Scenarios and Use Cases

INLS 582, Systems Analysis

Wednesday 2/8/12 & Wednesday 2/15/12
NOTE: team formation, Monday 2/13/12
use only part of 2/15 to finish the exercise, then start artifact.
Reading: B&H, Ch. 5

Caroll, 2000 (scenarios)Miles & Hamilton, Ch. 2
Pilone & Pitman, Ch. 7 (use case diagrams)

Gottesdiener, 2002, Part I and II

Assignment: Problem definitions due, Wednesday, 2/8/12
Slides: WkModOverviewScenario.pptx
use-case-comp.ppt

UseCaseEx.ppt

Exercise: weatherRus use cases -- handout
Modeling work is looking at tasks, processes – the motions and action of people and information. You need some kind of action to gather, change, generate information, or to make decisions.

Remember the concept of functional decomposition, and think also about functional composition. <define if necessary> These are important here because we need to be able to look both at the big picture of how major tasks fit together, and also look at detailed views of individual tasks – detailed enough to write a program, or a step-by-step interface or detailed instruction manual.

As we’ve mentioned, you don’t necessarily use all of these models. You will probably want content models such as a data dictionary and an ER, you may or may not need a physical or cultural model. Your experience and judgment will tell you what is useful.
Multiple perspectives of the problem are essential.
I recommend you start your own catalogue of models, to help you remember the focus/purpose
You may use “before” and “after” versions. The “before” versions let you see what the current system or environment looks like, and helps you identify problems. For example, you might find that you can draw up 2 different ER diagrams based on information you gather from artifacts and interviews. The mismatches between them could be the basis for a communication breakdown you observe in the flow, sequence, or artifact models. The “after” versions can describe the specifications for the new system. They may also be used to communicate your ideas to users, although be careful to use them in an informative way – e.g., you may simplify them, or realize that you need to talk through them.

Contextual Inquiry Models

In Ch. 5, B&H talk about models as providing a “language” for describing work, allowing the designer to focus on different aspects of work. They are a way to record the designers observations, information gained from interviews, examination of artifacts, and other information gathering activities, and ideas for changes.

Recall Hendry's ideas about the communication functions of models, as well as Majcryzak's perspective of models as conversations between team and clients, among clients, among teams.

Ch. 6 talks about 5 different kinds of models. You may choose to use some or all of these in your projects, depending on the needs of you and the project.

One thing they all have in common is the concept of the “breakdown” A breakdown occurs when something doesn’t work as smoothly as it should. It can be a cause of annoyance or extra work for the user, and/or a source of errors and misunderstandings. As you find breakdowns, you can start to work out what their source/cause is, and determine if there is a way you can fix it or minimize it with the system design. Some breakdowns, such as problems with corporate culture shown in the cultural model, may really be outside the scope of what your system can fix. At the least, you don’t want to make it work. At best, if there is a tactful way of pointing it out, you may start people thinking about it. Or it may just have to be endured, and perhaps there are some coping strategies (outside sources of stress, for example).

Remember that you may not need all of these to understand a situation and/or to design the new information system. Choose the model(s) that will highlight what seems to be causing difficulties, and what will let you explore and express the changes. Also, remember, however, that building a quick and dirty model will let you explore whether or not this is where problems lie, so you may want to try all of them as a first pass, and then focus on the most fruitful ones.

B&H recommend building versions of these models after every interview, observation, or other information gathering session. These would then express the perspective that that person or session provided. The various versions will be merged at a later point.

This semester, I'll be just mentioning some models; others will have examples and/or exercises. Regardless, you'll probably need to look at handbooks, articles, documentation when you start to use them; class notes won't be sufficient.

Scenarios (Carroll) scenario-comp.ppt
Just mention these as brainstorming/visionary activity with components.

Some projects are visionary “explore & discover”, where result cannot be specified at the beginning. How do you control/plan development in these projects?

You need to set it up so you can learn from experience: changes in course, failed attempts, blind alleys, should bring out constraints, guidelines.

Story of library – symptom/problem/solution. They seem to have indirect connections, but it’s a matter of what questions you ask (like any research question).

p. 14 “Scenario-based design tries to manage the complexity of design problem solving by concretization. A scenario is a concrete story about use:”

p. 22, summary of characteristics of design:

· “incomplete description of the problem to be addressed

· lack of guidance on possible design moves

· the design goal or solution state cannot be known in advance

· trade-offs among many interdependent elements

· reliance on a diversity of knowledge and skills

· wide-ranging and ongoing impacts on human activity.”

(Compare with our earlier simple model of what a problem is.) So we need to come up with a design method that will help us explore options within these characteristics.

Typically, we use functional decomposition: a way of breaking down problems. But that has the risk of losing interactions between the subproblems. Changes in requirements, designs, need to be evaluated within each subproblem, but also across them.

Specifications: at some point, they need to be detailed enough for development (e.g., form design, instruction manuals, programming). At other points, they must be broad enough to reflect the richness of the situation (including the people), and allow exploration of alternatives. How will the system be used? How should it interact with users, support user tasks?

A scenario is like a play script. You start with what the user wants/needs to do, then envision what the system must do from the user’s perspective, and finally what the system must look like “inside” in order to support these actions.

The characters are the personas for whom you're imagining the system. Recall the "mobile professional" and "mobile personal" personas from the Page article.

From Ch. 3 – characteristics of scenarios

p. 45 “Scenario-based design techniques… seeks to exploit the complexity and fluidity of design by trying to learn more about the structure and dynamics of the problem domain, trying to see the situation in many different ways, and interacting intimately with the concrete elements of the situation.”

Looking at descriptions of how people accomplish tasks.

This of a scenario as a story describing work – actions, needs, goals. Can be used to describe current system and breakdowns (e.g., as drawn from observation), and therefore the nature and extent of problem, or can be used to describe desired work flow, and then design system to match.

p. 47 – elements of a scenario:

· setting

· agents/actors/

· goals/objectives

· sequence of actions, events.

A system design can incorporate many scenarios – several for a single agent/actor (different tasks, part of work), ones for different actors, or different tasks. These can be incorporated into a “grand scenario, which is them extracted from to represent these different perspectives, views, aspects.

Use scenarios to explore consequences of design decisions – job responsibilities, work flow, materials needed, timing, etc.

Coordinate these aspects to see what effect a design decision has on the system as a whole. For example, consider customer support. Suppose a decision is made that customer service reps can directly make refund decisions, rather than having to refer them to a manager. What are the implications:

· What do managers do with the extra time?

· How do you train reps?

· How do you ensure consistency across reps?

· What kind of reporting to managers need?
UML Modeling: Set of processes and models for system analysis and design. Widespread use. As Miles & Hamilton say, there are "degrees" of UML use:
sketch, blueprint, programming language. We'll be focusing on sketch/blueprint level.

There are software tools to support varying degrees of use.

In Visio, see software -> UML to find the UML model templates

Visio is available in the lab (see syllabus).

If you read about models in more than one book, you'll notice that there are variations in notation, "syntax", and "good style". Often this is constrained by the software you use, and of course, some people/organizations will have relatively strict style customs.

Use Cases (UML)
The Use Case looks like a very simple model, but there is more going on than meets the eye. Frequently, as you’re rehearsing what someone did, or thinking about how a particular task should or could be done, you imagine a scenario – a little story about how the user and the system will interact. The Use Case is a way of capturing the interactions. A use case may summarize several specific scenariosIt can be a high-level design, where tasks and major steps are named, but the details of exactly how it will be done are unspecifie, or be leveled to provide increasingly detailed models. This is a useful model to use early in your analysis or design – you can think about what has to occur, without getting bogged down on how it must occur. These are functional requirements.
For later development, you can use other models to represent the details: e.g., a sequence diagram or structured English for detailed procedures, and ER or class + CRUD for DB structures and transactions.
Normally, developing use cases starts by modeling the “normal” interaction of the actor and the system, but it is important to think about error conditions, exceptions, and other unusual (but not unknown) situations. “happy path” and “unhappy path”
Use cases can be represented in text or in a diagram, or both. If text, use very straightforward language: subject verb object, condition. You can even represent it in a table. Ambler suggests using a diagram for the overview, and text for the details.
As with many models, this can be leveled, with a high-level diagram representing a system and its major functionality/interactions, and a more detailed models decomposing each function. (If one were to keep going, the lower-level use cases would be detailed in one of the process specifications we’ve talked about.) We’ll talk about the high level first.

Gottesdiener, 2002
This is a vary practical discussion about using use cases. She emphasizes that the use case can only represent one view of the system; you’ll be coordinating it with other models (as we will here).

“A use case is a textual or diagrammatic (or both) description of both the major functions that the system will perform for external Actors, and also the goals that the system achieves for those Actors along the way” (p. 1)

Use cases are intended to model behavior; especially the interactions between system and user.

“the purpose of a use case is to fulfill an Actor’s goal in interacting with the system”

She provides good naming guidelines for use cases. In essence, by viewing the set of use cases for a system, you should gain a high-level view of its functionality.

She gives lots of suggestions for how to think of use cases, combine them, work them through, elicit them from users, and so on.

Components:

1. The system. Box represents system, with name of system as title. Note that this doesn’t have to be an entire “stand-alone” system. You could work on a set of scenarios that focus on a particular aspect or stage of the system. The rectangle represents the system boundary.

2. Actors. Actors are those who interact with the system. Mostly we think of them as people (in roles), but they may be other systems, if there is no or minimal human intervention. It's anything outside the system boundary. A job title may also be a useful label. The actor may be a person; you can use a stick figure or silhouette. You can also model it as a box, labeled with “<<actor>>”, known as a stereotype – especially if actor is another system.

3. Use cases. These are ovals within the system that represent the function or high-level task that the actors need the system to do. On the top level diagram, these will be broad functions; they’ll be decomposed on subsequent diagrams.

4. Communications. These are the connections between the actors and the use cases. You may leave them unspecified, just as plain lines. If the “weight” of the interaction falls one way or the other, you can use a solid arrow. The actual interactions may be messages or actions.

· If the actor initiates the interaction, point the arrow at the use case.

· If the actor utilizes the system’s services, point the arrow at the actor.

· If there is equal initiation/utilization, you can use a double-headed arrow.

· An actor may communicate with one or many use cases in a system.

<to example>
Details of use cases.

The next level of diagrams goes inside each use case, laying out the specific system tasks for the function. At this point, we can connect tasks to other tasks via two relationships.

· A task includes another if the second task is always a component of the first, and other use cases also use it. For example, if you’re withdrawing money from your account at an ATM, part of the task is to enter your PIN. This is represented by a hollow-headed dotted-line arrow pointing from the base use case to the included one, labeled with <<includes>>. Similarly, you need to do the same PIN verification task for each transaction. This is a way of recognizing tasks that are components of many other tasks or use cases.
You can think of an included case as a subroutine that can be called by many main routines, or a basic recipe that is included in many other recipes (e.g., white sauce or tomato sauce). You only write the recipe once, and refer to it from the other recipes.

· A task extends another if it can be a component of the first. The task is optional, and provides additional functionality to the first. The choice to do or not do the task may be based on actor input, or perhaps on a condition stated in the data. Often these are used to represent handling error conditions. This is represented by a hollow-headed dotted line arrow pointing from the extension to the base, labeled with <<extends>>. Note that Gottesdiener recommends using these sparingly, and leaving them until later.
Use case example and exercise <handout and slides> use-case-ex.ppt
PAGE
6

