 ….

 <columnN> </columnN>

 </row>

 <row> … </row>

 </table>

 <table> … </table>

Does this look familiar? Yes! Because it is exactly what mysqldump –X produces (Exercise 7). This is simple and works well to dump out a regular structured object from a relational database. It does add artificial construct of “rows” as containers for the records in each table. The main drawback though, is that the XML documents have to have this structured format. If two relational DB systems are sharing documents this way it works fine (although maybe we could have used more formalized mechanism like ODBC then). The problem is for handling XML based documents to store in a relational database. It is unlikely that the existing XML documents have this structure, or are easily transformed to it. Thus, there is a need to have more general solution to handle document-centric XML documents to be exchanged with relational database.
Object-Relational Mapping:

Used by all XML enabled relational databases, and some middleware products. Conceptually this allows things to map a little more appropriately (less artificially regularized than the table based maping). In general, “entity like” complex objects (XML element types with attributes, element content, or mixed content) are modeled as classes and mapped to relational database “tables”. XML “simple” things (element types with PCDATA only content (simple element types), attributes, and PCDATA) are modeled as scalar properties, which map to Relational database “attributes”. Overall

	XML
	Object Oriented
	Relational Database

	Complex Element Types
	Classes
	Tables

	Simple Types
	Scalar properties
	attributes (columns)

	Key definitions
	value properties
	PK/FK pairs

(things on the same row map to each other)
For example in the figure 26.9 above, the complex elements course, section, student would each map to object “classes” and then to relational database “tables”. (Mapping is generally XML Schema/DTD to object classes then to relational database tables; although many real-world applications compress this into a single mapping). We will NOT cover the details of this mapping because of time constraints. How this is supported by vendors varies (many different ways to implement the mappings). These details are well covered in the Bourett readings (section 3 of Mapping DTDs to Databases”). Because of several factors (sequence order not preserved in relational DB, different choices in how to implement these mappings, etc. there it not a one-to-one mapping from XML document to relational database objects. So if I send my XML documents into a relational DB, and then retrieve them, will they be the same? No, not necessarily. This isn’t generally a problem for datacentric documents, but may be for document-centric ones.
Object Model is NOT the same as DOM (Document Object Model).

DOM models the document itself, and is the same for all XML documents. (general)
Object Relational Model models data in the document and is different for each set of XML documents that conform to a given XML schema. (specific to instance).
XSLT

Use example from w3schools. Cover XSL Languages through XSLT for-each (including filtering). Have them play with modifying to make their own CD catalog version during class (if time).

What we cover here with the CD examples gives them the necessary background to do Exercise 7 (XSL file to produce output from XML dump of their mysql files from assignment 1).

 Emphasize the role of XSL (XSLT to transform). We are showing the transformation mainly for the purpose of producing output; we could equally well be transforming for consumption by another agent or ingestion into a different database system. Note there is some overlap here with querying. I.e. one could use XSLT to select, filter, sort from database (like our db1_10 mysql dump). However, better way (more robust, powerful) would be to do this as queries, either in relational database system itself, or via XML query languages as we discuss in next section.
 (Additional examples (no better) from Nutshell book (p140-145) but generally using w3schools examples now since freely available to students on web).

XSL-FO: formatting objects.

Allows generalized formatting for presentation. Basically, give template, and content. Template describes layout in terms of rectangular boxes on screens, with margins, sizing, flow between them.

<Draw Fig 13-1, p219 in XML Schema book>

Types of objects supported: block areas, inline areas, line areas, glyph areas.

CSS vs XSL-FO: read summary from p232 in XML Schema book.
On Assignment 5, point out potential good practice of breaking phone number into

<phone>

<areaCode>919</areacode>

<phonePrefix>555</phonePrefix>

<phoneSuffix>1234</phoneSuffix>

</phone>

Reason is that this separates content from presentation. No reason to store “(“, “)”, “-“ in XML if we are truly just representing content. Let XSLT do transformation to present properly, and UI to input properly.
Query Languages:

Relational Database Query Languages:

· Template based: Return XML from relational DBs. No pre-defined mapping. Select statements are used to generate.

· SQL based query languages:

Proprietary languages: initial implementations, expected to be subsumed by

SQL/XML (2004 standard) (For Students-- find out current status, and products that support this).

White paper comparing choices
SELECT

c.CustId,

XMLELEMENT(NAME "customer",

XMLATTRIBUTES(c.CustId AS "id"),

XMLELEMENT(NAME "name",c.Name),

XMLELEMENT(NAME "city",c.City)) AS "CustInfo"

FROM Customers c

XML query languages: can be used over any XML document. To be used with relational DB, relational DB must be modeled as XML (i.e. mapped via table based or object-relational).

· XQuery. Can use either a table-based mapping or object-relational mapping.

Table-based mapping: each table is treated as a separate document and joins between tables (documents) are specified in the query itself, as in SQL.

Object based: hierarchies of tables are treated as a single document and joins are specified in the mapping.

· XPath: an object-relational mapping must be used to do queries across more than one table because XPath does not support joins across documents. (else it would be possible to query only one table at a time).

Data Mining:
Exploratory data analysis

Knowledge discovery

Machine learning

Trying to automate the analysis of large sets of possibly correlated data.

Output can be exported in standard XML format call Predicative Markup Language (PMML).

Knowledge Discover Process:

· Data Selection: target subset, and attributes selected

· Data Cleaning: noise, outliers removed, field values transformed to common units, new fields generated (from combination of original ones), information put in relational format, possibly denormalized to capture information in single table from several.

· Data Mining: application of DM algorithms to extract interesting patterns

· Evaluation: presentation of information in order to draw conclusions.

Counting Co-Occurences

Market basket: beer diapers story.

Itemset: set of items

“support”: traction of transactions that contain all items in item set.

 (70% support of {beer, diapers}).

Iceberg Queries:

Way to speed up queries with HAVING clauses by evaluating subparts. Example:

SELECT P.custid, P.item, SUM(P.qty)

FROM Purchases P

GORUP BY P.custid, P.item

HAVING SUM (P.qty) > 5

SELECT R.a, R.b, …, aggregate(R.n)

FROM Purchases R
GORUP BY R.i, R.j
HAVING AGGREGRATE (R.n) …..
Evaluate SUM(P.qty) on P.custid first, and SUM(P.qty) on P.item. Useful when you cannot fit entire relation (P) in memory to do running count. Then can be faster to limit by subset conditions, i.e. only parts requested > 5, or purchases with at least 5 items.

Association Rules:

Diapers => Beer (probability of Beer given Diapers).

ISA hierarchy, category hierarchy:

Suppose we can to test diapers => beverage. Then want to replace Beer by general category (beverage). I.e. beer ISA beverage.

Sequences: Patterns over time. Cereal, Cereal, Milk.

Sequence matching: can compute distance of records in the database from a given record. More efficient to use indexes to speed up, where you index on attributes of interest.

Classification Trees: group by trees into hierarchial sets.
Clustering: Partioning a set into groups such that records in a group are similar to each more than records between groups (by some measure).

Data Mining Algorithms:
· Pattern matching

· Regression (correlation): simple direct measure of correlation

· Neural networks: train from datasets to wire in optimizations

· Genetic algorithms: random perturbations to optimize organism

Commercial DataMining Systems:

SAS Enterprise Miner, SPS Clementine, IBM’s Intelligent Miner, MicroSoft’s SQL Server 200 Analysis Sever. See full list on Elmarsi p893.
SQL/MM: Data Mining extension of the SQL:1999 standard supports four kinds of data mining models

· Frequent itemsets and association rules

· Cluster of records

· Regression trees

· Classification trees

New datatypes supported included

Model: DM_RegressionModel, DM_CLusteringModel

Input parameters for DM algorithms: (DM_RegTask, DM_CLusTask),

Describe the input data (DM_LogicalDataSpec, DM_MinniData)

Represent the result: (DM_RegResults, CM_ClusResult)

Data Warehousing:

Subject oriented

Integrated

Non-volatile

Time-variant

Different from transaction based DBs:Motivation is for high level organizational level decision making (DW) versus detail oriented transaction processing (relational DB).

· Transaction: fine grain, current information, frequent updates and access

· Warehouse: occasionally controlled updates (batched), occasionally interactive querying, plus all of above…

Reasons to have separate system (shortcomings of relational DBs) (Ramankrishnan p848)

· The WHERE clauses contain many AND and OR conditions. ORs in particular are inefficient handled in relational DB.

· Applications require extensive use of statistical functions

· Queries involve conditions over time or require aggregating over time periods

· User often need to pose several related queries. Need way to convenient express class or family of queries, as well as optimize them.

Three broad classes of tools support this

1. Class of stylized queries supporting group-by and aggregation operators, and excellent support for Boolean operators. Online analytic processing (OLAP)

2. Some DBMS support traditional relational DB SQL style queries but also have expanded to include OLAP type queries (more and more common as vendors increase support to avoid losing market share).

3. Exploratory data analysis to find trends or patterns in large data sets. (data mining).

Functionally data warehouses have the following distinctive characterstics

Multi-dimensional conceptual view

Generic dimensionality

Unlimited dimensions and aggregation levels

Unrestricted cross-dimensional operations

Dynamic sparse matrix handling

Client server architecture

Multi-user support

Accessibility

Transparency

Intuitive data manipulation

Consistent reporting performance

Flexible reporting

Although most are centralized, there is an increasing number of Distributed Warehouses (Federated Warehouses).

Multi-dimensional models (p 903 Elmasri) product X region X Quarter

Pivoting (also called rotation)

Interactive querying is assumed.

Roll-up display: roll up on products of certain type, months to quarters to years

Drill-down display: reverse

Dimension Table: types of attributes of that dimension; coverage of range of dimension, for instance times (days, holidays, weeks, months, years, decades…).
Fact table: tuples, one per fact. Contains raw data, and pointer to dimension table

Multi-dimensional schemas: star, snowflake (draw diagrams from 905 Elmasri). Star is more common because not much reason to normalize the dimension tables, while it is big advantage to keep data together for efficiency in query response times.
Building a data warehouse:

· Extract data from multiple sources, heterogenous sources

· Data formatted, normalized for consistency

· Data cleaned

· Data fitted to model of warehouse (say relational database to multidimensional model)

· Data loaded (generally initial followed by incremental, since size prohibits easy reloading of entire dataset).

· Support queries & interactions involved in the data

Additional properties in SQL99:
· Roll-up and Cube: allows short cut way to specific group of “group-by” statements. Roll-up (X1, X2) rolls up over all combinations of X1,X2. Cube (X1, X2) takes all combinations including NULL for elements. Write out example from Ramakrishnan p857. MySQL supports Rollup as of 4.1.1, but not Cube.

· Windows: total sales by month/week for a city. Moving average for each month, including previous and following month. Like group by but allows you to specify the framing of window of interest in that dimension (i.e. in time around a specific point or range). Example code in Ramakrishnan p 860.
· New aggregate functions: RANK,DENSE_RANK, PERCENT_RANK, CUME_DIST.

· Top N Queries: list top 10 things in some categories (highest salaries, etc). Cannot efficiently do without knowing number of records in standard SQL.

DataWarehouses are similar in ways to views in relational databases. How are they different?

· Data warehouses are persistent

· Data warehouses are multidimensional not relation

· Data warehouses can be indexed to optimize performance (views cannot be independent of underlying database)

· Data warehouses provide support for specific functionality (views cannot).

· Data warehouses contain large amounts of integrated and temporal data while views are just extracts of relational databases.

Materialized Views:
In between view and table

Materialized means stored and can create index on it; but have to update to be accurate when changes in underlying table occur.

Indexing:

Different indexes are often used for data warehouses. In particular bitmap indexes so that WHERE conditions can be done very efficiently. For instance gender, rating are attributes for person. Store as bitmap, two bits for M/F, four bits for four rating levels. Then can do bit wise comparisons.
Current research areas in Data Warehousing is mostly aimed at automated areas where lots of manual intervention and expertise is required:

Data acquisition

Data quality management

Selection and construction of appropriate access paths and structures

Self-maintainability

Functionality

Performance optimization
Data warehousing support:

Mostly done with big production environments (Oracle, Microsoft Server 2000). However, increasing number of MySQL servers used for warehousing, and increasing number of packages supporting this. Google “MySQL data warehousing” and look at links (OReilly, Golden, Radwin, listservs). Most recommend Star configuration; use views, batch loading, rollup support.

Non Text Databases:
“Non-text” databases is misnomer. What are currently defined types? Let class answer
Text: char strings of different lengths; very long character objects (Access “memos”)

Numeric: Integer, Float, …

DateTime:

So we really mean Databases that can store, search, retrieve types (and possibly process) objects types not normally included as default types in current databases.
What types might we want to have definitions for? Let class answer
· Audio (samples, spectral, notes)

· Pictures (still pictures, images; moving pictures, video)
· Spatial data (maps, medical images)—how are these similar/different to pictures?
· genome data (nucleotide sequences) how is this different than strings?

Why would we want to have these as defined types in our database? Why not just store as BLOBs in database, or as files in file system with references to them in database?
· Do processing or calculations

· Search them

· Query them

· Index on them

Challenge: what datatypes should additionally be defined, and what operations should be defined on them? Think about images for instance? What format do we store? What operations are defined (greater than? Less than? Equal to? Brighter/Darker? Contains? Contains what? (subimage, feature).

Database vendors must weigh whether market demand requires

· Defining new types: audio stream, picture, video stream, nucleotide sequence, map, medical image, polygonal figure.

· Defining operations on these types.

Do exercise 8 to think about datatypes and operations.

What levels are operators are defined on (entire image, subimage, feature, pixel)?

What operators?

· Comparison (equal, greater, less)

· Order

· Search

· Combine, mathematical functions

· Index

Cover an area not chosen by the students for their presentations, and use it to more fully cover issues with non-text databases.

Genomics:

What makes genomics different? (From Elmasri p938-939)

· Biological data is highly complex. Definitions of data must be able to represent complex structures of data as well as relationships. An example is the MITOMAP database of the human mitochondrial genome. It contains 17,000 nucelotide bases; 52 gene loci encoding messenger RNA, ribosomal RNA, transfer RNA, 1000 known population variants, 60 known disease associations, a limited (at this time) set of knowledge on the complex molecular interactions of the biochemical engery producing pathway of oxidative phosphorylation. The maintainers have used relational databases, but find them inadequate.

· Amount and range of variability in the data is high; many submissions to GenBank on same thing, often differ. Or submissions of part of chain of information (submissions overlapping one another).
· Need to integrate data from many sources, many formats. Example researchers at UNC requires data from 20-30 databases, 5 are commercially licensed, rest are public. About half are flat files (text), rest are some sort of database structure. Some are accessible only via web interface, some via low level database (or dump).

· Schemas change at rapid pace. GenBank re-releases with a new schema twice a year. Must be able to not just extend but make basic changes to it as new knowledge dictates.

· Representations by different authors (biologists) are often different. Different names for the same thing. Different structures for representing information about fruit fly gene (because of different approaches, lab equipment, goals).

· Most users of database need ReadOnly access. Few submitters, and very few curators. Many searchers.

· Users will not have not of database, nor of database model (or how databases work).
· Defining and representing complex queries is important.

· Context of data gives added meaning. Need to know what it relates to; information about how it was acquired.

· Old values often needed. Values get updated as science progresses; however, old values are useful for validation and historical purposes. Example is GenBank, which assigns permanent ID to each submission; and separate ID for concept, which points to the latest “valid” version.

Where is this going?

Oracle and others are putting lots of effort into supporting non-text databases. Adding new datatypes, or mechanisms for user defined datatypes and operations on them. Example is BLAST searches. Have datatypes of nucleotide sequence. Add ability to do “matches”, which implies substring match, but with “close” matching where there are errors or missing parts in sequences (with ranking based on biological likelihood). Support now exists for multimedia, flexible text objects. For instance read article (google Oracle genome support, Cracking the code of life, http://www.oracle.com/technology/oramag/oracle/03-jan/o13science.html).

Gene Ontologies: done in MySQL and open source tools; exported in XML or SQL.

Short history review:
1970s: hierachial and network databases are the rule. Databases are large company supported resources, accessed via fixed point terminal connections, and structured interfaces.
1980s: emergence of relational databases. Birth and rapid growth of workstations, personal computers, beginnings of individual databases.
1990s: realization that relational databases didn’t meet all needs, extensions to relational databases, object oriented databases, data mining, etc.

2000s: the web is the default for most everything. Databases are connected to the web and to each other, and accessible by the masses. Most all information in contained in some sort of “database”, interaction is through web forms (yellow pages, travel reservations, stores, blogs, classes). Access to a database is essentially free for most people (Microsoft Access, MySQL). Three tier systems: intelligence at client (visualization), processing done mostly at middle tier (application level), data storage is on server tier. Relational databases still dominate, in part because vendors increasing support additional capabilities (object oriented, XML, data mining, data warehousing, beyond text (audio,video, etc)). Interfaces extending from standard computers to PDAs, cellphones, etc.
