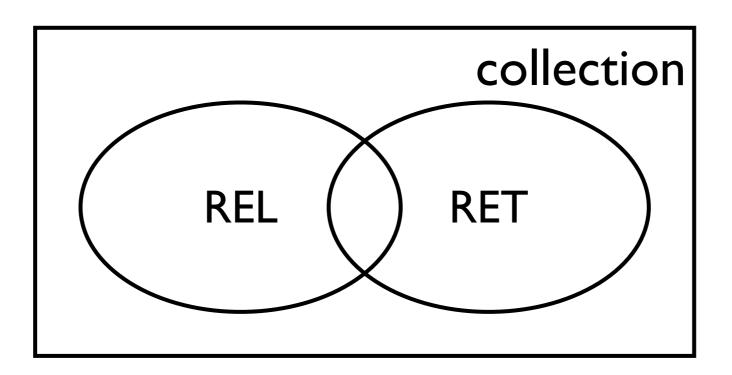
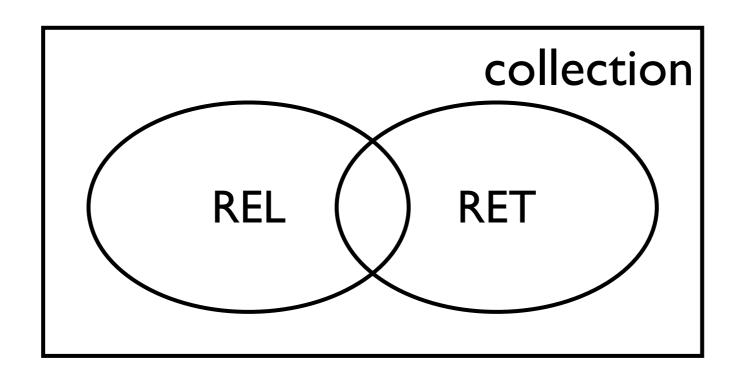
Evaluation Metrics

Jaime Arguello
INLS 509: Information Retrieval

jarguell@email.unc.edu

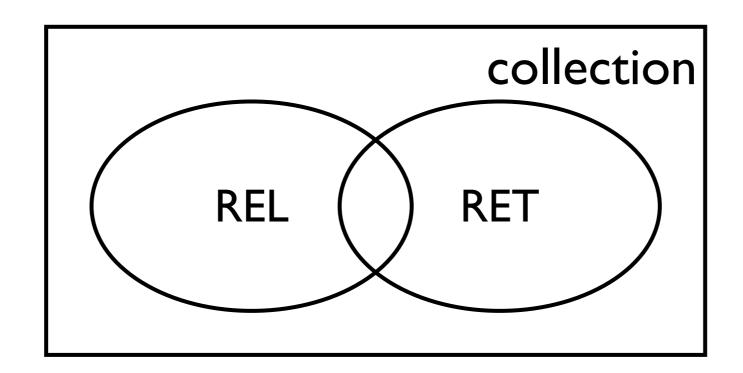

March 25, 2013

Batch Evaluation


evaluation metrics

- At this point, we have a set of queries, with identified relevant and non-relevant documents
- The goal of an evaluation metric is to measure the quality of a particular ranking of known relevant/non-relevant documents

• So far, we've defined precision and recall assuming boolean retrieval: a set of relevant documents (REL) and a set of retrieved documents (RET)



 Precision (P): the proportion of retrieved documents that are relevant

$$\mathcal{P} = \frac{|RET \cap REL|}{|RET|}$$

 Recall (R): the proportion of relevant documents that are retrieved

$$\mathcal{R} = \frac{|RET \cap REL|}{|REL|}$$

- Recall measures the system's ability to find all the relevant documents
- Precision measures the system's ability to reject any nonrelevant documents in the retrieved set

- A system can make two types of errors:
 - a false positive error: the system retrieves a document that is non-relevant (should not have been retrieved)
 - a false negative error: the system fails to retrieve a document that is relevant (should have been retrieved)
- How do these types of errors affect precision and recall?

- A system can make two types of errors:
 - a false positive error: the system retrieves a document that is non-relevant (should not have been retrieved)
 - a false negative error: the system fails to retrieve a document that is relevant (should have been retrieved)
- How do these types of errors affect precision and recall?
- Precision is affected by the number of false positive errors
- Recall is affected by the number of false negative errors

Set Retrieval combining precision and recall

- Oftentimes, we want a system that has high-precision and high-recall
- We want a metric that measures the balance between precision and recall
- One possibility would be to use the arithmetic mean:

arithmetic mean
$$(\mathcal{P}, \mathcal{R}) = \frac{\mathcal{P} + \mathcal{R}}{2}$$

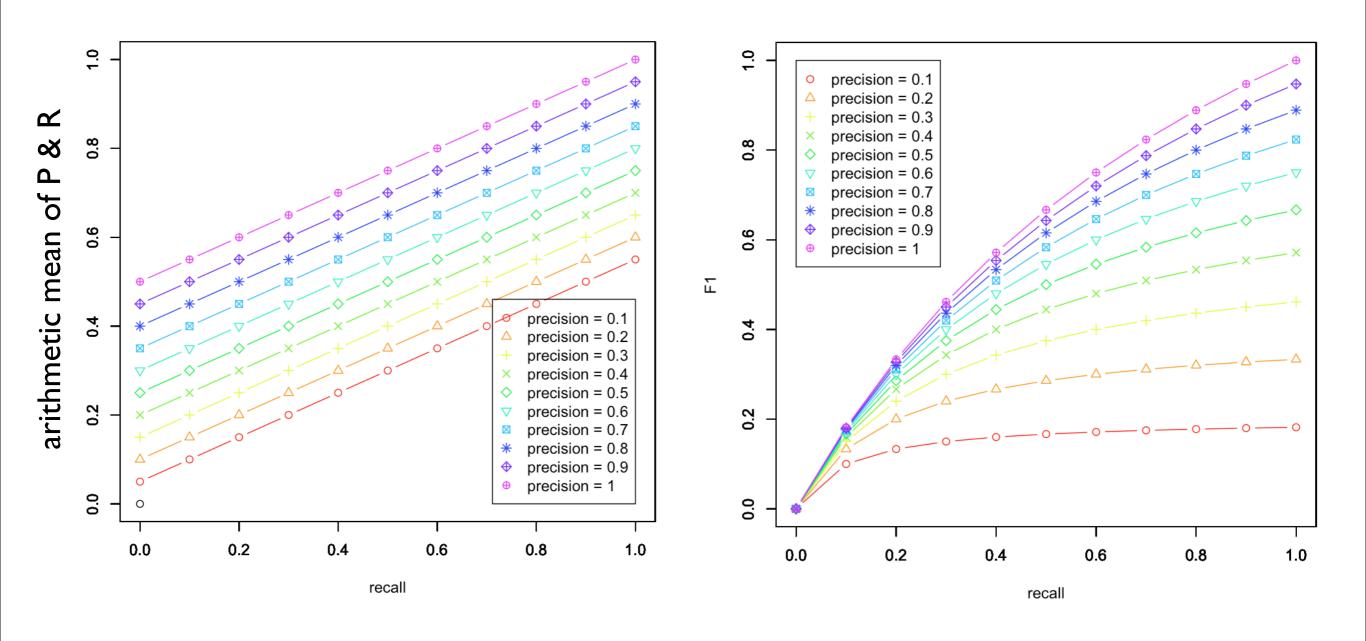
 What is problematic with this way of summarizing precision and recall?

Set Retrieval combining precision and recall

- It's easy for a system to "game" the arithmetic mean of precision and recall
- Bad: a system that obtains 1.0 precision and near 0.0 recall would get a mean value of about 0.50
- Bad: a system that obtains 1.0 recall and near 0.0 precision would get a mean value of about 0.50
- Better: a system that obtains 0.50 precision and near 0.50 recall would get a mean value of about 0.50

Set Retrieval

F-measure (also known as F1)


- A system that retrieves <u>a single relevant document</u> would get 1.0 precision and near 0.0 recall
- A system that retrieves the entire collection would get 1.0 recall and near 0.0 precision
- Solution: use the harmonic mean rather than the arithmetic mean
- F-measure:

$$\mathcal{F} = \frac{1}{\frac{1}{2} \left(\frac{1}{\mathcal{P}} + \frac{1}{\mathcal{R}} \right)} = \frac{2 \times \mathcal{P} \times \mathcal{R}}{\mathcal{P} + \mathcal{R}}$$

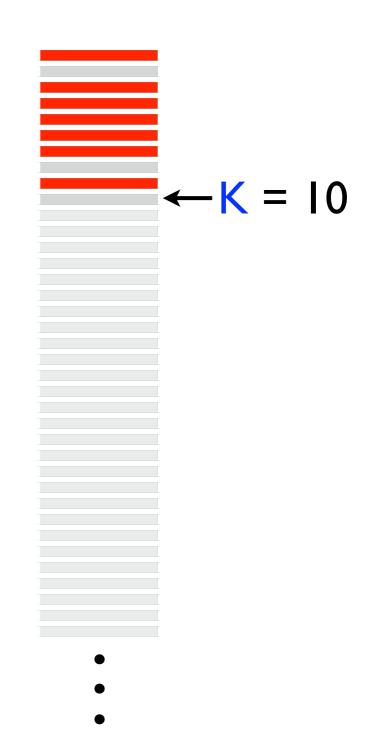
Set Retrieval

F-measure (also known as F1)

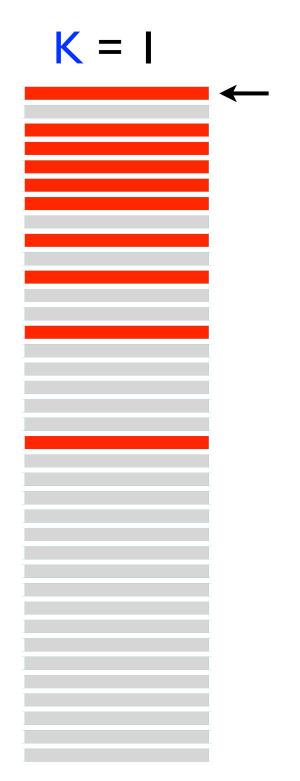
The harmonic mean punishes small values

(slide courtesy of Ben Carterette)

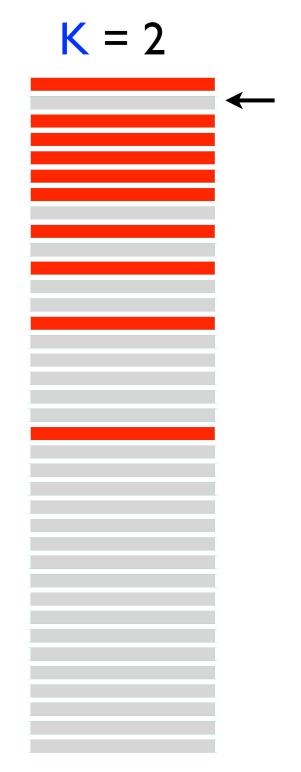
- In most situations, the system outputs a ranked list of documents rather than an unordered set
- User-behavior assumption:
 - The user examines the output ranking from top-tobottom until he/she is satisfied or gives up
- Precision and recall can also be used to evaluate a ranking
- Precision/Recall @ rank K


precision and recall

- Precision: proportion of retrieved documents that are relevant
- Recall: proportion of relevant documents that are retrieved


precision and recall

- P@K: proportion of retrieved top-K documents that are relevant
- R@K: proportion of relevant documents that are retrieved in the top-K
- Assumption: the user will only examine the top-K results


precision and recall: exercise

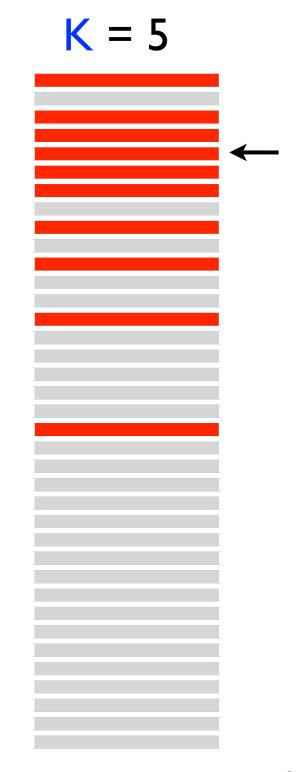
K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2		
3		
4		
5		
6		
7		
8		
9		
10		


precision and recall: exercise

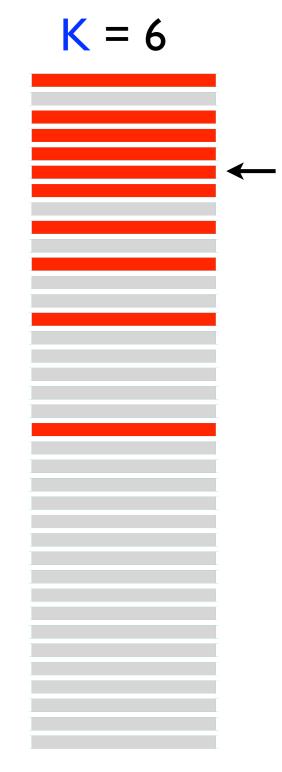
K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3		
4		
5		
6		
7		
8		
9		
10		

precision and recall: exercise

K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4		
5		
6		
7		
8		
9		
10		


precision and recall: exercise

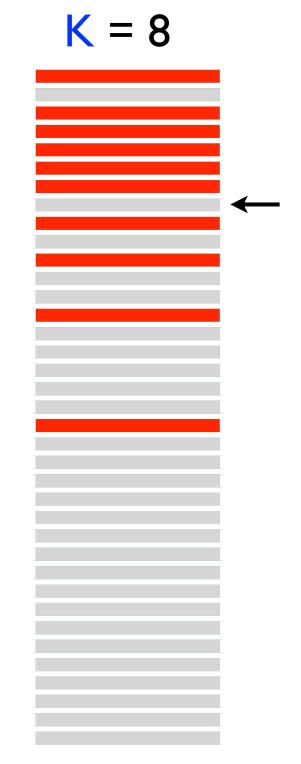
K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4	(3/4) = 0.75	(3/20) = 0.15
5		
6		
7		
8		
9		
10		


precision and recall: exercise

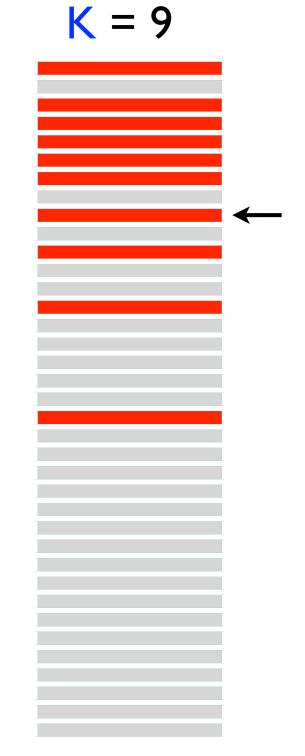
K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4	(3/4) = 0.75	(3/20) = 0.15
5	(4/5) = 0.80	(4/20) = 0.20
6		
7		
8		
9		
10		


precision and recall: exercise

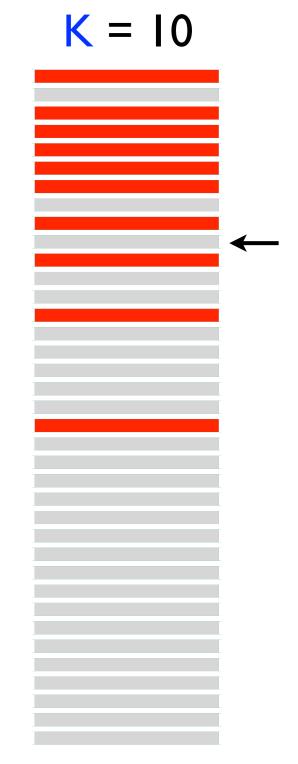
K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4	(3/4) = 0.75	(3/20) = 0.15
5	(4/5) = 0.80	(4/20) = 0.20
6	(5/6) = 0.83	(5/20) = 0.25
7		
8		
9		
10		


precision and recall: exercise

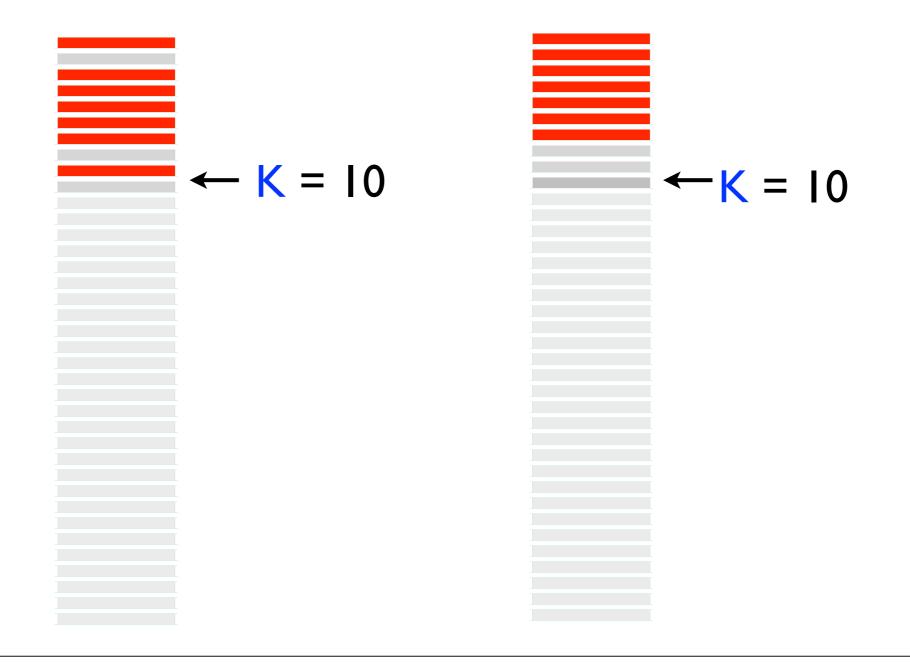
K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4	(3/4) = 0.75	(3/20) = 0.15
5	(4/5) = 0.80	(4/20) = 0.20
6	(5/6) = 0.83	(5/20) = 0.25
7	(6/7) = 0.86	(6/20) = 0.30
8		
9		
10		


precision and recall: exercise

K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4	(3/4) = 0.75	(3/20) = 0.15
5	(4/5) = 0.80	(4/20) = 0.20
6	(5/6) = 0.83	(5/20) = 0.25
7	(6/7) = 0.86	(6/20) = 0.30
8	(6/8) = 0.75	(6/20) = 0.30
9		
10		


precision and recall: exercise

K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4	(3/4) = 0.75	(3/20) = 0.15
5	(4/5) = 0.80	(4/20) = 0.20
6	(5/6) = 0.83	(5/20) = 0.25
7	(6/7) = 0.86	(6/20) = 0.30
8	(6/8) = 0.75	(6/20) = 0.30
9	(7/9) = 0.78	(7/20) = 0.35
10		


precision and recall: exercise

K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4	(3/4) = 0.75	(3/20) = 0.15
5	(4/5) = 0.80	(4/20) = 0.20
6	(5/6) = 0.83	(5/20) = 0.25
7	(6/7) = 0.86	(6/20) = 0.30
8	(6/8) = 0.75	(6/20) = 0.30
9	(7/9) = 0.78	(7/20) = 0.35
10	(7/10) = 0.70	(7/20) = 0.35

precision and recall

- Problem: what value of K should we use to evaluate?
- Which is better in terms of P@10 and R@10?

- The ranking of documents within the top K is inconsequential
- If we don't know what value of K to chose, we can compute and report several: P/R@{1,5,10,20}
- There are evaluation metrics that do not require choosing K (as we will see)
- One advantage of P/R@K, however, is that they are easy to interpret

what do these statements mean?

- As with <u>most</u> metrics, experimenters report average values (averaged across evaluation queries)
- System A obtains an average P@10 of 0.50
- System A obtains an average P@10 of 0.10
- System A obtains an average P@I of 0.50
- System A obtains an average P@20 of 0.20

comparing systems

- Good practice: always ask yourself "Are users likely to notice?"
- System A obtains an average P@I of 0.10
- System B obtains an average P@I of 0.20
- This is a 100% improvement.
- Are user's likely to notice?

comparing systems

- Good practice: always ask yourself "Are users likely to notice?"
- System A obtains an average P@I of 0.05
- System B obtains an average P@I of 0.10
- This is a 100% improvement.
- Are user's likely to notice?

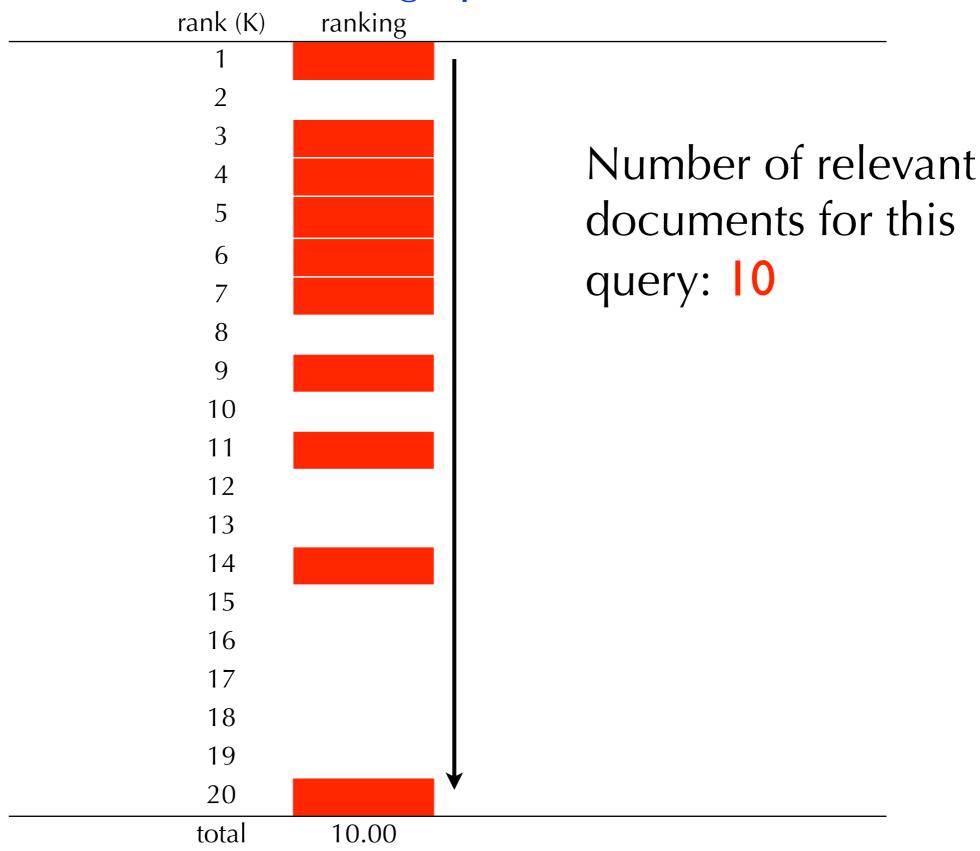
Ranked Retrieval P/R@K

Advantages:

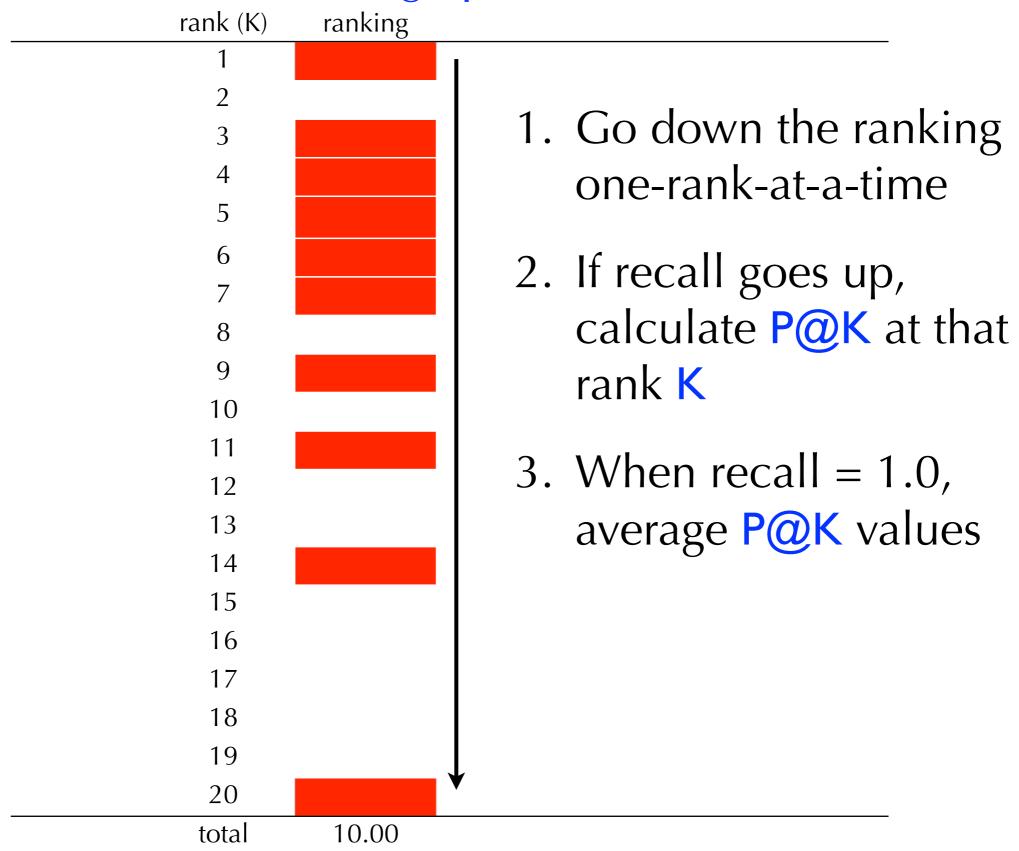
- easy to compute
- easy to interpret

Disadvantages:

- the value of K has a huge impact on the metric
- the ranking above K is inconsequential
- how do we pick K?


motivation: average precision

- Ideally, we want the system to achieve high precision for varying values of K
- The metric average precision accounts for precision and recall without having to set K


average precision

- 1. Go down the ranking one-rank-at-a-time
- 2. If the document at rank K is relevant, measure P@K
 - proportion of top-K documents that are relevant
- 3. Finally, take the average of <u>all P@K</u> values
 - the number of P@K values will equal the number of relevant documents

average-precision

average-precision

average-precision

	O		
rank (K)	ranking	R@K	P@K
1		0.10	1.00
2		0.10	0.50
3		0.20	0.67
4		0.30	0.75
5		0.40	0.80
6		0.50	0.83
7		0.60	0.86
8		0.60	0.75
9		0.70	0.78
10		0.70	0.70
11		0.80	0.73
12		0.80	0.67
13		0.80	0.62
14		0.90	0.64
15		0.90	0.60
16		0.90	0.56
17		0.90	0.53
18		0.90	0.50
19		0.90	0.47
20		1.00	0.50
total	10.00	average-precision	0.76

	O		
rank (K)	ranking	R@K	P@K
1		0.10	1.00
2		0.20	1.00
3		0.30	1.00
4		0.40	1.00
5		0.50	1.00
6		0.60	1.00
7		0.70	1.00
8		0.80	1.00
9		0.90	1.00
10		1.00	1.00
11		1.00	0.91
12		1.00	0.83
13		1.00	0.77
14		1.00	0.71
15		1.00	0.67
16		1.00	0.63
17		1.00	0.59
18		1.00	0.56
19		1.00	0.53
20		1.00	0.50
total	10.00	average-precision	1.00

	0.00			
rank (K)	ranking	R@K	P@K	
1		0.00	0.00	
2		0.00	0.00	
3		0.00	0.00	
4		0.00	0.00	
5		0.00	0.00	
6		0.00	0.00	
7		0.00	0.00	
8		0.00	0.00	
9		0.00	0.00	
10		0.00	0.00	
11		0.10	0.09	
12		0.20	0.17	
13		0.30	0.23	
14		0.40	0.29	
15		0.50	0.33	
16		0.60	0.38	
17		0.70	0.41	
18		0.80	0.44	
19		0.90	0.47	
20		1.00	0.50	
total	10.00	average-precision	0.33	

rank (K)	ranking	R@K	P@K
1		0.10	1.00
2		0.10	0.50
3		0.20	0.67
4		0.30	0.75
5		0.40	0.80
6		0.50	0.83
7		0.60	0.86
8		0.60	0.75
9		0.70	0.78
10		0.70	0.70
11		0.80	0.73
12		0.80	0.67
13		0.80	0.62
14		0.90	0.64
15		0.90	0.60
16		0.90	0.56
17		0.90	0.53
18		0.90	0.50
19		0.90	0.47
20		1.00	0.50
total	10.00	average-precision	0.76

	rank (K)	ranking	R@K	P@K	
	1		0.10	1.00	_
swapped	2		0.20	1.00	
ranks 2 and 3	3		0.20	0.67	
ranks 2 and 3	4		0.30	0.75	
	5		0.40	0.80	
	6		0.50	0.83	
	7		0.60	0.86	
	8		0.60	0.75	
	9		0.70	0.78	
	10		0.70	0.70	
	11		0.80	0.73	
	12		0.80	0.67	
	13		0.80	0.62	
	14		0.90	0.64	
	15		0.90	0.60	
	16		0.90	0.56	
	17		0.90	0.53	
	18		0.90	0.50	
	19		0.90	0.47	
	20		1.00	0.50	
	total	10.00	average-precision	0.79	

	0.00		
rank (K)	ranking	R@K	P@K
1		0.10	1.00
2		0.10	0.50
3		0.20	0.67
4		0.30	0.75
5		0.40	0.80
6		0.50	0.83
7		0.60	0.86
8		0.60	0.75
9		0.70	0.78
10		0.70	0.70
11		0.80	0.73
12		0.80	0.67
13		0.80	0.62
14		0.90	0.64
15		0.90	0.60
16		0.90	0.56
17		0.90	0.53
18		0.90	0.50
19		0.90	0.47
20		1.00	0.50
total	10.00	average-precision	0.76

	rank (K)	ranking	R@K	P@K	
	1		0.10	1.00	
	2		0.10	0.50	
	3		0.20	0.67	
	4		0.30	0.75	
	5		0.40	0.80	
	6		0.50	0.83	
	7		0.60	0.86	
swapped ranks	8		0.70	0.88	
8 and 9	9		0.70	0.78	
O and >	10		0.70	0.70	
	11		0.80	0.73	
	12		0.80	0.67	
	13		0.80	0.62	
	14		0.90	0.64	
	15		0.90	0.60	
	16		0.90	0.56	
	17		0.90	0.53	
	18		0.90	0.50	
	19		0.90	0.47	
	20		1.00	0.50	
	total	10.00	average-precision	0.77	_ _

- Advantages:
 - no need to choose K
 - accounts for both precision and recall
 - ranking mistakes at the top of the ranking are more influential
 - ranking mistakes at the bottom of the ranking are still accounted for
- Disadvantages
 - not quite as easy to interpret as P/R@K

MAP: mean average precision

- So far, we've talked about average precision for a <u>single</u> query
- Mean Average Precision (MAP): average precision averaged across a <u>set of queries</u>
 - yes, confusing. but, better than calling it "average average precision"!
 - one of the most common metrics in IR evaluation

Ranked Retrieval precision-recall curves

- In some situations, we want to understand the trade-off between precision and recall
- A precision-recall (PR) curve expresses precision as a function of recall

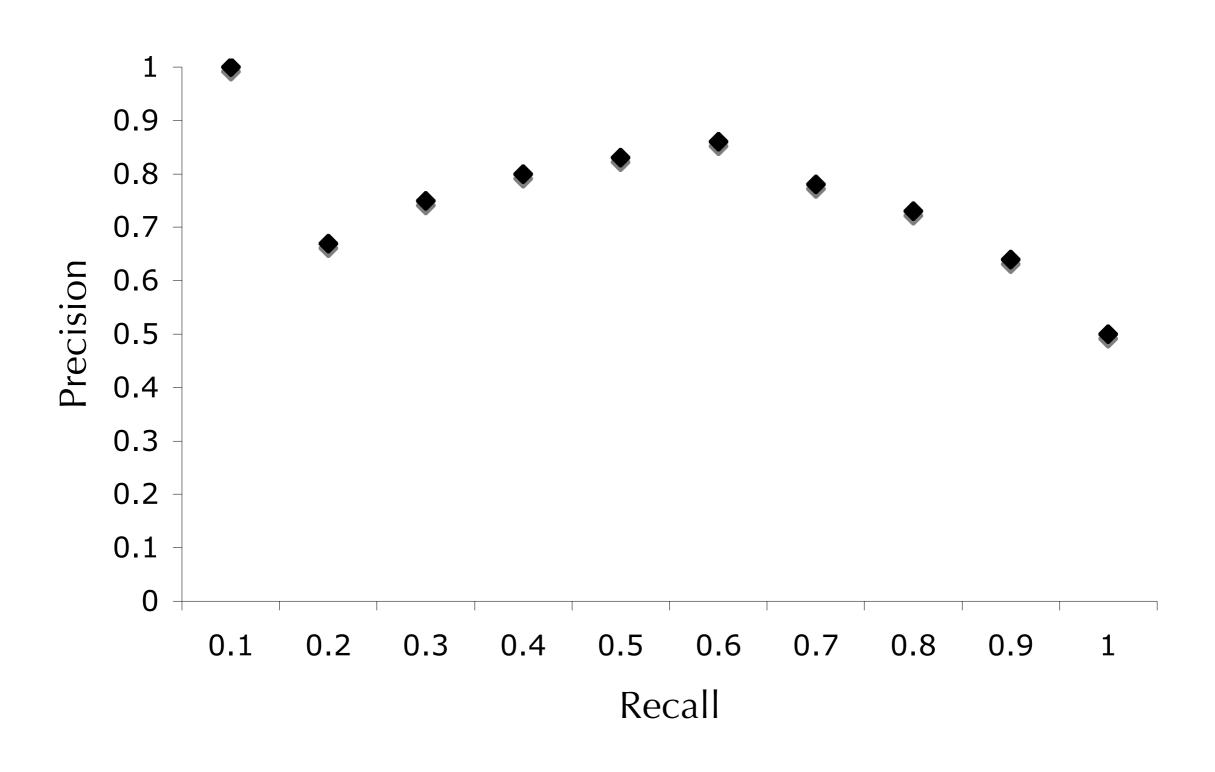
precision-recall curves: general idea

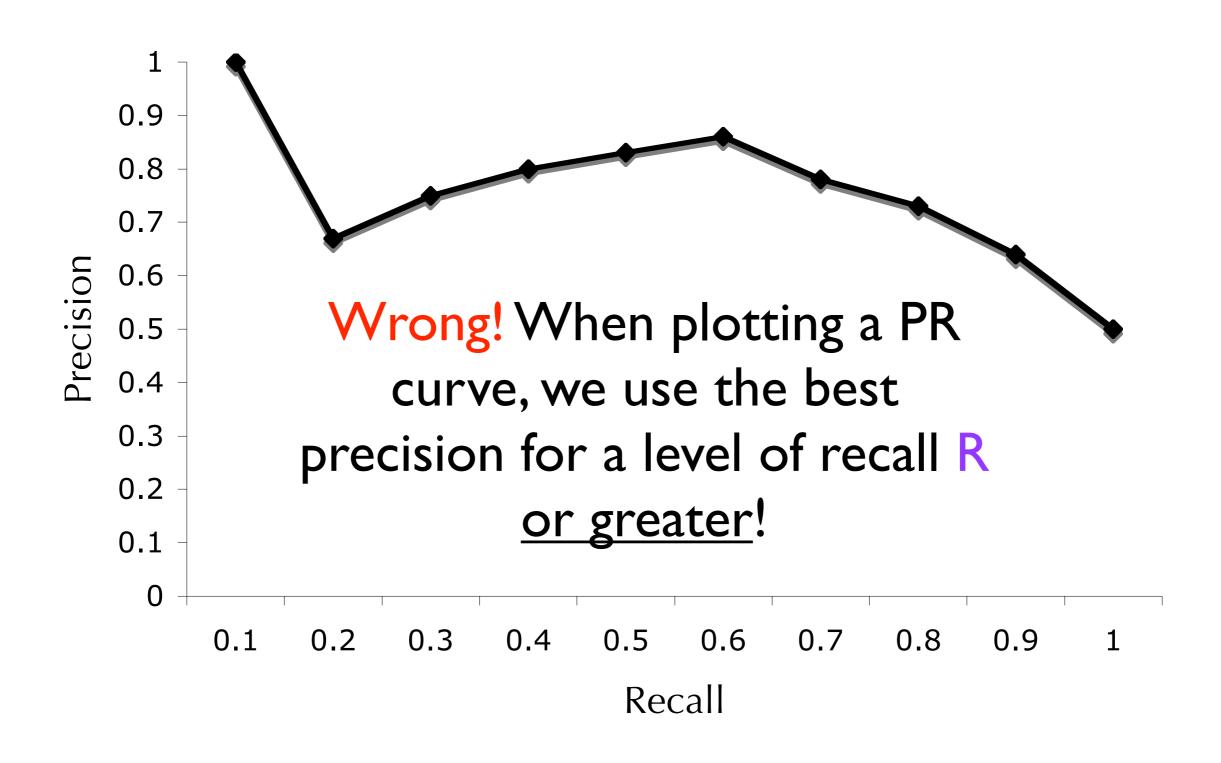
- Different tasks require different levels of recall
- Sometimes, the user wants a few relevant documents
- Other times, the user wants most of them
- Suppose a user wants some level of recall R
- The goal for the system is to minimize the number of false negatives the user must look at in order to achieve a level of recall R

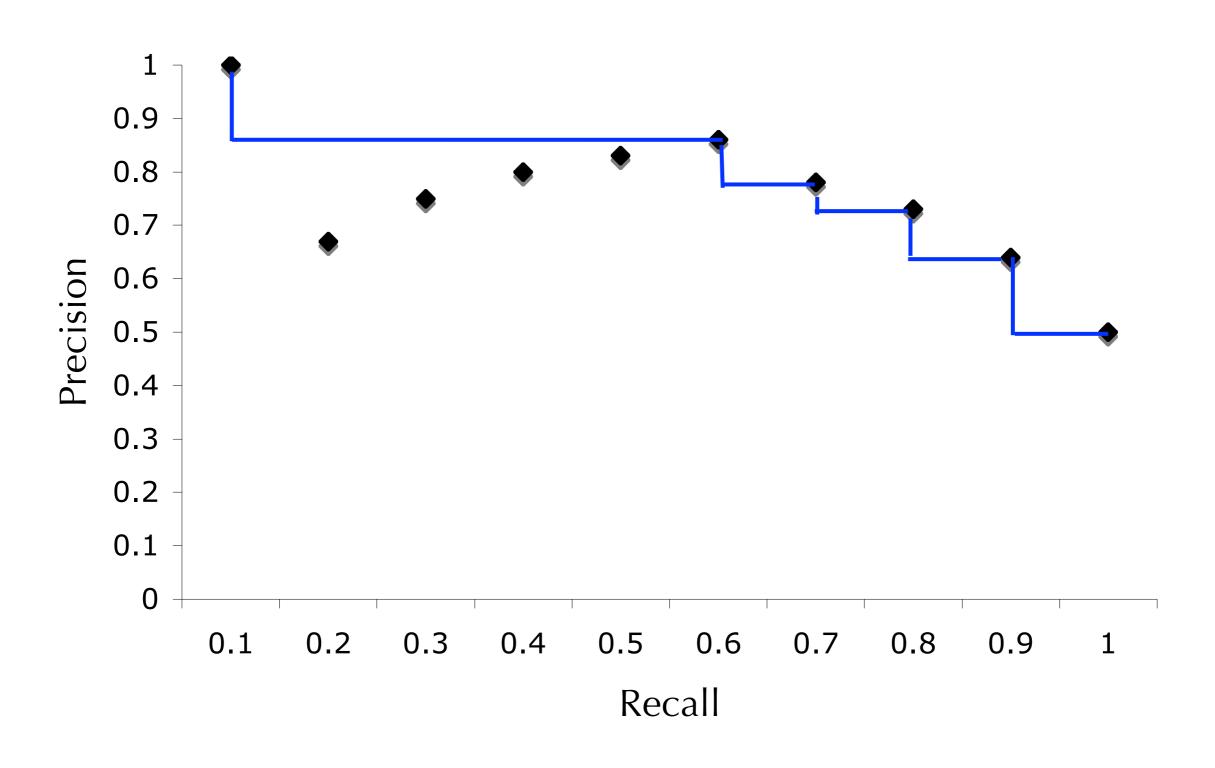
precision-recall curves: general idea

- False negative error: not retrieving a relevant document
 - false negative errors affects recall
- False positive errors: retrieving a non-relevant document
 - false positives errors affects precision
- If a user wants to avoid a certain level of falsenegatives, what is the level of false-positives he/she must filter through?

- Assume 10 relevant documents for this query
- Suppose the user wants R = (1/10)
- What level of precision will the user observe?

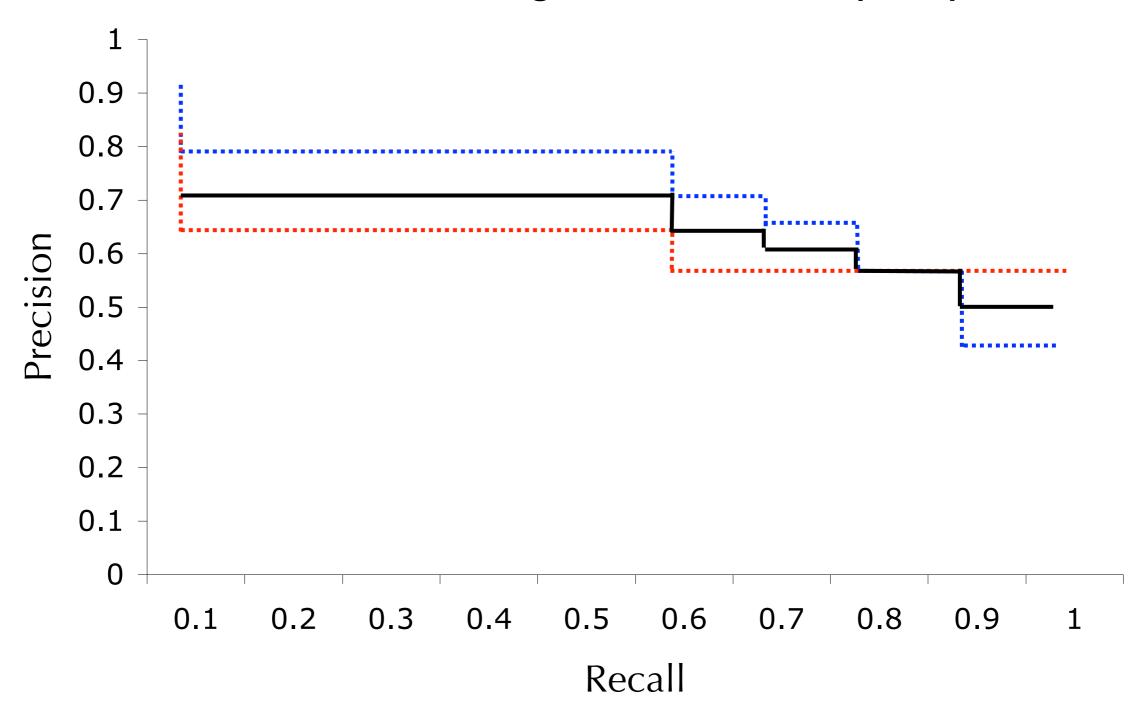


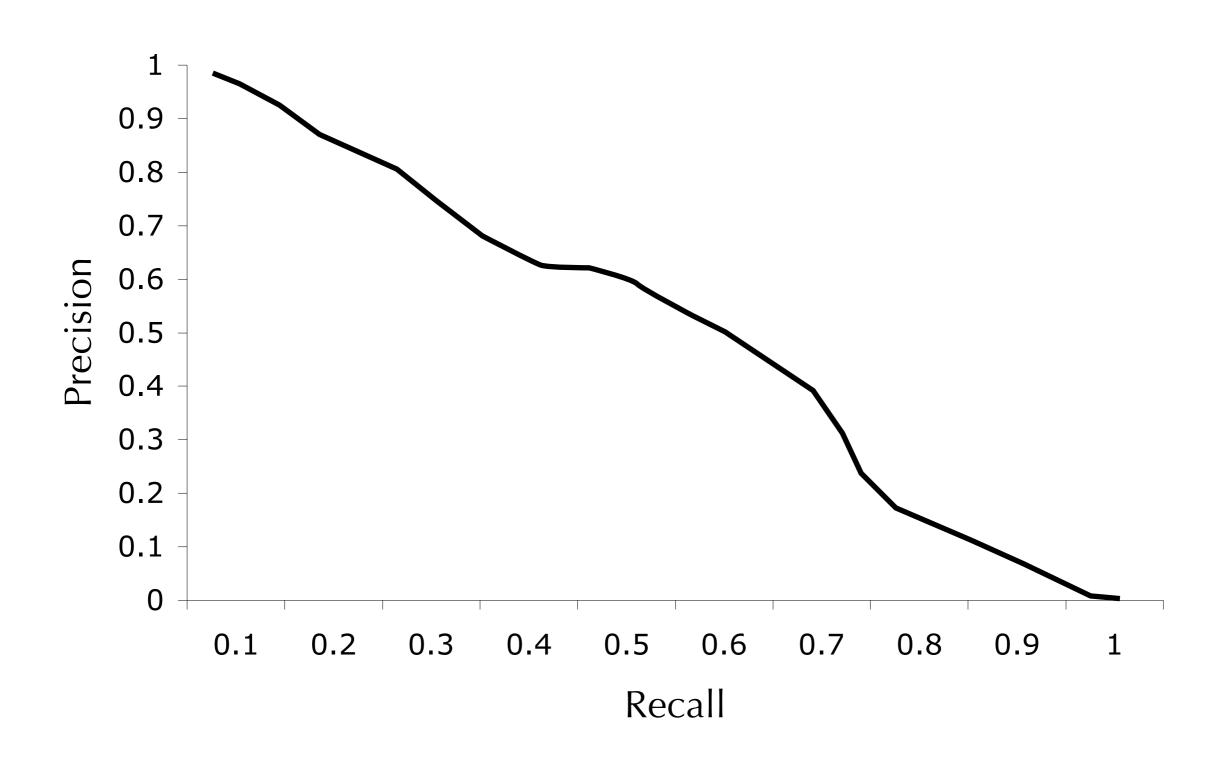

- Assume 10 relevant documents for this query
- Suppose the user wants R = (2/10)
- What level of precision will the user observe?

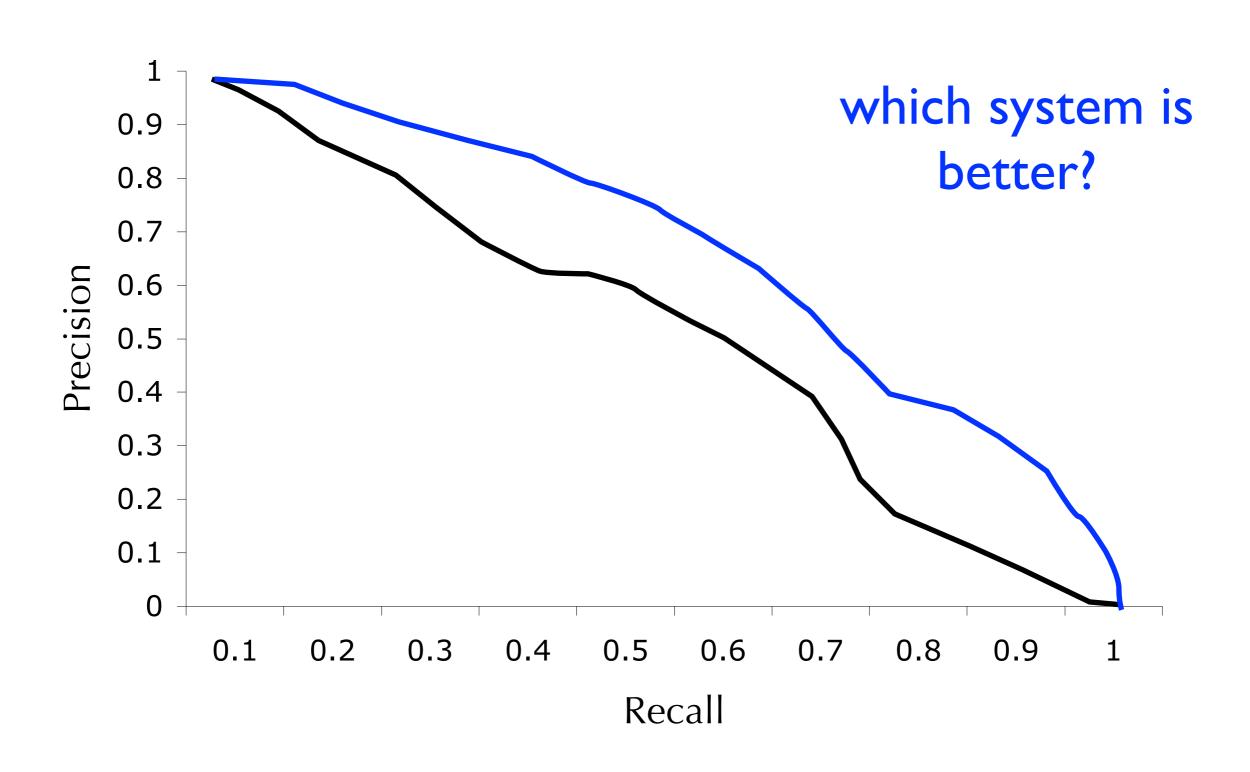


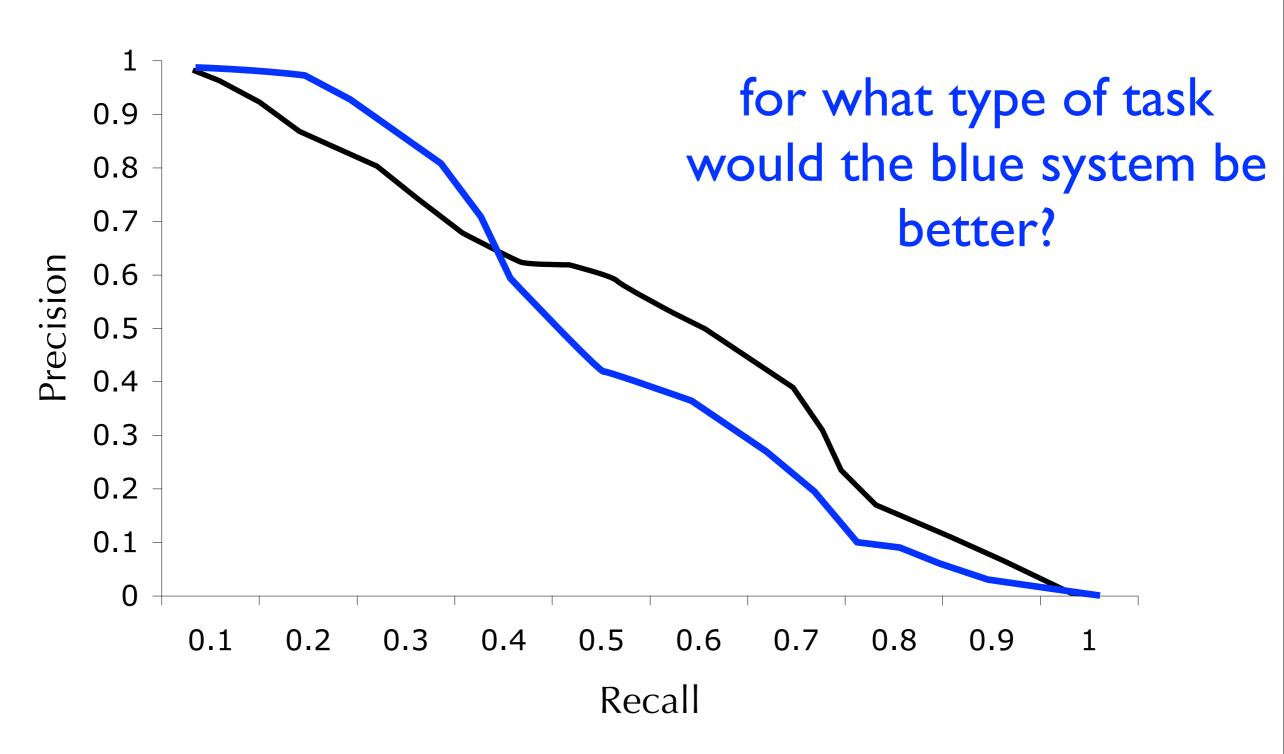
- Assume 10 relevant documents for this query
- Suppose the user wants R = (10/10)
- What level of precision will the user observe?

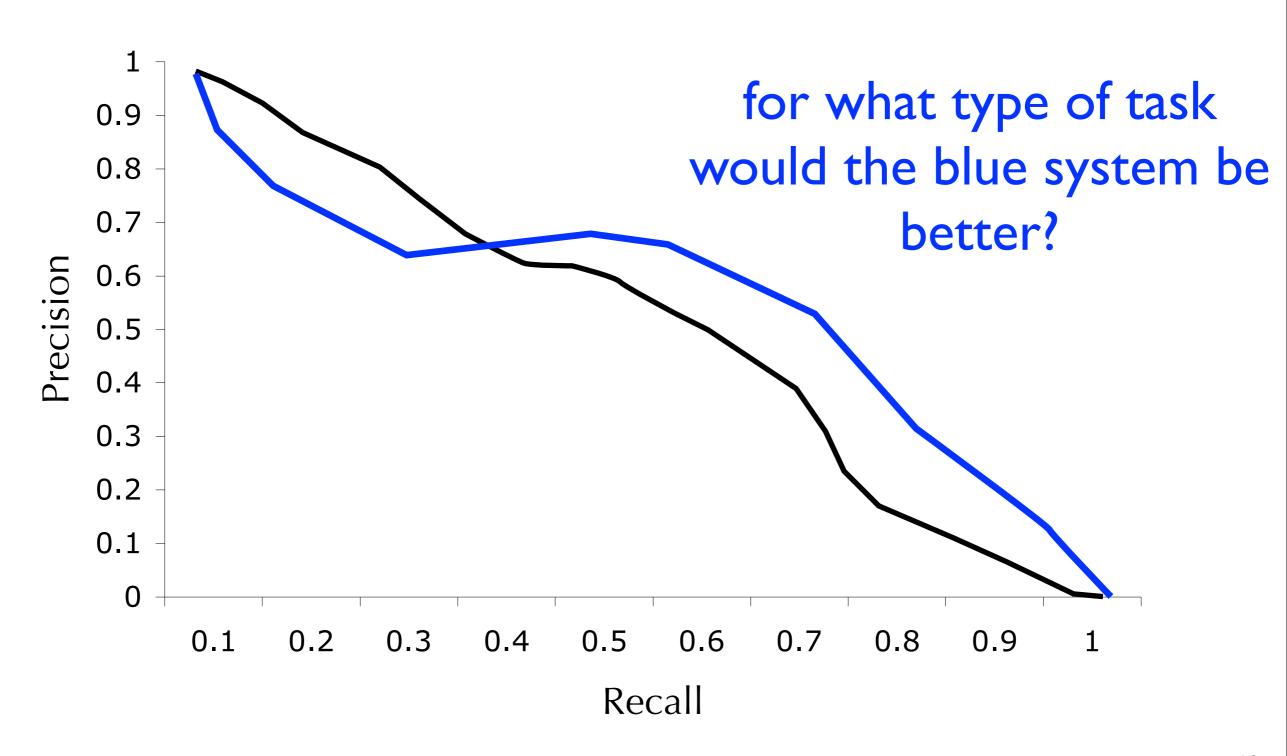
rank (K)	ranking	R@K	P@K
1		0.10	1.00
2		0.10	0.50
3		0.20	0.67
4		0.30	0.75
5		0.40	0.80
6		0.50	0.83
7		0.60	0.86
8		0.60	0.75
9		0.70	0.78
10		0.70	0.70
11		0.80	0.73
12		0.80	0.67
13		0.80	0.62
14		0.90	0.64
15		0.90	0.60
16		0.90	0.56
17		0.90	0.53
18		0.90	0.50
19		0.90	0.47
20		1.00	0.50

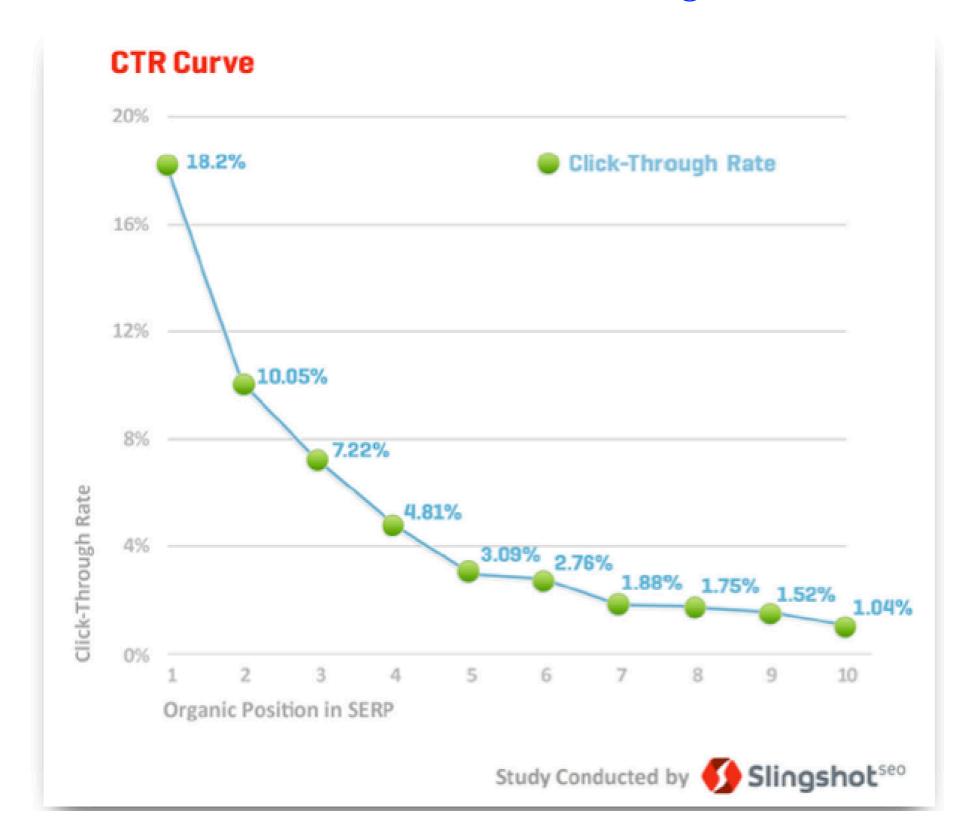


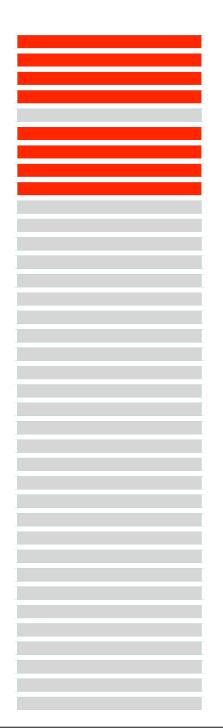

Ranked Retrieval precision-recall curves


- For a single query, a PR curve looks like a step-function
- For multiple queries, we can average these curves
 - Average the precision values for different values of recall (e.g., from 0.01 to 1.0 in increments of 0.01)
- This forms a smoother function


precision-recall curves


PR curves can be averaged across multiple queries

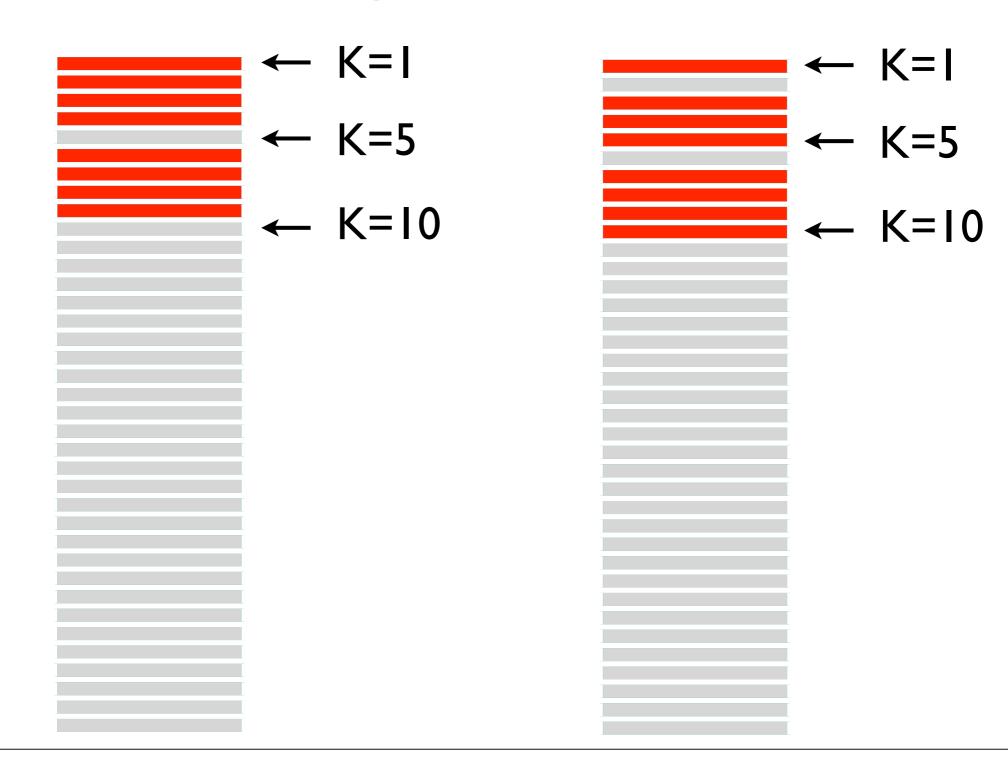


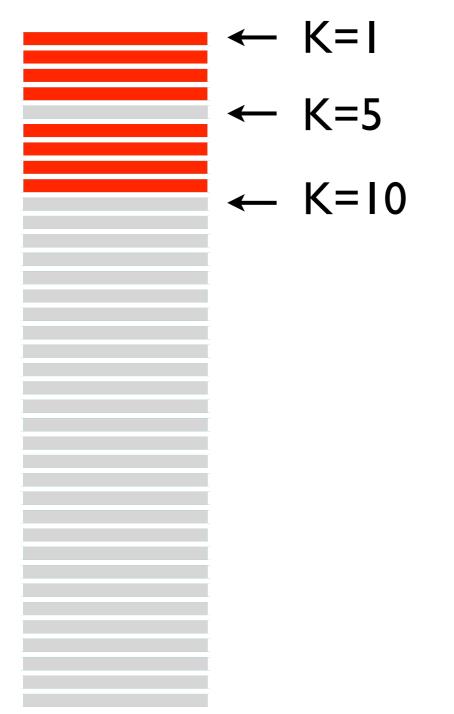

- In some retrieval tasks, we really want to focus on precision at the top of the ranking
- A classic example is web-search!
 - users rarely care about recall
 - users rarely navigate beyond the first page of results
 - users may not even look at results below the "fold"
- Are any of the metrics we've seen so far appropriate for web-search?

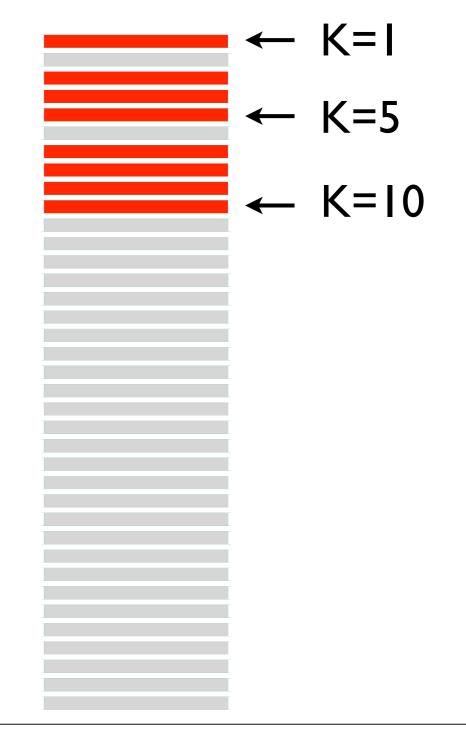


- We could potentially evaluate using P@K with several small values of K
- But, this has some limitations
- What are they?

discounted-cumulative gain

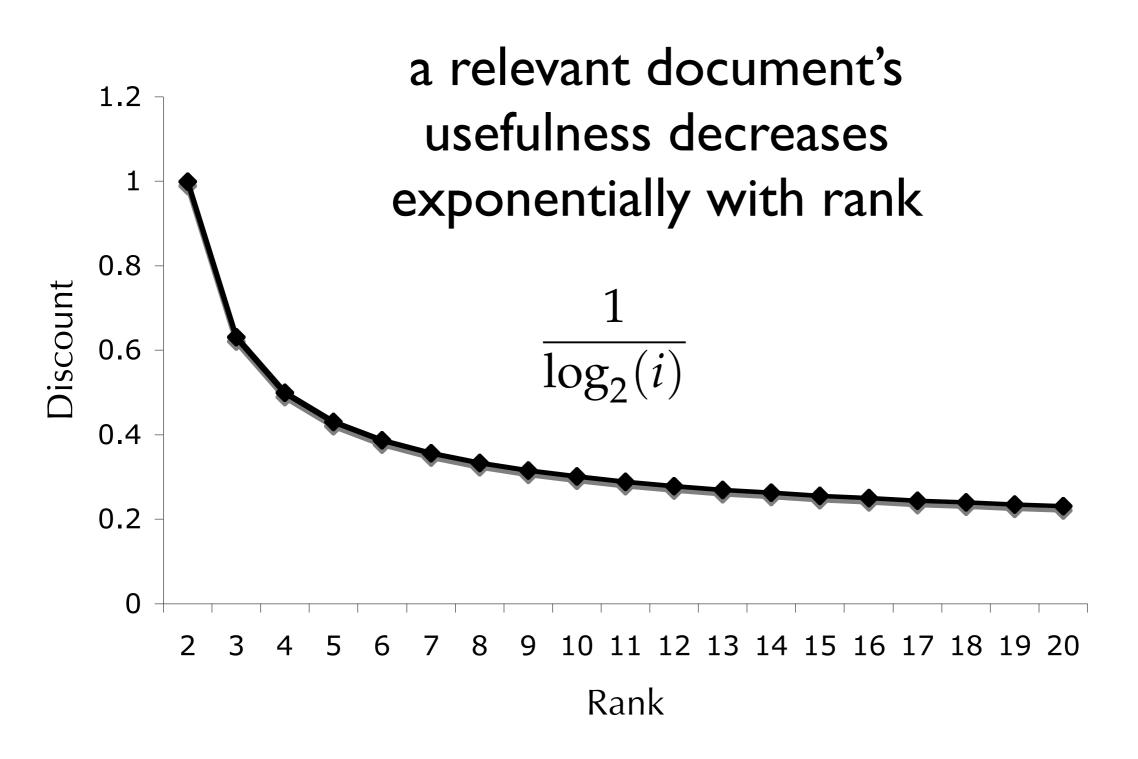

Which retrieval is better?


discounted-cumulative gain


Evaluation based on P@K can be too coarse

discounted-cumulative gain

 P@K (and all the metrics we've seen so far) assume binary relevance


- DCG: discounted cumulative gain
- Assumptions:
 - There are more than two levels of relevance (e.g., perfect, excellent, good, fair, bad)
 - A relevant document's usefulness to a user decreases rapidly with rank (more rapidly than linearly)

- Let REL_i be the relevance associated with the document at rank *i*
 - \rightarrow perfect \rightarrow 4
 - \rightarrow excellent \rightarrow 3
 - ightharpoonup good ightharpoonup 2
 - \rightarrow fair \rightarrow 1
 - \rightarrow bad \rightarrow 0

discounted-cumulative gain

DCG: discounted cumulative gain

$$DCG@K = \sum_{i=1}^{K} \frac{REL_i}{\log_2(\max(i,2))}$$

$$DCG@K = \sum_{i=1}^{K} \frac{REL_i}{\log_2(\max(i,2))}$$

rank (i)	REL_i	
1	4	This is given!
2	3	
3	4	the result at rank I is perfect
4	2	the result at rank 2 is excellent
5	0	the result at rank 3 is perfect
6	0	•••
7	0	the result at rank 10 is bad
8	1	
9	1	
10	0	

discounted-cumulative gain

$$DCG@K = \sum_{i=1}^{K} \frac{REL_i}{\log_2(\max(i,2))}$$

	discount factor	REL_i	rank (i)	
Each mank is asse	1.00	4	1	
Each rank is asso with a discount	1.00	3	2	
with a discount	0.63	4	3	
1 / / ·	0.50	2	4	
$\log_2(\max(i,$	0.43		5	
rank I is a specia	0.39		6	
	0.36		7	
	0.33	1	8	
	0.32	1	9	
	0.30		10	

ociated factor

$$\frac{1}{\log_2(\max(i,2))}$$

ial case!

discounted-cumulative gain

$$DCG@K = \sum_{i=1}^{K} \frac{REL_i}{\log_2(\max(i,2))}$$

rank (i)	REL_i	discount factor	gain	
1	4	1.00	4.00	multiply DEI
2	3	1.00	3.00	multiply <i>REL</i> i by the
3	4	0.63	2.52	discount
4	2	0.50	1.00	factor
5	0	0.43	0.00	associated
6	0	0.39	0.00	with the
7	0	0.36	0.00	rank!
8	1	0.33	0.33	
9	1	0.32	0.32	
10	0	0.30	0.00	

discounted-cumulative gain

$$DCG@K = \sum_{i=1}^{K} \frac{REL_i}{\log_2(\max(i,2))}$$

rank (i)	REL_i	discount factor	gain	DCG_i
1	4	1.00	4.00	4.00
2	3	1.00	3.00	7.00
3	4	0.63	2.52	9.52
4	2	0.50	1.00	10.52
5	0	0.43	0.00	10.52
6	0	0.39	0.00	10.52
7	0	0.36	0.00	10.52
8	1	0.33	0.33	10.86
9	1	0.32	0.32	11.17
10	O	0.30	0.00	11.17

discounted-cumulative gain

$$DCG_{10} = 11.17$$

rank (i)	REL_i	discount factor	gain	DCG_i
1	4	1.00	4.00	4.00
2	3	1.00	3.00	7.00
3	4	0.63	2.52	9.52
4	2	0.50	1.00	10.52
5	0	0.43	0.00	10.52
6	0	0.39	0.00	10.52
7	0	0.36	0.00	10.52
8	1	0.33	0.33	10.86
9	1	0.32	0.32	11.17
10	O	0.30	0.00	11.17

discounted-cumulative gain

$$DCG_{10} = 11.17$$

rank (i)	REL_i	discount factor	gain	DCG_i
1	3	1.00	3.00	3.00
2	3	1.00	3.00	6.00
3	4	0.63	2.52	8.52
4	2	0.50	1.00	9.52
5	0	0.43	0.00	9.52
6	0	0.39	0.00	9.52
7	0	0.36	0.00	9.52
8	1	0.33	0.33	9.86
9	1	0.32	0.32	10.17
10	0	0.30	0.00	10.17

changed top result from perfect instead of excellent

discounted-cumulative gain

$$DCG_{10} = 11.17$$

rank (i)	REL_i	discount factor	gain	DCG_i
1	4	1.00	4.00	4.00
2	3	1.00	3.00	7.00
3	4	0.63	2.52	9.52
4	2	0.50	1.00	10.52
5	0	0.43	0.00	10.52
6	0	0.39	0.00	10.52
7	0	0.36	0.00	10.52
8	1	0.33	0.33	10.86
9	1	0.32	0.32	11.17
10	3	0.30	0.90	12.08

changed 10th result from bad to excellent

- DCG is <u>not</u> 'bounded'
- In other words, it ranges from zero to
- Makes it problematic to average across queries
- NDCG: <u>normalized</u> discounted-cumulative gain
- "Normalized" is a fancy way of saying, we change it so that it ranges from 0 to 1

- NDCGi: normalized discounted-cumulative gain
- For a given query, measure DCG_i
- Then, divide this DCG_i value by the best possible DCG_i for that query
- Measure DCG_i for the best possible ranking for a given value i

- Given: a query has two 4's, one 3, and the rest are 0's
- Question: What is the best possible ranking for i = 1
- All these are equally good:
 - **4**, 4, 3,
 - **4**, 3, 4,
 - **4**, 0, 0,
 - ... anything with a 4 as the top-ranked result

- Given: the query has two 4's, one 3, and the rest are 0's
- Question: What is the best possible ranking for i = 2
- All these are equally good:
 - **4**, 4, 3,
 - **4**, 4, 0,

- Given: the query has two 4's, one 3, and the rest are 0's
- Question: What is the best possible ranking for i = 3
- All these are equally good:
 - **4**, 4, 3,

- NDCGi: normalized discounted-cumulative gain
- For a given query, measure DCG_i
- Then, divide this DCG_i value by the best possible DCG_i for that query
- Measure DCG_i for the best possible ranking for a given value i

Metric Review

- set-retrieval evaluation: we want to evaluate the set of documents retrieved by the system, without considering the ranking
- ranked-retrieval evaluation: we want to evaluate the ranking of documents returned by the system

Metric Review

set-retrieval evaluation

- precision: the proportion of retrieved documents that are relevant
- recall: the proportion of relevant documents that are retrieved
- f-measure: harmonic-mean of precision and recall
 - a difficult metric to "cheat" by getting very high precision and abysmal recall (and vice-versa)

Metric Review

ranked-retrieval evaluation

- P@K: precision under the assumption that the top-K results is the 'set' retrieved
- R@K: recall under the assumption that the top-K results is the 'set' retrieved
- average-precision: considers precision and recall and focuses mostly on the top results
- DCG: ignores recall, considers multiple levels of relevance, and focuses very must on the top ranks
- NDCG: trick to make DCG range between 0 and 1

Which Metric Would You Use?

The New York Times

