Modeling Communication Flows, Events, Tasks
INLS 582-001, Systems Analysis

Wednesday, 2/29/12
NOTE: Spring Break, Monday 3/5/12 & Wednesday 3/7/12
Reading:
B&H, Ch. 6, p. 89-96, flow model

B&H, Ch 6, pp 96-101, sequence model

Slides:
FlowSeqComponents.pptx
FlowSeqExample.pptx

FlowExercise.pptx

Exercise 11, Fred & Wilma flow (slides and handout)
Flow Model (Communication)

The flow model captures people’s lines of communication and coordination. You could have one of these for each of the people (Recall that a person may play several roles in an information system.) Included in the model:

· The central person who is the focus of this model, annotated with title and list of duties or tasks. <Central bubble>

· people with whom the central person communicates, informally, formally, via artifacts, etc, annotated with title and related tasks. <peripheral bubble>

· kinds of communication between them. Directionality of flow depends on who initiates and who receives. Two-way discussions, even if not at a single point in time (in other words, asynchronous), are generally double-headed arrows. Labels on the flow indicate the purpose or content of the communication. If the communication is an artifact, the label is the artifact name. <arrows, labels, boxes for artifacts>

· places at end of a flow if the place itself is an important destination, e.g., bulletin board, Web page, DB. <boxes>

· breakdowns in communication flows. Misunderstood messages, repeated messages, excessive iteration, ill-timed messages, ignored messages – these are some possible breakdowns. <lightning bolts>

By looking at a flow model, you can get some hints about the type of job someone has. Do they initiate most communication, passing directions? Then they make decisions and create/delegate work for others to do. Do others constantly initiate communication, resulting in action by the central person? Their day may be interrupt-driven.

<example, flow-sequence-example.ppt, search committee>

In-class exercise: Flow Model for Fred and Wilma. In pairs. Half of pairs do Fred’s perspective, half do Wilma’s.
Process Specifications
The next few models we look at describe tasks. There are many ways of describing the steps in a specific function, operation, task, etc. Choose one that lets you describe what you need to describe, is clear to anyone who needs to work with it. Remember that you will be writing a process specification for each specific process. Even though these are detailed instructions, they leave out implementation details.

We’ll talk about a few, although there are many others – you may even chose to make one up that is more suitable. You don’t have to describe all your processes in the same way – use a format that makes sense to you, your clients, and is appropriate for the kind of process you’re looking at.

[General Guidelines:

There are several goals of any process specification.

1. To make sure that the input data required for the task is available, and is available in a suitable form.

2. To make sure that the task will actually produce the output data or other outcome that it is supposed to.

3. To make sure that the process is well enough understood to be specified, and that all the steps can be detailed in as unambiguous manner as possible so that that someone else can look at the specifications and understand what the process is. (E.g. to write a users manual or a computer program.)

4. To make sure that you have thought of all the pieces in the design process - no “and then a miracle occurs”. (S. Harris)

5. To describe what happens under both normal and abnormal (error or exception) conditions.

In describing any task, there are three basic control structures that you use to tell someone the order in which things are done. These structures can be represented in most of the specification styles.

1. Sequence: A sequence of instructions is a linear list. First do this, then do that, then to the third part. In writing out a recipe or other types of instructions, we frequently number the steps. This is a representation of sequence.

2. Decision or Condition: Sometimes there is a choice of possible actions, depending on certain conditions. In natural language, this is frequently expressed as “if this, then do this, otherwise, do something else”. For example, “if there is money in the account, withdraw $20, otherwise, try to borrow it from someone. You can specify any number of precise conditions and actions, and frequently you want to end up with some sort of “otherwise” condition to catch any other possibilities you haven’t explicitly mentioned.

3. Iteration or Repetition: This is when you repeat the same sequence of steps several times, frequently once for each item on a list or stack of items. For instance, when you open your mail, you open each envelope and scan the contents. You do this only if there are envelopes to open, you do it once for each envelope, and you stop when you have opened all the envelopes. For any loop, it is especially important that you specify the ending condition, otherwise you will be in an infinite loop, and never be able to stop.

a. while. Do some action while (as long as) some condition is true. For instance, while there are more envelopes to open, keep opening them. Here, you are doing the test is true before you do the action. Check to see if there are envelopes, if so, open one. <reading email>

b. until. Do some action until some condition becomes true. For instance, until you have reached the bottom of the pile of envelopes, keep opening them. Here, you are doing the action first, then checking the condition. This assumes that you can do the action at least once, before checking to see if you should continue. You probably won’t use this as often. as the while loop.

c. for. This is used to specify a certain number of times to do an action, and it generally looks like: for n = 1 to 10. Each time you de the action, you increment n to keep track of how many times you have done it. When you reach 10, stop. For instance, if you are selling bus tickets, you can set up a for loop to sell each ticket, stopping when you have reached the capacity of the bus. (class registration)

In any process specification, it is useful to state what data is needed to start the process (the incoming data flow(s), and what data is produced at the end of the process (the outgoing data flows). You could also indicate what processes or data stores they come from/go to.

Types of task models:

activity model (already discussed), sequence model (below), flow chart, numbered list, structured english (only if time).

]
Sequence Model (Task model)

The sequence model captures the series of steps or actions that someone takes to complete a task (or series of related tasks – this could be used at several levels of detail). A single person might have many of these, depending on the number of tasks that are pertinent to the system. A task might involve the actions of several different people. Included in the model:

· intent that the task is supposed to achieve

· trigger that causes the sequence to occur – time (daily report), incoming message, approaching deadline (priority of task rises to the top) etc.

· steps taken to achieve the intent

· arrows representing sequences, loops, branches. Decisions are represented by branches.

· breakdowns – interruption in achieving the intent, problems with steps or transitions between steps, excessive (perhaps repetitive) steps needed to achieve an intent.

<example, proposal>

[
Structured English
Structured English is a subset of English, part way between unrestricted language and a programming language. It is intended to be clear, unambiguous, and make order and decision points clear. I’ll talk about “prototypical” structured English here, but you can obviously have gradations between clear standard English is a list form and the programming language. Related to controlled English, e.g., sea-speak or airline manual language.

The emphasis should be on verbs and objects. These create imperative sentences of explicit instruction for how to do one step. Use specific verbs (not process or do), and use the names of the data objects from the data dictionary.

Informal structured English looks like the example Davis has in Figure 4.12. Here, the steps are numbered, and the options are clearly indicated.

Formal structured English is closer to a programming language. It may also be called pseudo-code. It may be appropriate if all members of the team are comfortable with it, and the specification will be passed directly to a programmer.

]
PAGE
2

