40

<<form>> - chorms
e 7 7| validate = true
i In UML 2.0, stereotypes and their tagged values are defined using profiles. To learn
(o 3 more about stereotypes and how to create roles for the elements of your model, see
~ 4 Appendix B.

1.8. Want More Information?

The next step is to jump into Chapter 2 and start learning UML. If you're a bit of a history buff, then you can
also check out a brief history of UML in Appendix C.

UML is a concise langnage but a big subject. As well as learning about UML, it's worth reading through the
tutorials and documentation available at the Object Management Group 's web site, http://www.omg.org.

Chapter 2. Modeling Requirements: Use Cases

Imagine that it's Monday morning and your first day on a new project. The requirements folks have just
popped in for a coffeeand to leave you the 200-page requirements document they've been working on for the
past six months. Your boss's instructions are simple: "Get your team up to speed on these requirements so that
you can all start designing the system." Happy Monday, huh?

To make things just a bit more difficult, the requirements are still a little fuzzy, and they are all written in the
language of the userconfusing and ambiguous natural language rather than in a language that your system
stakeholders can easily understand. See the "Verbosity, Ambiguity, Confusion: Modeling with Informal
Languages" section in Chapter 1 for more on the problems of modeling with natural and informal languages.

‘What is the next step, apart from perhaps a moment or two of sheer panic? How do you take this huge set of
loosely defined requirements and distill it into a format for your designers without losing important detail?
UML, as you know from Chapter 1, is the answer to both of these questions. Specifically, you need to work
with your system's stakeholders to generate a full set of requirements and something newuse cases .

A use case is a case (or situation) where your system is used to fulfill one or more of your user's requirements;

a use case captures a piece of functionality that the system provides. Use cases are at the heart of your model,
shown in Figure 2-1, since they affect and guide all of the other elements within your system's design.

Figure 2-1. Use cases affect every other facet of your system’s design; they capture what is required and the
other views on your model, then show how those requirements are met

an

41

Use cases are an excellent starting point for just about every facet of object-oriented system development,
design, testing, and documentation. They describe a system's requirements strictly from the outside looking in;
they specify the value that the system delivers to users. Because use cases are your system's functional
requirements, they should be the first serious output from your model after a project is started. After all, how
can you begin to design a system if you don't know what it will be required to do?

- Use cases specify only what your system is supposed to do, i.e., the system's
@y 4. functional requirements. They do not specify what the system shall not do,
~ & e, the system's nonfunctional requirements. Nonfunctional requirements

often include performance targets and programming languages, etc.

When you are working on a system's requirements, questions often arise as to whether the system has a
particular requirement. Use cases are a means to bring those gaps in the user's requirements to the forefront at
the beginning of a project.

This is a real bonus for the system designer since a gap or lack of understanding identified early onin a
project's development will cost far less in both time and money than a problem that is not found until the end
of a project. Once a gap has been identified, go back to the system's stakeholdersthe customers and usersso
they can provide the missing information.

It's even better when a requirement is presented as a use case and the
stakeholder sees that the requirement has little or no value to the system. If a
stakeholder can discard unnecessary requirements, both money and time are
saved.

PO
KA 2
o

Once priority and risk are assigned to a use case, it can help manage a project's workload. Your use cases can
be assigned to teams or individuals to be implemented and, since a use case represents tangible user value,
you can track the progress of the project by use cases delivered. If and when a project gets into schedule
trouble, use cases can be jettisoned or delayed to deliver the highest value soonest.

Last but not least, use cases also help construct tests for your system. Use cases provide an excellent starting
point for building your test cases and procedures because they precisely capture a user's requirements and
success criteria. What better way to test your system than by using the use cases that originally captured what
the user wanted in the first place?

a1

42
2.1. Capturing a System Requirement

Enough theory for now; let's take a look at a simple example. Suppose we're defining
requirements for a weblog content management system (CMS).

Requirement A.1

The content management system shall allow an administrator to create a new
blog account, provided the personal details of the new blogger are verified using
the author credentials database.

There's actually no specific "best way" to start analyzing Requirement A.1, but
one useful first step is to look at the things that interact with your system. In use
cases, these external things are called actors

The terms shall and should have a special and exact meaning when it
comes to requirements. A shall requirement must be fulfilled; if the
feature that implements a shall requirement is not in the final

system, then the system does not meet this requirement. A should
requirement implies that the requirement is not critical to the system
working but is still desirable. If a system's development is running
into problems that will cause delivery delays, then it's often the
should requirements that are sacrificed first.

.
=
A
(O B

4:

Blog Features

Weblogs, commonly referred to as blogs, originally started out as privately
maintained web pages for authors to write about anything. These days, blogs are
usually packaged into an overall CMS. Bloggers submit new entries to the
system, administrators allocate blogging accounts, and the systems typically
incorporate advanced features, such as RSS feeds. A well-publicized blog can
attract thousands of readers (see O'Reilly's blogging site at
http://weblogs.oreillynet.com).

2.1.1. Outside Your System: Actors

An actor is drawn in UML notation using either a "stick man" or a stereotyped box (see
"Stereotypes" in Chapter 1) and is labeled with an appropriate name, as shown in Figure
2-2.

Figure 2-2 captures the Administrator role as it is described in Requirement A.1. The
system that is being modeled is the CMS; the requirement's description indicates

a2

Figure 2-2. Requirement A.1 contains an Administrator actor that interacts with the system to
create a blog account

<<aior>>=
Administrator

Administrator

that the Administrator interacts with the system to create a new blogger's account.
The Administrator interacts with the system and is not part of the system; therefore,
the Administrator is defined as an actor.

What's in a Name?

It's actually worth being very careful when naming your actors. The best
approach is to use a name that can be understood by both your customer and
your system designers. Wherever possible, use the original term for the actor as
identified within your customer's requirements; that way, at least your use cases
will be familiar to your customers. This approach also lets system designers get
comfortable with the system's unique context.

Deciding what is and what is not an actor is tricky and is something best learned by
experience. Until you've gained some of that experience, Figure 2-3 shows a simple
technique for analyzing a "thing" that you've found in your requirements and how to decide
whether it is an actor or not.

Actors don't have to be actual people. While an actor might be a person, it could also be a
third party's system, such as in a business-to-business (B2B) application. Think of an actor
as a black box: you cannot change an actor and you are not interested in how it works, but
it must interact with your system.

2.1.1.1. Tricky actors

Not all actors are obvious external systems or people that interact with your system. An
example of a common tricky actor is the system clock. The name alone implies that the
clock is part of the system, but is it really?

The system clock comes into play when it invokes some behavior within your system. It is
hard to determine whether the system clock is an actor because the clock is not clearly
outside of your system. As it turns out, the system clock is often best described as an actor
because it is not something that you can influence. Additionally, describing the clock as an
actor will help when demonstrating that your system needs to perform a task based on the
current time.

43

4R

44

Figure 2-3. Here are a couple of questions to ask yourself when trying to identify an actor

Identity & "thing" from your raquirements

< thatland ange wit!
*-\t\hesyst& design

®

for. The "thing" is prabiably an actor.

Tree "thing " s probabiy mof an ac

Anything that you can alfect an fie careful when it comes 1o people;
hiave some cantial over when some penple (an be considered
designing your systemis fikely part of your system.

10 be considared 2 parl of your systam.

It is also tempting to focus on just the users of your systems as the actors in your model,
but don't forget about other people, such as auditors, installers, maintainers, upgraders, and
so on. If you focus on only the obvious users of your system, then you might forget about
some of these other stakeholders, and that can be very dangerous! Those actors may have a
veto ("We can't certify this system without proof that the data has not been tampered with")
or they may have to enforce important nonfunctional requirements, such as an upgrade in a
10-minute system downtime window and an upgrade without shutting the system down,
etc. If these actors are ignored, these important functions of your system won't be
documented, and you risk ending up with a worthless system.

2.1.1.2. Refining actors

When going through the process of capturing all of the actors that interact with your
system, you will find that some actors are related to each other, as shown in Figure 2-4.

The Administrator actor is really a special kind of system user. To show that an
administrator can do whatever a regular user can do (with some extra additions), a
generalization arrow is used. For more on generalization and the generalization arrow, see
Chapter 5.

44

Figure 2-4. Showing that an administrator is a special kind of user
i Them»r‘
— — —| general "User"
actor

The
neralization

[re more
. specialized
| "Bdministrator” actor

Administrator

2.1.2. Use Cases

Once you have captured an initial set of actors that interact with your system, you can
assemble the exact model of those interactions. The next step is to find cases where the
system is being used to complete a specific job for an actoruse cases, in fact. Use cases can
be identified from your user's requirements. This is where those wordy, blurry definitions
in the user requirements document should be distilled into a clear set of jobs for your
system.

—— Remember, if use cases are truly requirements, then they must have
e 4. very clear pass/fail criteria. The developer, the tester, the technical
~ 4 writer, and the user must explicitly know whether the system fulfils

the use case or not.

A use case, or job, might be as simple as allowing the user to log in or as complex as
executing a distributed transaction across multiple global databases. The important thing to
remember is that a use casefrom the user's perspectiveis a complete use of the system; there
is some interaction with the system, as well as some output from that interaction. For
example, Requirement A.1 describes one main use of the CMS: to create a new blog
account. Figure 2-5 shows how this interaction is captured as a use case.

Figure 2-5. A use case in UML is drawn as an oval with a name that describes the interaction
that it represents

{reatea
new Blag Account

After all that build-up, you might have expected a use case to be a complex piece of

45

45

46

notation. Instead, all you get is an oval! The notation for a use case is very simple and often
hides its importance in capturing system concerns. Don't be deceived; the use case is
probably the single most powerful construct in UML to make sure your system does what
it is supposed to.

What Makes a Good Use Case?

Experience will help you determine when you have a good use case, but there is
a rule of thumb that can be used to specify a use case:

A use case is something that provides some measurable result to the user or an
external system.

Any piece of system behavior that meets this simple test is likely to be a good
candidate for a use case.

2.1.3. Communication Lines

At this point, we've identified a use case and an actor, but how do we show that the
Administrator actor participates in the Create a new Blog Account use case?
The answer is by using communication lines .

A communication line connects an actor and a use case to show the actor participating in
the use case. In this example, the Administrator actor is involved in the Create a
new Blog Account use case; this is shown in Figure 2-6 by adding a communication
line.

Figure 2-6. A communication line joins the Administrator actor to the "Create a new Blog
Account” use case; the Administrator is involved in the interaction that the use case
represents

ag Account

Administrator

This simple example shows a communication line between only one actor and only one use
case. There is potential to have any number of actors involved in a use case. There is no
theoretical limit to the number of actors that can participate in a use case.

To show a collection of actors participating in a use case, all you have to do is draw a

communication line from each of the participating actors to the use case oval, as shown in
Figure 2-7.

4R

Figure 2-7. The login use case interacts with three actors during its execution

X

Administrator

X

User

Buthor(redentialsDatabase

Sometimes UML diagrams will have communication lines with navigability; for example,
a diagram with an arrow at one end will show the flow of information between the actor
and the use case, or show who starts the use case. Although this notation is not really a
crime in UML terms, it's not a very good use of communication lines.

The purpose of a communication line is to show that an actor is simply involved in a use
case, not to imply an information exchange in any particular direction or that the actor
starts the use case. That type of information is contained within a use case's detailed
description, therefore it doesn't make sense to apply navigation to communication lines.
For more on use cases and descriptions, see "Use Case Descriptions,"” later in this chapter.

2.1.4. System Boundaries

Although there is an implicit separation between actors (external to your system) and use
cases (internal to your system) that marks your system's boundary, UML does provide
another small piece of notation if you want to make things crystal clear.

To show your system's boundary on a use case diagram, draw a box around all of the use
cases but keep the actors outside of the box. It's also good practice to name your box after
the system you are developing, as shown for the CMS in Figure 2-8.

Figure 2-8. The Administrator actor is located outside of the CMS, explicitly showning that the
system boundary box use cases must fall within the system boundary box, since it doesn't
make sense to have a use case outside of your system's boundary

ContentManagement System |

{reatea
\ new Bleg Accow

Adminstrator

47

a7

48

2.1.5. Use Case Descriptions

A diagram showing your use cases and actors may be a nice starting point, but it does not
provide enough detail for your system designers to actually understand exactly how the

system's concerns will be met. How can a system designer understand who the most

important actor is from the use case notation alone? What steps are involved in the use
case? The best way to express this important information is in the form of a text-based

descriptionevery use case should be accompanied by one.

There are no hard and fast rules as to what exactly goes into a use case description
according to UML, but some example types of information are shown in Table 2-1.

Table 2-1. Some types of information that you can include in your use case descriptions

Use case description detail

Related Requirements

Goal In Context

Preconditions

Successful End Condition

Failed End Condition

Primary Actors

Secondary Actors

4R

What the detail
means and why it
is useful

Some indication
as to which
requirements this
use case partially
or completely
fulfills.

The use case's
place within the
system and why
this use case is
important.

What needs to
happen before the
use case can be
executed.

What the system's
condition should
be if the use case
executes
successfully.
What the system's
condition should
be if the use case
fails to execute
successfully.

The main actors
that participate in
the use case. Often
includes the actors
that trigger or
directly receive
information from
a use case's
execution.

Actors that
participate but are

49

not the main
players in a use
case's execution.
The event
triggered by an
Trigger actor that causes
the use case to
execute.
The place to
describe each of
the important
steps in a use
case's normal
execution.
A description of
any alternative
Extensions steps from the
ones described in
the Main Flow.

Main Flow

Table 2-2 shows an example use case description for the Create a new Blog Account use case and
provides a handy template for your own descriptions.

Table 2-2. A complete use case description for the "Create a new Blog Account” use case
Use case name

Create a new Blog Account

Related Requirements

Requirement A.1.

Goal In Context

A new or existing author requests a new blog account from the Administrator.
Preconditions

The system is limited to recognized authors and so the author needs to have appropriate proof of identity.
Successful End Condition

A new blog account is created for the author.

Failed End Condition

The application for a new blog account is rejected.

Primary Actors

Administrator.

49

50

Secondary Actors

Author Credentials Database.

Trigger

The Administrator asks the CMS to create a new blog account.
Main Flow

Step

Action

The Administrator asks the system to create a new blog account.

2

The Administrator selects an account type.

The Administrator enters the author's details.

4

The author's details are verified using the Author Credentials Database.

The new blog account is created.

6

A summary of the new blog account's details are emailed to the author.

BN

51

Extensions
Step

Branching Action

4.1

The Author Credentials Dat abase does not verify the author's details.

42

The author's new blog account application is rejected.

The format and content in Table 2-2 is only an example, but it's worth remembering that use case descriptions
and the information that they contain are more than just extra information to accompany the use case
diagrams. In fact, a use case's description completes the use case; without a description a use case is, well, not
very useful.

The description in Table 2-2 was reasonably straightforward, but something's not quite right when you

compare the description to the original use case diagram (shown in Figure 2-9; although the use case
description mentions two actors, this use case diagram shows only one).

Figure 2-9. Ensuring that your use case diagrams match the more detailed use case descriptions is critical

Content Management System

(reate 3
new Blog Account

Administrator

The use case description has identified a new actor, the Author Credentials Database. By creating
a complete description of the Create a new Blog Account use case, it becomes clear that this actor is
missing.

- If you can, it's worth reviewing your use case model with your users as much as
#s] possible to ensure that you have captured all of the key uses of your system and that
4" nothing has been missed.

You will often find that items are missing from your diagrams as more detail goes into your use case
descriptions. The same goes for any aspect of your model: the more detail you put in, the more you might
have to go back and correct what you did before. This is what iterative system development is all about. Don't

LS|

52

be too worried though, this refinement of your model is a good thing. With each iteration of development you

will (hopefully!) get a better and more accurate model of your system.

Figure 2-10 shows the corrected use case diagram incorporating the new Author Credentials

Database actor.

Figure 2-10. Bring the use case diagram in sync with the use case's description by adding the Author Credentials

Administrator

Database actor

{ontent Management System

(reatea
new Blag Account

X

Author
(redentials
Database

use cases or you might need hundreds.

How Many Use Cases Should Your Model Have?

There is no set rule for the number of use cases that your use case model should contain for a
given system. The number of use cases depends on the of the jobs that your system has to do
according to the requirements. This means that for a particular system, you might only need two

It is more important that you have the right use cases, rather than worrying about the amount you
have. As with most things in system modeling, the best way to get your use cases right is to get
used to applying them; experience will teach you what is right for your own systems.

2.2. Use Case Relationships

A use case describes the way your system behaves to meet a requirement. When
filling out your use case descriptions, you will notice that there is some similarity
between steps in different use cases. You may also find that some use cases work in
several different modes or special cases. Finally, you may also find a use case with
multiple flows throughout its execution, and it would be good to show those
important optional cases on your use case diagrams.

Wouldn't it be great if you could get rid of the repetition between use case
descriptions and show important optional flows right on your use case diagrams? OK,
so that was a loaded question. You can show reusable, optional, and even specialized

use case behavior between use cases.

R2

53

2.2.1. The <<include>> Relationship

So far, you have seen that use cases typically work with actors to capture a
requirement. Relationships between use cases are more about breaking your system's
behavior into manageable chunks than adding anything new to your system. The
purpose of use case relationships is to provide your system's designers with some
architectural guidance so they can efficiently break down the system's concerns into
manageable pieces within the detailed system design.

’r In addition to blogs, a CMS can have any number of means for
@4 working with its content. One popular mechanism for
— 4> maintaining documents is by creating a Wiki. Wikis allow

online authors to create, edit, and link together web pages to
create a web of related content, or a Wiki-web. A great example
of a Wiki is available at http://www.Wikipedia.org.

Take another look at the Create a new Blog Account use case description
shown in Table 2-2. The description seems simple enough, but suppose another
requirement is added to the Content Management System.

Requirement A.2

The content management system shall allow an administrator to create a
new personal Wiki, provided the personal details of the applying author are
verified using the Author Credentials Database.

To capture Requirement A.2 a new use case needs to be added to the Content
Management System, as shown in Figure 2-11.

Now that we have added the new use case to our model, it's time to fill out a detailed
use case description (shown in Table 2-3). See Table 2-1 if you need to refresh your
memory about the meaning of each of the details within a use case description.

Figure 2-11. A new requirement can often mean a new use case for the system, although
it's not always a one-to-one mapping

(ontent Management System

Administrator Ceate a ; Author
o redentials
niew Personal Wik Databace

/R

54

Table 2-3. The detailed description for the "Create a new Personal Wiki" use case

Use case name

Related Requirements

Goal In Context

Preconditions

Successful End Condition

Failed End Condition

Primary Actors
Secondary Actors

Trigger

Main Flow

Extensions

R4

Create a new Personal
Wiki
Requirement A.2.
A new or existing
author requests a new
personal Wiki from the
Administrator.
The author has
appropriate proof of
identity.
A new personal Wiki is
created for the author.
The application for a
new personal Wiki is
rejected.
Administrator.
Author Credentials
Database.
The Administrator asks
the CMS to create a
new personal Wiki.
StepAction
The Administrator
asks the system to
create a new
personal Wiki.
The Administrator
2 enters the author's
details.
The author's details
are verified using
3 the Author
Credentials
Database.
The new personal
‘Wiki is created.
A summary of the
new personal
5 Wiki's details are
emailed to the
author.
StepBranching Action
The Author
Credentials
3.1 Database does not
verify the author's
details.
The author's new
personal Wiki
application is
rejected.

3.2

55

The first thing to notice is that we have some redundancy between the two use case descriptions (Tables 2-2
and 2-3). Both Create a new Blog Account and Create a new Personal Wiki needto
check the applicant's credentials. Currently, this behavior is simply repeated between the two use case
descriptions.

This repetitive behavior shared between two use cases is best separated and captured within a totally new use

case. This new use case can then be reused by the Create a new Blog Account and Create a new
Personal Wiki use cases using the <<include>> relationship (as shown in Figure 2-12).

Figure 2-12. The <<include>> relationship supports reuse between use cases

Content Management System

4 Createa
. new Blog Account

~

s } <<incdude=>
-~ =~ i -

Chack identity

T oodens 1
Administrator e e Author
i ~ Credentials
Cregte Database

news Personal Wiki

The <<include>> relationship declares that the use case at the head of the dotted arrow completely reuses
all of the steps from the use case being included. In Figure 2-12, the Create a new Blog Account and
Create a new Personal Wiki completely reuse all of the steps declared in the Check Identity
use case.

You can also see in Figure 2-12 that the Check Identity use case is not directly connected to the
Administrator actor; it picks this connection up from the use cases that include it. However, the
connection to the Author Credentials Database is now solely owned by the Check Identity
use case. A benefit of this change is that it emphasizes that the Check Identity use case is the only one
that relies directly on a connection to the Author Contact Details Database actor.

To show the <<include>> relationship in your use case descriptions, you need to remove the redundant
steps from the Create a new Blog Account and Create new Personal Wiki use case

descriptions and instead use the Included Cases field and include: :<use case name> syntax to
indicate the use case where the reused steps reside, as shown in Tables 2-4 and 2-5.

Table 2-4. Showing <<include>> in a use case description using Included Cases and include::<use case name>

Use case name

56

Related Requirements

Requirement A.1.

Goal In Context

A new or existing author requests a new blog account from the Administrator.
Preconditions

The author has appropriate proof of identity.

Successful End Condition

A new blog account is created for the author.

Failed End Condition

The application for a new blog account is rejected.

Primary Actors

Administrator

Secondary Actors

None

Trigger

The Administrator asks the CMS to create a new blog account.
Included Cases

Check Identity

Main Flow

Step

Action

The Administrator asks the system to create a new blog account.

The Administrator selects an account type.

BA

The Administrator enters the author's details.

4
include::Check Identity

The author's details are checked.

The new account is created.

A summary of the new blog account's details are emailed to the author.

Table 2-5. The Create a new Personal Wiki use case description also gets a makeover
Use case name

Create a new Personal Wiki

Related Requirements

Requirement A.2

Goal In Context

A new or existing author requests a new personal Wiki from the Administrator.
Preconditions

The author has appropriate proof of identity.

Successful End Condition

A new personal Wiki is created for the author.

Failed End Condition

The application for a new personal Wiki is rejected.

57

57

58

Primary Actors

Administrator

Secondary Actors

None

Trigger

The Administrator asks the CMS to create a new personal Wiki.
Included Cases

Check Identity

Main Flow

Step

Action

1

The Administrator asks the system to create a new personal Wiki.

2

The Administrator enters the author's details.

3
include::Check Identity

The author's details are checked.

S

The new personal Wiki is created.

6

A summary of the new personal Wiki's details are emailed to the author.

BR

59

Now you can create a use case description for the reusable steps within the Check Identity use case, as

shown in Table 2-6.

Table 2-6. The Check Identity use case description contains the reusable steps

Use case name

Check Identity

Related Requirements

Requirement A.1, Requirement A.2.

Goal In Context

An author's details need to be checked and verified as accurate.

Preconditions

The author being checked has appropriate proof of identity.
Successful End Condition

The details are verified.

Failed End Condition

The details are not verified.

Primary Actors

Author Credentials Database.

Secondary Actors

None.

Trigger

An author's credentials are provided to the system for verification.

Main Flow
Step

Action

The details are provided to the system.

[2Ye]

60

2

The Author Credentials Database verifies the details.

The details are returned as verified by the Author Credentials Database.
Extensions
Step

Branching Action

2.1

The Author Credentials Database does not verify the details.

2.2

The details are returned as unverified.

Why bother with all this hassle with reuse between use cases? Why not just have two use cases and maintain
the similar steps separately? All this reuse has two important benefits:

® Reuse using <<include>> removes the need for tedious cut-and-paste operations between use case
descriptions, since updates are made in only one place instead of every use case.

e The <<include>> relationship gives you a good indication at system design time that the
implementation of Check Identity will need to be a reusable part of your system.

2.2.2. Special Cases

Sometimes you'll come across a use case whose behavior, when you start to analyze it more carefully, can be
applied to several different cases, but with small changes. Unlike the <<include>> relationship, which
allows you to reuse a small subset of behavior, this is applying a use case with small changes for a collection
of specific situations. In object-oriented terms, you potentially have a number of specialized cases of a
generalized use case.

Let's take a look at an example. Currently, the Content Management System contains a single

Create a new Blog Account use case that describes the steps required to create an account. But what
if the CMS supports several different types of blog accounts, and the steps required to create each of these

AN

61

accounts differs ever so slightly from the original use case? You want to describe the general behavior for
creating a blog accountcaptured in the Create a new Blog Account use caseand then define
specialized use cases in which the account being created is a specific type, such as a regular account with one
blog or an editorial account that can make changes to entries in a set of blogs.

This is where use case generalization comes in. A more common way of referring to generalization is using
the term inheritance . Use case inheritance is useful when you want to show that one use case is a special type
of another use case. To show use case inheritance , use the generalization arrow to connect the more general,
or parent, use case to the more specific use case. Figure 2-13 shows how you could extend the CMS's use
cases to show that two different types of blog accounts can be created.

Figure 2-13. Two types of blog account, regular and editorial, can be created by the Management System

Content Management System

/7 Geaea 5
7, new Personal Wiki /

Y <<indude>>

(Checkideniity)

i

5w 1 " f i
Administrator o Author
N — G Credentials
/7 Geateanew Database

. BlogAccount

(reate anew
Regular Blog Account

(reate a new
Editerial Blog
Account

Taking a closer look at the Create a new Editorial Blog Account specialized use case
description, you can see how most of the behavior from the more general Create a new Blog
Account use case is reused. Only the details that are specific to creating a new editorial account need to be
added (see Table 2-7).

Table 2-7. You can show that a use case is a special case of a more general use case within the detailed
description using the Base Use Cases field

Use case name
Create a new Editorial Blog Account

Related Requirements

Reanirement A 1

62

A new or existing author requests a new editorial blog account from the Administrator .
Preconditions

The author has appropriate proof of identity.

Successful End Condition

A new editorial blog account is created for the author.
Failed End Condition

The application for a new editorial blog account is rejected.
Primary Actors

Administrator.

Secondary Actors

None.

Trigger

The Administrator asks the CMS to create a new editorial account that will allow an author to edit entries in a
set of blogs.

Base Use Cases

Create a new Blog Account
Main Flow

Step

Action

The Administrator asks the system to create a new blog account.

2

The Administrator selects the editorial account type.

The Administrator enters the author's details.

RO

4

The Administrator selects the blogs that the account is to have editorial rights over.

5
include::Check Identity

The author's details are checked.

6

The new editorial account is created.

7

A summary of the new editorial account's details are emailed to the author.
Extensions

Step

Branching Action

5.1

The author is not allowed to edit the indicated blogs.

5:2

The editorial blog account application is rejected.

53

The application rejection is recorded as part of the author's history.

63

Use case inheritance is a powerful way of reusing a use case so that you only have to specify the extra steps
that are needed in the more specific use cases. See Chapter 5 for more information on inheritance between

64

classes.

But be carefulby using inheritance, you are effectively saying that every step in the general use case must
occur in the specialized use cases. Also, every relationship that the general use case has with external actors or
use cases, as shown with the <<include>> relationship between Create a new Blog Account and
Check Identity, mustalso make sense in the more specialized use cases, such as Create a new
Editorial Blog Account.

If you really don't want your more specific use case to do everything that the general use case describes, then
don't use generalization. Instead, you might want to consider using either the <<include>> relationship
shown in the previous section or the <<extend>> relationship coming up in the next section.

2.2.3. The <<extend>> Relationship

Any explanation of the <<extend>> stereotype should be preceded by a warning that it is the most heavily
debated type of use case relationship. Almost nothing is less understood or harder to accurately communicate
within the UML modeling community than the <<extend>> use case relationship, and this presents a bit of
a problem when you are trying to learn about it. Figure 2-14 shows you how <<extend>> works; take a
look, and then let's dive into some UML concept and theory.

Figure 2-14. The <<extend>> use case relationship looks a bit like the <<include>> relationship, but that's where

the similarities end
e cogtiinl > 5. An Extending
<- ° KP&[et‘ld? o

At first glanceparticularly if you are a Java programmer<<extend>> seems very similar to inheritance
between classes. In Java, a class can extend from a base class. Similarly, in C++ and C#, you can declare
inheritance between classes, and you would often say that a class extends another class. In both these cases,
the extend relationship between classes means inheritance. So, for a programmer, it follows that
<<extend>> should mean something like inheritance, right?

Alarm bells should definitely be going off now. You already saw in the previous section how use cases
declare inheritance using a generalization arrow, so why would you need yet another type of arrow with an
<<extend>> stereotype? Does the generalization arrow mean the same thing as the <<extend>>
stereotype? Unfortunately, the <<extend>> stereotype has very little in common with inheritance, and so
the two definitely do not mean the same thing.

The designers of UML 2.0 took a very different view as to the meaning of <<extend>> between use cases.
They wanted a means for you to show that a use case might completely reuse another use case's behavior,
similar to the <<include>> relationship, but that this reuse was optional and dependent either on a runtime
or system implementation decision.

From the CMS example, the Create a new Blog Account use case might want to record that a new
author applied for an account and was rejected, adding this information to the author's application history.
Extra steps can be added to the Create a new Blog Account use case's description to show this
optional behavior, as shown in Step 4.3 in Table 2-8.

R4

65

Table 2-8. Behavior that is a candidate for <<extend>> relationship reuse can usually be found in the Extensions

section of a use case description
Use casc name

Create a new Blog Account
Related Requirements
Requirement A.1.

Goal In Context

A new or existing author requests a new blog account from the Administrator.

Preconditions

The author has appropriate proof of identity.
Successtul End Condition

A new blog account is created for the author.
Failed End Condition

The application for a new blog account is rejected.
Primary Actors

Administrator.

Secondary Actors

None.

Trigger

The Administrator asks the CMS to create a new blog account.
Included Cases

Check Identity

Main Flow

Step

Action

The Administrator asks the system to create a new blog account.

RR

66

2

The Administrator selects an account type.

The Administrator enters the author's details.

4
include::Check Identity

The author's details are checked.

5

The new account is created.

6
A summary of the new blog account's details are emailed to the author.

Extensions
Step

Branching Action

4.1

The author is not allowed to create a new blog.

4.2

The blog account application is rejected.

4.3

AR

67

The application rejection is recorded as part of the author's history.

The same behavior captured in Step 4.3 would also be useful if the customer was refused an account for some
reason during the Create a new Personal Wiki use case's execution. According to the requirements,
this reusable behavior is optional in both cases; you don't want to record a rejection if the application for a
blog account or a personal Wiki was accepted. The <<extend>> relationship is ideal in this sort of reuse
situation, as shown in Figure 2-15.

Figure 2-15. The <<extend>> relationship comes into play to show that both the "Create a new Personal Wiki" and
"Create a new Blog Account" use cases might occasionally share the application rejection recording behavior

Content Management System

7 (reatea :
%, new Personal Wiki /

'),w‘ g —— e 5
« o 77 . <<indude>>
- extend>>, {\ -

Record

Application
Failure

(" Checkidentity 11—

<<extend>>“ =1
Administrator NG 7 <<indude>> | Author
™~ - Credentials
“ (reste anew : ; Database

L BlaghAccount /

~reateanew ™~ Createanew .
. Reqular Blog . kditorial Blog
o Aount s dount

The new Record Application Failure use case, as the name implies, captures all of the behavior
associated with recording an author's application failure whether it be for a personal Wiki or for a specific
type of blog account. Using the <<extend>> relationship, the Record Application Failure use
case's behavior is optionally reused by the Create a new Blog Account and Create a new
Personal Wiki use cases if an application is rejected.

2.3. Use Case Overview Diagrams

When you are trying to understand a system, it is sometimes useful to get a glimpse of the context within
which it sits. For this purpose, UML provides the Use Case Overview diagram. Use Case Overview diagrams
give you an opportunity to paint a broad picture of your system's context or domain (see Figure 2-16 for an
example).

R7

68

Figure 2-16. The CMS's context as shown on a Use Case Overview diagram

Author Stores content (entral Storage
I
£dits Content Storss author edentizls
{
Viswss Collavorates
0 Content Management System with <<actor=>
Agthor Credentials
Datahase
li . .
Public Adminislrates Administrates

~_

Administrator

Unfortunately, Use Case Overviews are badly named as they don't usually contain any use cases. The use
cases are not shown because the overview is designed to provide a context to your system; the system's
internalscaptured by use casesare not normally visible.

Use Case Overviews are a useful place to show any extra snippets of information when understanding your
system's place within the world. Those snippets often include relationships and communication lines between
actors. These contextual pieces of information do not usually contain a great deal of detail, they are more a
placeholder and starting point to for the rest of your model's detail.

2.4. What's Next?

Although this book, like UML, does not push any particular system development process, there are some
common steps that are taken after the first cut of use cases are captured.

With your use case model in hand, it is often a good time to start delving into the high-level activities that
your system will have to execute to fulfill its use cases. See Chapter 3 for information on activity diagrams.

Once you have a good grip on the high-level activities, look at the classes and components that will actually
make up the parts of your system. You already might have some idea of what those classes contain, and so the
next stop naturally would be to create a few rudimentary class diagrams. See Chapter 4 for information on
class diagrams.

Regardless of your next step, just because you have a use case model does not necessarily mean that you are
finished with use cases altogether. The only constant in life is change, and this certainly applies to your
system's requirements. As a requirement changeseither because some new system constraint has been found or
because a user has changed his mindyou need to go back and refine your use cases to make sure you are still
developing the system that the users want.

AR

