Lecture 3 – Modeling and ER

INLS 523
Database Systems I
Spring 2013
Rob Capra
A simplified diagram to illustrate the main phases of database design.
Entity-Relationship Data Model

• ER models include:
 – Entities
 • Things in the real world
 – Attributes
 • Properties of entities
 – Relationships
 • Between and among entities
ER: Entities

• Entities are:
 – Things in the real world...
 • with independent existence (EN6 7.3.1)
 • distinguishable from other objects (Ram98, 14.2.1)
 • Ex: this classroom, a particular grocery store, the manager of that grocery store
 – Entities are placed in rectangles in an ER diagram
ER: Attributes

• Attributes are:
 – Properties that describe an entity
 • Ex: room size, number chairs, projector y/n?
 • Ex: employee id #, department, pay rate
ER: Attributes

• Every attribute has a **domain**
 – Specifies the possible values for an attribute
 – All attributes must have a domain defined
 – Examples:
 • Employee id # \(\rightarrow\) *nine digit number*
 • Department \(\rightarrow\) *{produce, bakery, cashier}*
 • Pay rate \(\rightarrow\) *dollars and cents per hour, minimum = minimum wage, maximum = set by management*
Simple vs. Composite Attributes

• Simple (atomic) attributes have one “part”
• Composite attributes have multiple parts

Here, Address is a composite attribute

123 Maple St., Anytown, NC 10012
Use Composite Attributes with Caution

210 Manning
office
building
room
dancing, sailing

vitals
weight
height
b_date
temp
bp

150, 5’10”, 03-23-1962, 97, 130/82
Representing Values

• Suppose you are modeling a T-shirt store
 – T-shirts are available in XS, S, L, XL, XXL.
 – But not in sizes like 8, 10, 12
 – And not in size M

• How do you model this in an ER diagram?
Representing Values

• Suppose you are modeling a T-shirt store
 – T-shirts are available in XS, S, L, XL, XXL.
 – But not in sizes like 8, 10, 12
 – And not in size M

• How do you model this in an ER diagram?

 Answer: You don’t!

 You have a size attribute
 and implement a constraint on the values later.
ER: Types of Attributes

• Single-valued
 – only one value for an entity
 – Ex:
 • for a person – age, height

• Multivalued
 – multiple values for a single entity
 – Ex:
 • a car may have several colors
 • a person may have more than one college degree
ER: Types of Attributes

• Stored vs. derived
 – Derived
 • can be computed from other attribute(s)
 • Ex: age and birth_date
 – Stored
 • value is stored, not derived from other attributes

• NULL values
 – If a particular entity does not have a value for an attribute
ER: Entities

• Entity type
 – A collection of entities with the same attributes
 • Ex: EMPLOYEES, CLASSROOMS

• Entity set
 – A collection of all entities of a particular entity type at a given point in time in the DB
 • Ex: for a given grocery store, all the employees on a given date
 • Ex: for a given university, all the classrooms on a given date
Entity Types

Entity Type Name: EMPLOYEE
Name, Age, Salary

- e_1: (John Smith, 55, 80k)
- e_2: (Fred Brown, 40, 30K)
- e_3: (Judy Clark, 25, 20K)

Entity Type Name: COMPANY
Name, Headquarters, President

- c_1: (Sunco Oil, Houston, John Smith)
- c_2: (Fast Computer, Dallas, Bob King)

Entity Set: (Extension)

EN6, Fig 7.6
ER: Keys

• Key attributes
 – For each entity type, typically one or more subsets of attributes form a key that uniquely identifies each individual entity in an entity set:
 • One attribute is the key
 – Ex: SSN, emp_id_num
 • More than one attribute forms a key
 – Ex: \{street_address + zip_code\}
 – Key attributes are underlined in the ER diagram
ER: Relationships

• Types, sets, instances – similar to entities

“A relationship type R among entity types E_1, E_2, etc. defines a set of associations – or a relationship set – among entities from these entity types.” (EN6, 7.4.1)

– Entities are said to participate in relationships
– Relationships can also have attributes

![ER diagram]

- EMP
- WORK_IN
- DEPT
- years

years
Relationships

• **Degree**

 – the number of entities that **participate** in the relationship
 – Binary relationship = 2
 – Ternary relationship = 3
ER Relationships

• An association between entities
 – Will be represented in the DB
 – Usually a verb
 – Represent business rules or practices, laws, policies
 – All entities do not have to be connected to all other entities
 – Each entity is (usually) connected to at least one other entity

• 3 design decisions
 – which entities
 – cardinality
 – participation
Degree

- Unary

- Binary

- Ternary

- N-ary (not shown)
Recursive Relationships

A recursive relationship SUPervision between EMPLOYEE in the supervisor role (1) and EMPLOYEE in the subordinate role (2).

EN6, Fig 7.11
Cardinality

• Cardinality ratios for binary relationships

“Maximum number of relationship instances that an entity can participate in”, (EN6, 7.4.3)

1:1 one-to-one
1:N one-to-many
N:1 many-to-one
M:N many-to-many
Cardinality Examples

- Questions to determine cardinality:
 - How many instances of B can be associated with 1 instance of A?
 - How many instances of A can be associated with 1 instance of B?

- Two separate questions for each (binary) relationship:
 - Stand on 1 instance of A; how many Bs can you see?
 - Stand on 1 instance of B; how many As can you see?
• One-to-one
 – 1 instance of A can be associated with 1 instance of B. 1 instance of B can be associated with 1 instance of A.
 – e.g., in a Dr. office, *medical record documents patient*

 – Remember the questions:
 • How many instances of B can be associated with 1 instance of A?
 • How many instances of A can be associated with 1 instance of B?
 • *Stand on 1 instance of A; how many Bs can you see?*
 • *Stand on 1 instance of B; how many As can you see?*
One-to-many

- 1 instance of A can be associated with many instances of B. 1 instance of B can be associated with 1 instance of A.
- e.g., in school, faculty member advises student
- Be careful with the wording!

- Remember the questions:
 - How many instances of B can be associated with 1 instance of A?
 - How many instances of A can be associated with 1 instance of B?
 - Stand on 1 instance of A; how many Bs can you see?
 - Stand on 1 instance of B; how many As can you see?
• Many-to-many
 - 1 instance of A can be associated with many instances of B. 1 instance of B can be associated with many instances of A.
 - e.g., in school, student enroll in class
 - Be careful with the wording!

 – Remember the questions:
 • How many instances of B can be associated with 1 instance of A?
 • How many instances of A can be associated with 1 instance of B?
 • *Stand on 1 instance of A; how many Bs can you see?*
 • *Stand on 1 instance of B; how many As can you see?*
Participation

• Participation constraints
 – The existence of an entity depends on its being related to another entity via the relationship type
 – Is the minimum number of relationship instances an entity can participate in
 • Total participation
 – “Every employee must work for a department”
 » Implies that an EMP does not exist in the DB unless they are in a WORK_FOR relationship with a DEPT
 • Partial participation
 – Some (but not all) employees are managers
 » Participation of EMP in MANAGES relationship is partial
 » Some subset of EMP are related to DEPT by MANAGES, but not necessarily all
Participation

• Question to ask is:
 – Must an instance of A be associated with an instance of B in order to exist (have a record in) the database?

• Two answers:
 1) mandatory or required
 • Use a double-line in the ER diagram
 • e.g. in e-commerce DB, an order must be placed by a customer
 2) optional
 • Use a single line in the ER diagram
 • e.g., in e-commerce DB, an item can be listed even if it is not contained in an order
Confusing differences in notations

- EMP
 - WORKS
 - M
 - 1
 - N
 - LOCATE
 - N
 - BUILDING

- EMP
 - WORKS
 - (1,1)
 - (1,N)
 - LOCATE
 - (1,N)
 - BUILDING

- EMP
 - WORKS
 - (1,N)
 - (0,M)
 - LOCATE
 - (1,N)
 - BUILDING
Figure 3.2
An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.