Predictive Analysis of Text: Concepts, Features, and Instances

> Jaime Arguello jarguell@email.unc.edu

August 28, 2013

Predictive Analysis of Text

• Objective: developing and evaluating computer programs that automatically detect a particular concept in natural language text

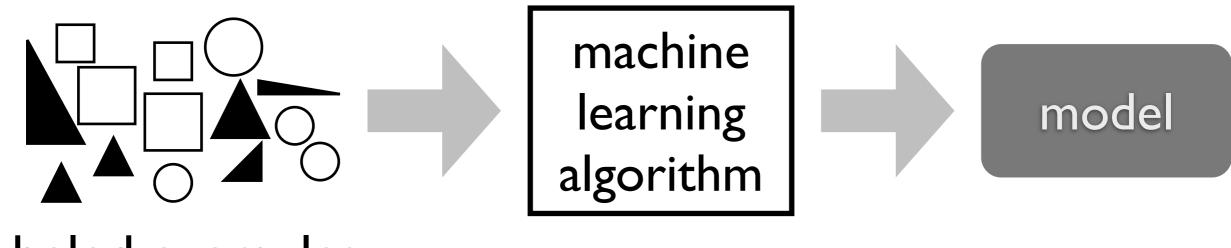
Predictive Analysis basic ingredients

- 1. Training data: a set of positive and negative examples of the concept we want to automatically recognize
- 2. Representation: a set of features that we believe are useful in recognizing the desired concept
- 3. Learning algorithm: a computer program that uses the training data to learn a predictive model of the concept

Predictive Analysis basic ingredients

- 4. Model: a function that describes a predictive relationship between feature values and the presence/absence of the concept
- 5. Test data: a set of previously unseen examples used to estimate the model's effectiveness
- 6. Performance metrics: a set of statistics used to measure the predictive effectiveness of the model

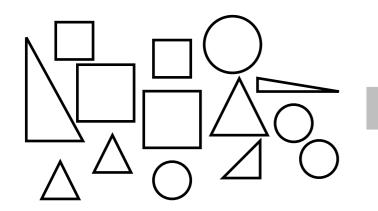
training



labeled examples

testing

model



new, unlabeled examples

Predictive Analysis concept, instances, and features

features

concept

color	size	# slides	equal sides	•••	label
red	big	3	no	•••	yes
green	big	3	yes	•••	yes
blue	small	inf	yes	•••	no
blue	small	4	yes	•••	no
red	big	3	yes	•••	yes

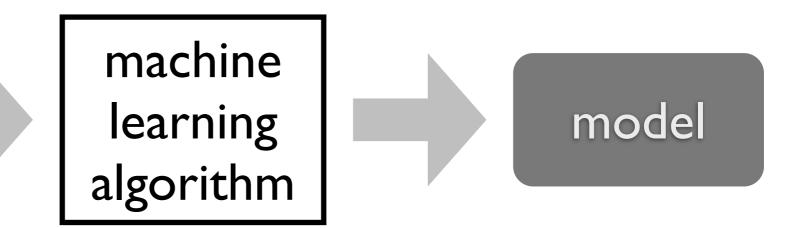
instances

Predictive Analysis training and testing

training

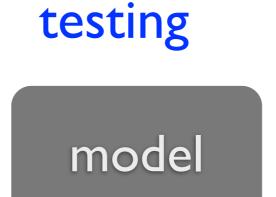
color	size	sides	equal sides	 label
red	big	3	no	 yes
green	big	3	yes	 yes
blue	small	inf	yes	 no
blue	small	4	yes	 no
:	:	:		 :
red	big	3	yes	 yes

labeled examples



color	size	sides	equal sides		label
red	big	3	no		???
green	big	3	yes		???
blue	small	inf	yes		???
blue	small	4	yes		???
÷	:	:	:	:	???
red	big	3	yes		???

new, unlabeled examples



color	size	sides	equal sides		label
red	big	3	no		yes
green	big	3	yes		yes
blue	small	inf	yes		no
blue	small	4	yes		no
÷	:	:		:	:
red	big	3	yes		yes

predictions

Predictive Analysis questions

- Is a particular concept appropriate for predictive analysis?
- What should the unit of analysis be?
- How should I divide the data into training and test sets?
- What is a good feature representation for this task?
- What type of learning algorithm should I use?
- How should I evaluate my model's performance?

- Learning algorithms can recognize some concepts better than others
- What are some properties of concepts that are easier to recognize?

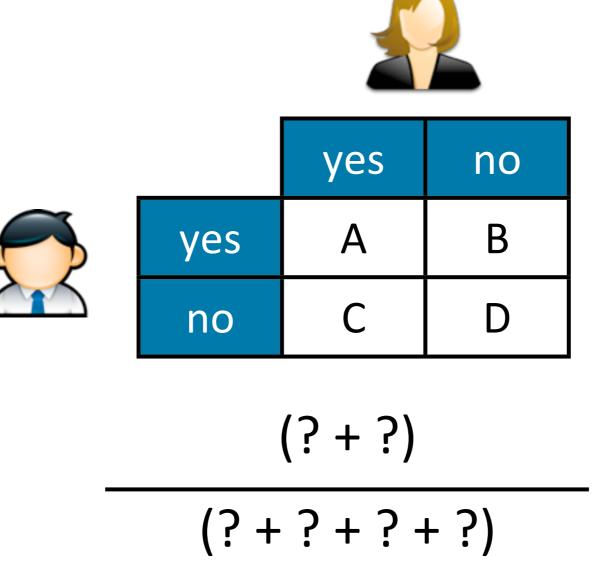
• Option 1: can a single human recognize the concept?

• Option 1: can a single human recognize the concept?

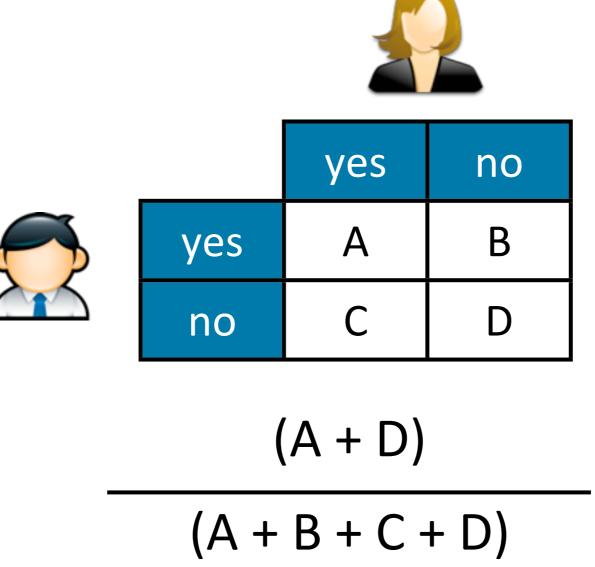
• Option 2: can two or more humans recognize the concept independently and do they agree?

- Option 1: can a single human recognize the concept?
- Option 2: can two or more humans recognize the concept independently and do they agree?
- Option 2 is better.
- In fact, models are sometimes evaluated as an independent assessor
- How does the model's performance compare to the performance of one assessor with respect to another?
 - One assessor produces the "ground truth" and another produces the predictions

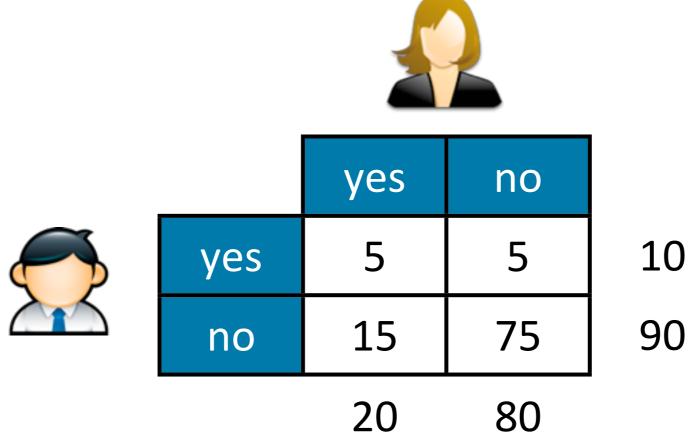
 Percent agreement: percentage of instances for which both assessors agree that the concept occurs or does not occur



 Percent agreement: percentage of instances for which both assessors agree that the concept occurs or does not occur

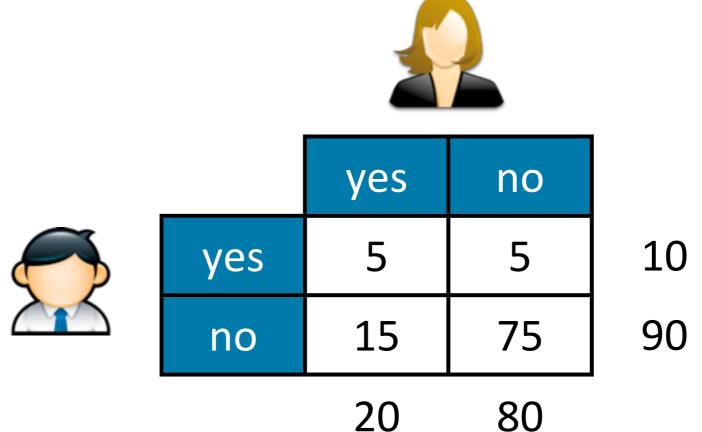


 Percent agreement: percentage of instances for which both assessors agree that the concept occurs or does not occur



% agreement = ???

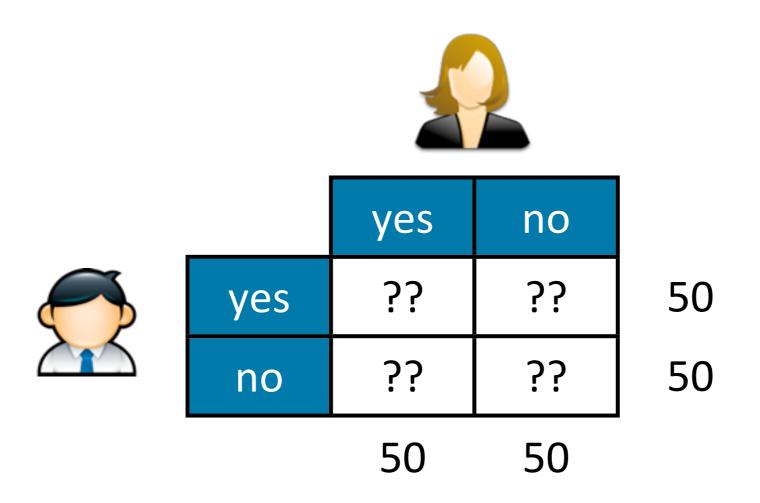
 Percent agreement: percentage of instances for which both assessors agree that the concept occurs or does not occur



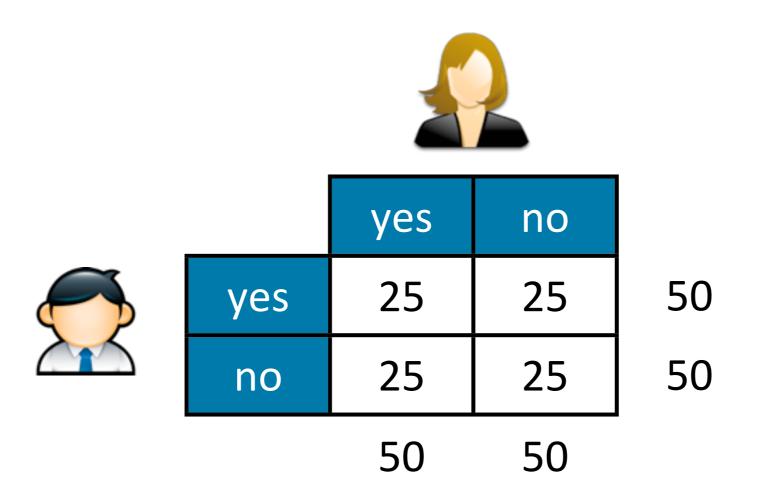
% agreement = (5 + 75) / 100 = 80%

- Problem: percent agreement does not account for agreement due to random chance.
- How can we compute the expected agreement due to random chance?
 - Option 1: assume unbiased assessors
 - Option 2: assume biased assessors

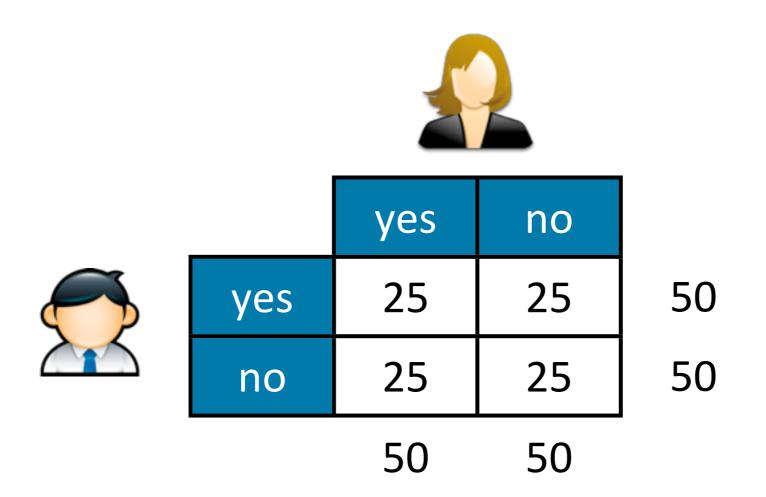
• Option 1: unbiased assessors



• Option 1: unbiased assessors

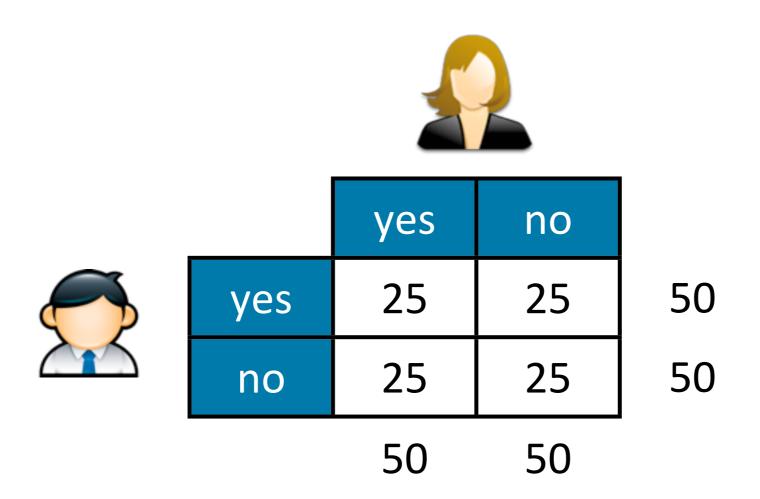


• Option 1: unbiased assessors



random chance % agreement = ???

• Option 1: unbiased assessors



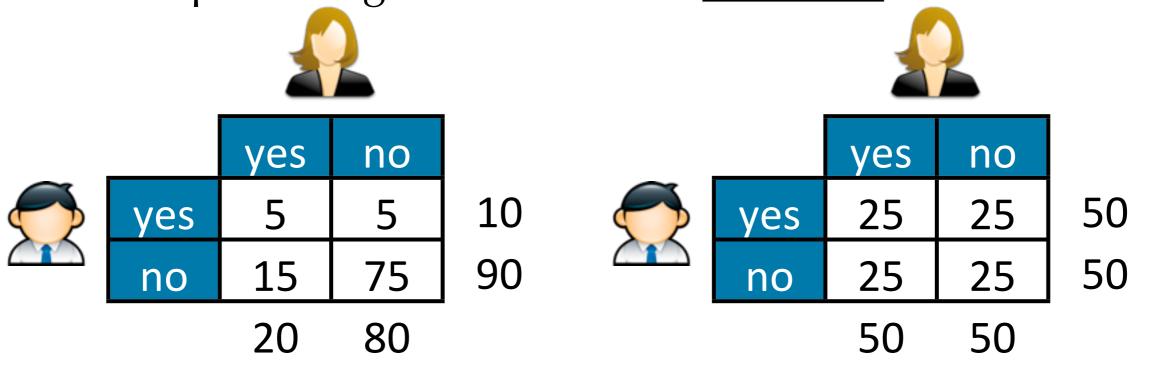
random chance % agreement = (25 + 25)/100 = 50%

 Kappa agreement: percent agreement after correcting for the expected agreement due to random chance

$$\mathcal{K} = \frac{P(a) - P(e)}{1 - P(e)}$$

- P(a) = percent of observed agreement
- P(e) = percent of agreement due to random chance

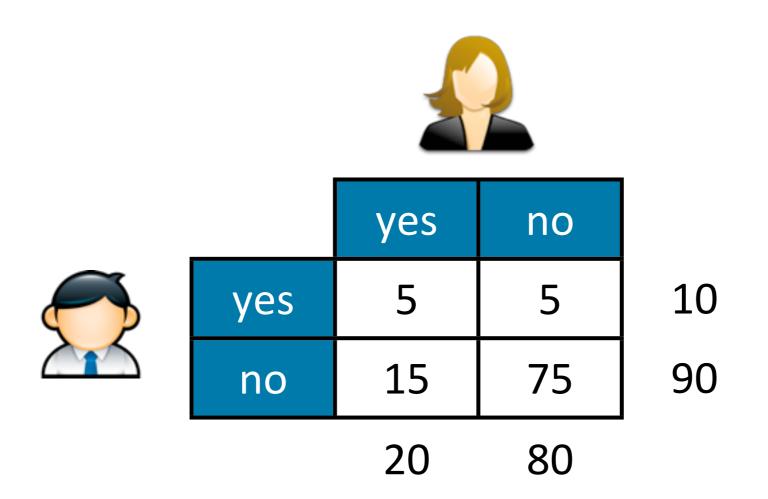
 Kappa agreement: percent agreement after correcting for the expected agreement due to <u>unbiased</u> chance



$$P(a) = \frac{5+75}{100} = 0.80 \qquad \qquad P(e) = \frac{25+25}{100} = 0.50$$

$$\mathcal{K} = \frac{P(a) - P(e)}{1 - P(e)} = \frac{0.80 - 0.50}{1 - 0.50} = 0.60$$

• Option 2: biased assessors

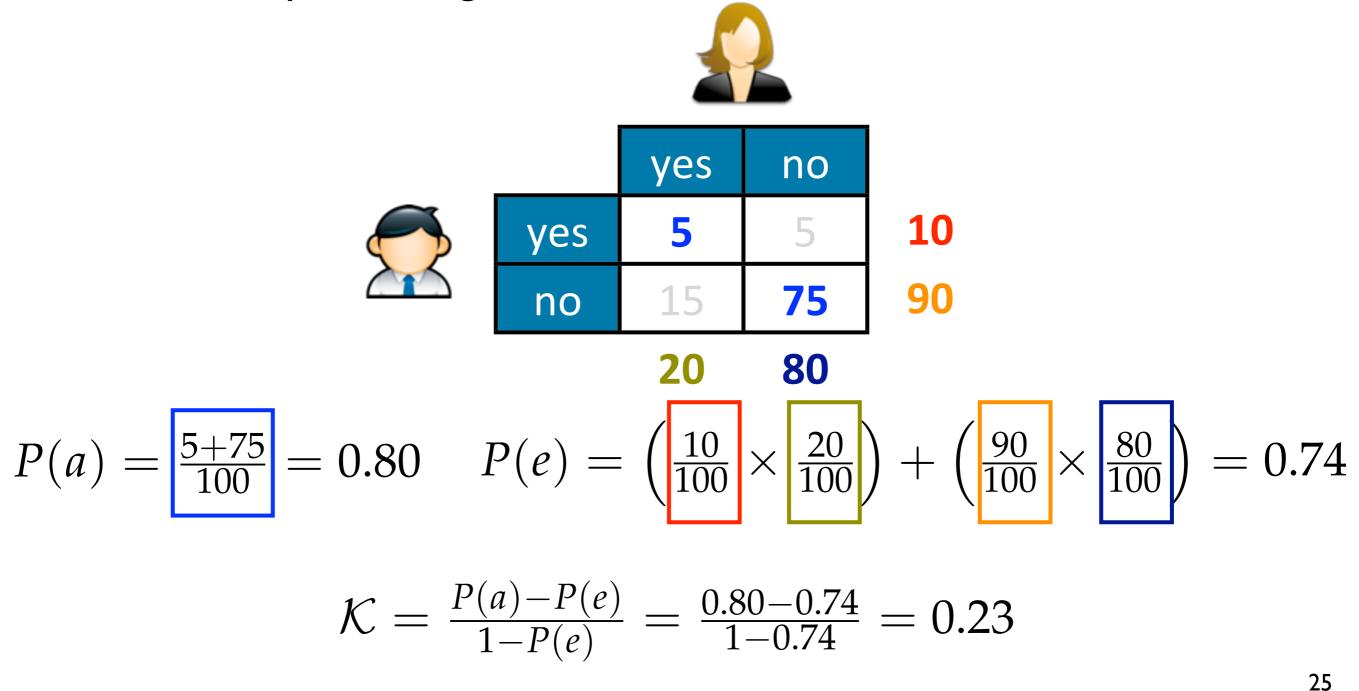


biased chance % agreement = ???

Predictive Analysis

kappa agreement: chance-corrected % agreement

 Kappa agreement: percent agreement after correcting for the expected agreement due to <u>biased</u> chance



Predictive Analysis data annotation process

- INPUT: unlabeled data, annotators, coding manual
- **OUTPUT**: labeled data
 - 1. using the latest coding manual, have <u>all</u> annotators label some previously unseen portion of the data (~10%)
 - 2. measure inter-annotator agreement (Kappa)
 - 3. **IF** agreement < X, **THEN**:
 - refine coding manual using disagreements to resolve inconsistencies and clarify definitions
 - return to 1

ELSE

have annotators label the remainder of the data independently and EXIT

Predictive Analysis data annotation process

- What is good (Kappa) agreement?
- It depends on who you ask
- According to Landis and Koch, 1977:
 - ► 0.81 1.00: almost perfect
 - 0.61 0.70: substantial
 - 0.41 0.60: moderate
 - ▶ 0.21 0.40: fair
 - ► 0.00 0.20: slight
 - < 0.00: no agreement</p>

Predictive Analysis questions

- Is a particular concept appropriate for predictive analysis?
- What should the unit of analysis be?
- How should I divide the data into training and test sets?
- What is a good feature representation for this task?
- What type of learning algorithm should I use?
- How should I evaluate my model's performance?

Predictive Analysis turning data into (training and test) instances

- For many text-mining applications, turning the data into instances for training and testing is fairly straightforward
- Easy case: instances are self-contained, independent units of analysis
 - text classification: instances = documents
 - opinion mining: instances = product reviews
 - bias detection: instances = political blog posts
 - emotion detection: instances = support group posts

Text Classification predicting health-related documents

features

concept

w_1	w_2	w_3	•••	w_n	label
1	1	0	•••	0	health
0	0	0	•••	0	other
0	0	0	•••	0	other
0	1	0	•••	1	other
			•••	0	
1	0	0	•••	1	health

instances

Opinion Mining predicting positive/negative movie reviews

features

concept

w_1	w_2	w_3	•••	w_n	label
1	1	0	•••	0	positive
0	0	0	•••	0	negative
0	0	0	•••	0	negative
0	1	0	•••	1	negative
		•	•••	0	
1	0	0	•••	1	positive

Bias Detection

predicting liberal/conservative blog posts

features

concept

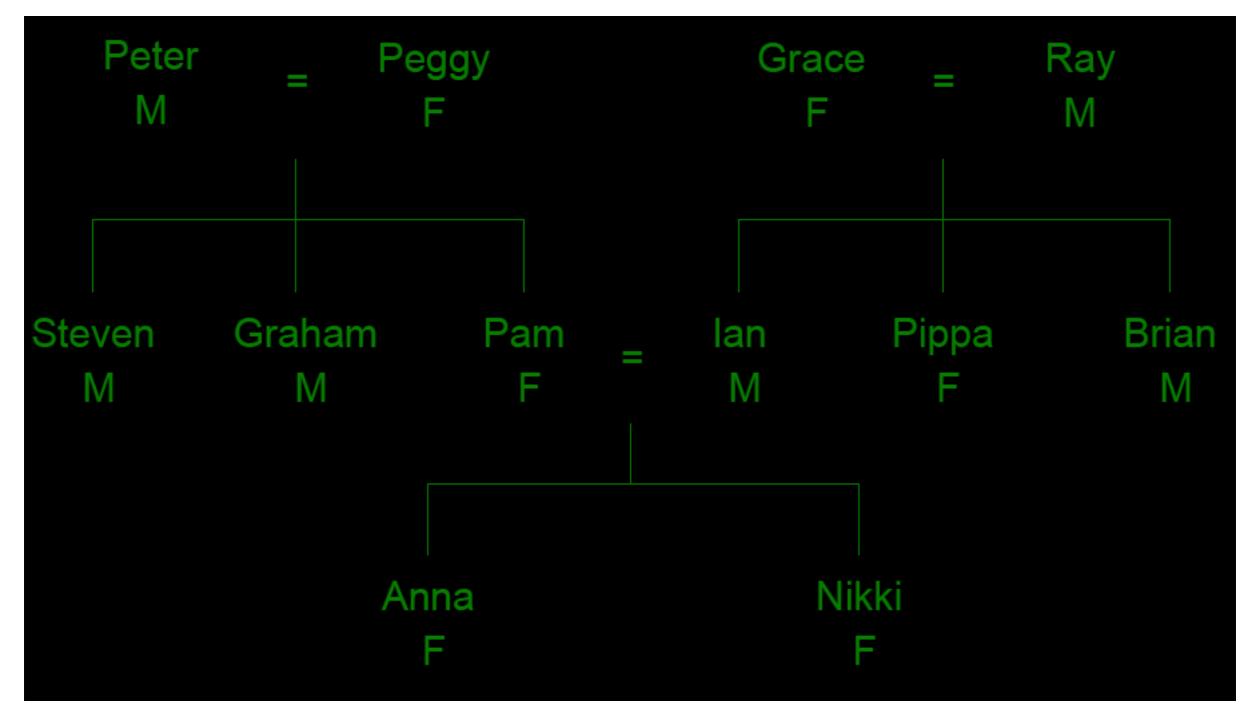
w_1	w_2	w_3	•••	w_n	label
1	1	0	•••	0	liberal
0	0	0	•••	0	conservative
0	0	0	•••	0	conservative
0	1	0	•••	1	conservative
			•••	0	
1	0	0	•••	1	liberal

instances

Predictive Analysis turning data into (training and test) instances

- A not-so-easy case: relational data
- The concept to be learned is a <u>relation</u> between pairs of objects

Predictive Analysis example of relational data: Brother(X,Y)



(example borrowed and modified from Witten *et al.* textbook)

Predictive Analysis example of relational data: Brother(X,Y)

features

concept

name_1	gender_1	mother_1	father_1	name_2	gender_2	mother_2	father_1	brother
steven	male	peggy	peter	graham	male	peggy	peter	yes
lan	male	grace	ray	brian	male	grace	ray	yes
anna	female	pam	ian	nikki	female	pam	ian	no
pippa	female	grace	ray	brian	male	grace	ray	no
steven	male	peggy	peter	brian	male	grace	ray	no
÷	:	:	:	:	:	:	÷	:
anna	female	pam	ian	brian	male	grace	ray	no

Predictive Analysis turning data into (training and test) instances

- A not-so-easy case: relational data
- Each instance should correspond to an object <u>pair</u> (which may or may not share the relation of interest)
- May require features that characterize properties of the pair

Predictive Analysis example of relational data: Brother(X,Y)

features

concept

37

name_1	gender_1	mother_1	father_1	name_2	gender_2	mother_2	father_1	brother
steven	male	peggy	peter	graham	male	peggy	peter	yes
lan	male	grace	ray	brian	male	grace	ray	yes
anna	female	pam	ian	nikki	female	pam	ian	no
pippa	female	grace	ray	brian	male	grace	ray	no
steven	male	peggy	peter	brian	male	grace	ray	no
÷	:	:	:			:	:	:
anna	female	pam	ian	brian	male	grace	ray	no

(can we think of a better feature representation?)

instances

Predictive Analysis example of relational data: Brother(X,Y)

features

concept

gender_1	gender_2	same parents	brother
male	male	yes	yes
male	male	yes	yes
female	female	no	no
female	male	yes	no
male	male	no	no
:		:	:
female	male	no	no

- A not-so-easy case: relational data
- There is still an issue that we're not capturing! Any ideas?
- Hint: In this case, should the predicted labels really be independent?

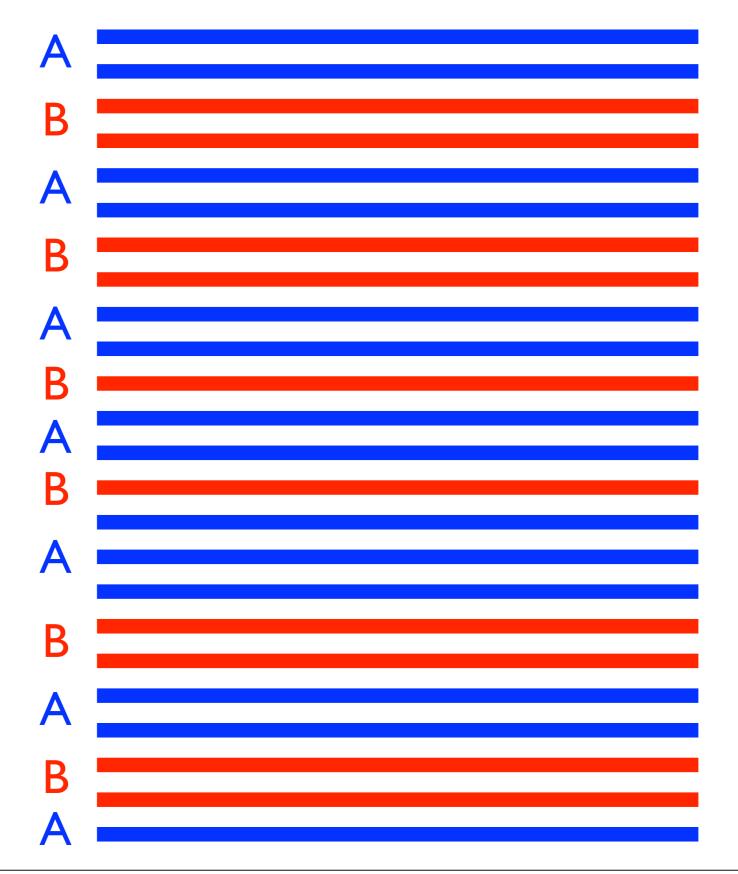
Brother(A,B) = yes
Brother(B,C) = yes
Brother(A,C) = no

- In this case, what we would really want is:
 - a method that does joint prediction on the test set
 - a method whose joint predictions satisfy a set of known properties about the data as a whole (e.g., transitivity)

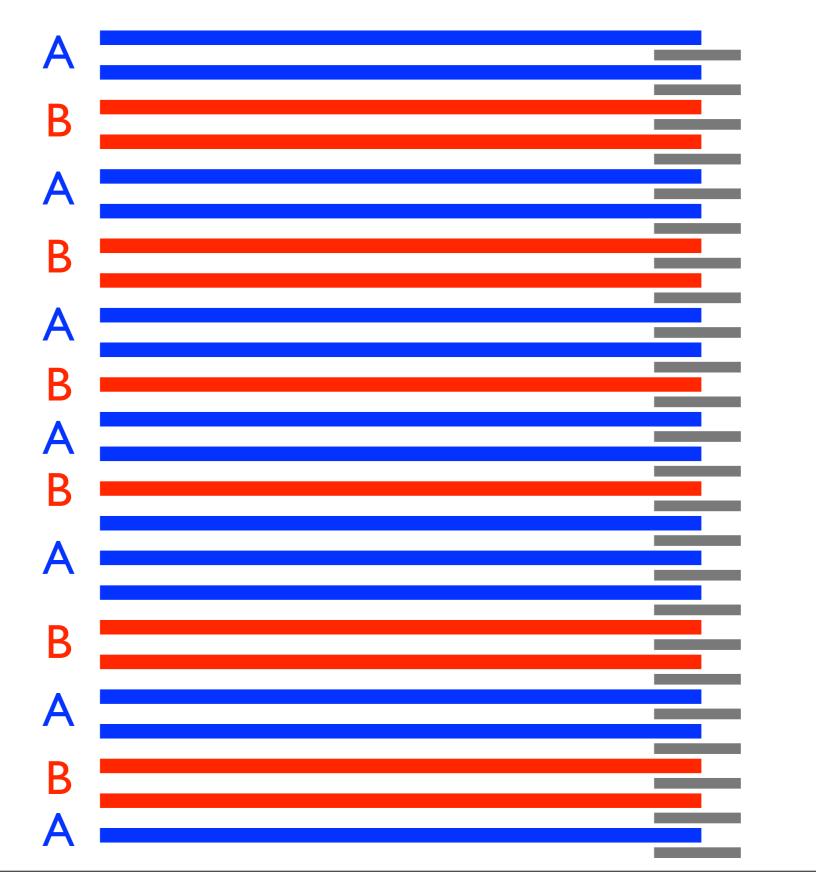
- There are learning algorithms that incorporate relational constraints between predictions
- However, they are beyond the scope of this class
- We'll be covering algorithms that make independent predictions on instances
- That said, many algorithms output prediction confidence values
- Heuristics can be used to disfavor inconsistencies

- Examples of relational data in text-mining:
 - entity resolution: predict that two entity mentions refer to the same entity
 - information extraction: predicting that a word-sequence belongs to a particular class (e.g., person, location)
 - topic segmentation: segmenting discourse into topically coherent chunks
 - learning to rank: predict the relative relevance between pairs of documents for the same query

Predictive Analysis topic segmentation example

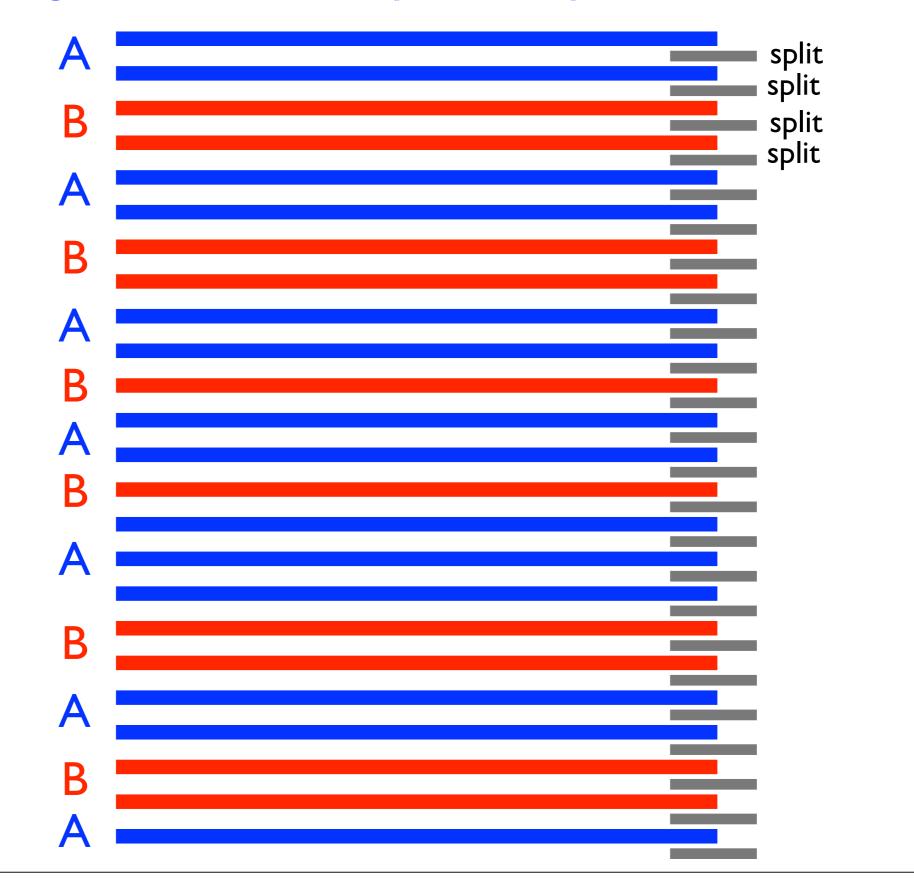


Predictive Analysis topic segmentation example: instances



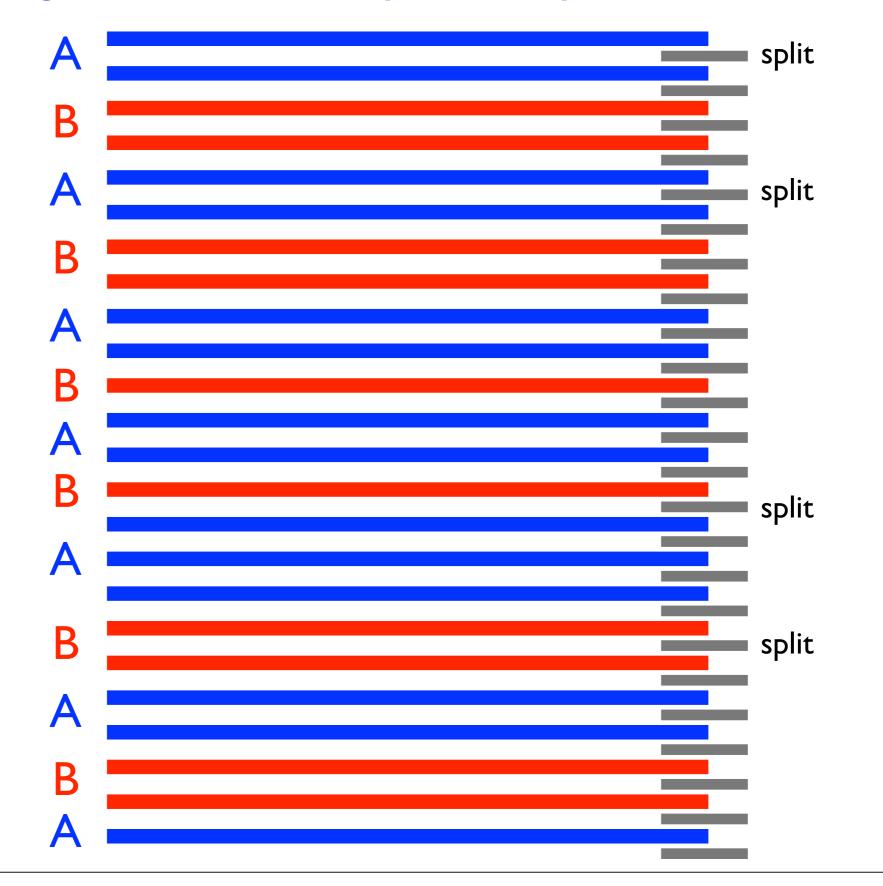
Predictive Analysis

topic segmentation example: independent instances?



Predictive Analysis

topic segmentation example: independent instances?



Wednesday, August 28, 13

47

Predictive Analysis questions

- Is a particular concept appropriate for predictive analysis?
- What should the unit of analysis be?
- How should I divide the data into training and test sets?
- What is a good feature representation for this task?
- What type of learning algorithm should I use?
- How should I evaluate my model's performance?

- We want our model to "learn" to recognize a concept
- So, what does it mean to <u>learn</u>?

• The machine learning definition of *learning*:

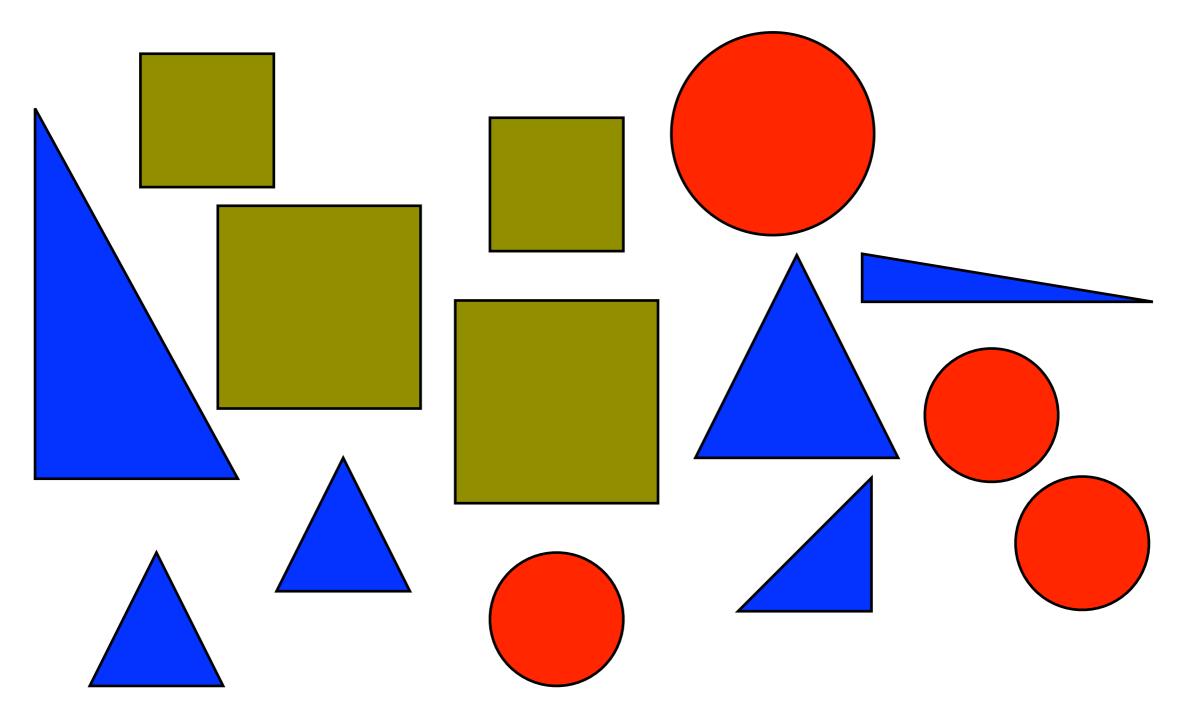
A machine *learns* with respect to a particular task T, performance metric P, and experience E, if the system improves its performance P at task T following experience E. -- Tom Mitchell

• The machine learning definition of *learning*:

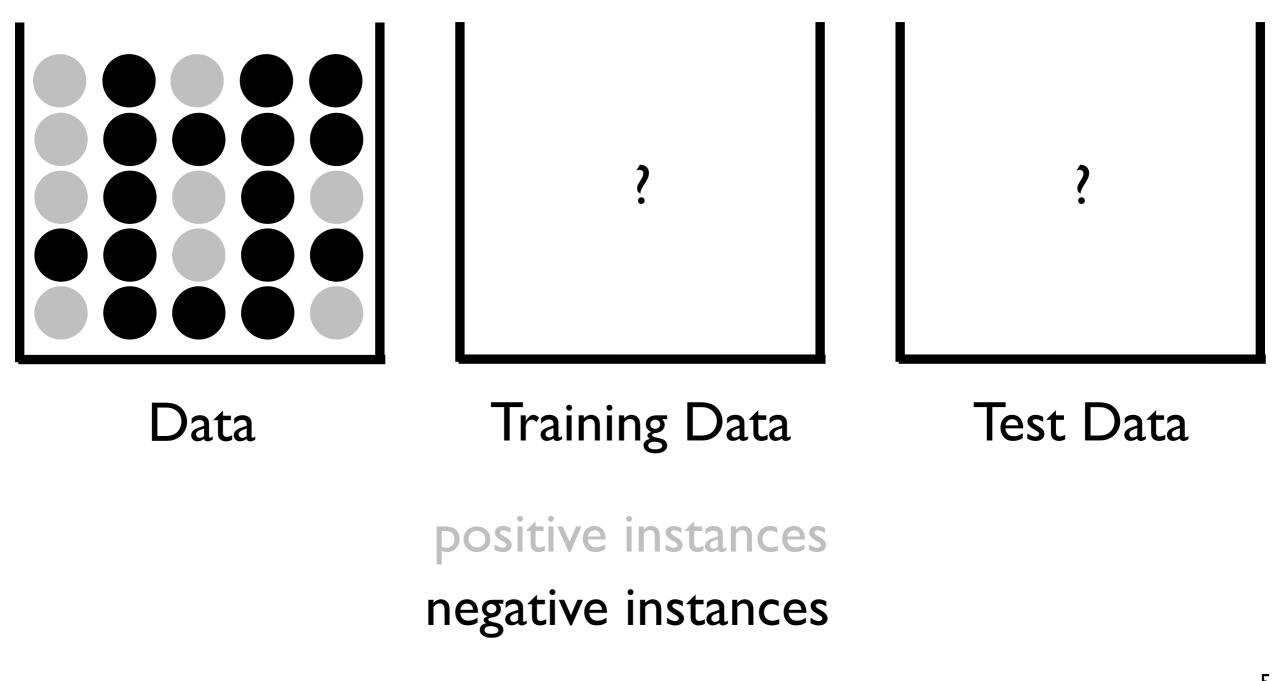
A machine *learns* with respect to a particular task T, performance metric P, and experience E, if the system improves its <u>performance P</u> at task T following experience E. -- Tom Mitchell

- We want our model to improve its <u>generalization</u> <u>performance</u>!
- That is, its performance on previously unseen data!
- Generalize: to derive or induce a general conception or principle from particulars. -- Merriam-Webster
- In order to test generalization performance, the training and test data cannot be the same.
- Why?

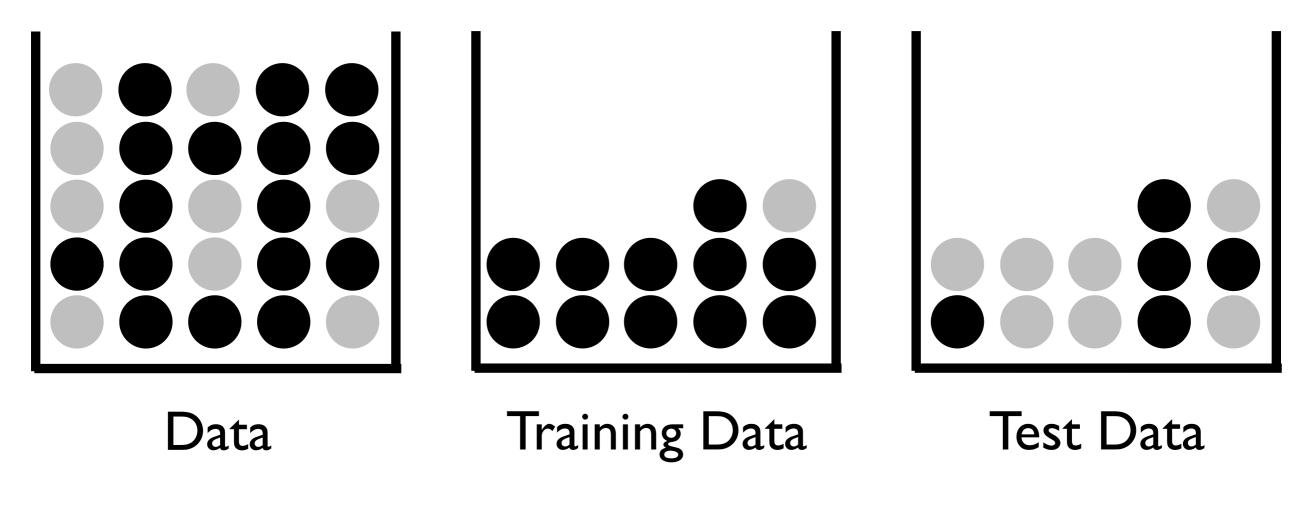
Training data + Representation what could possibly go wrong?



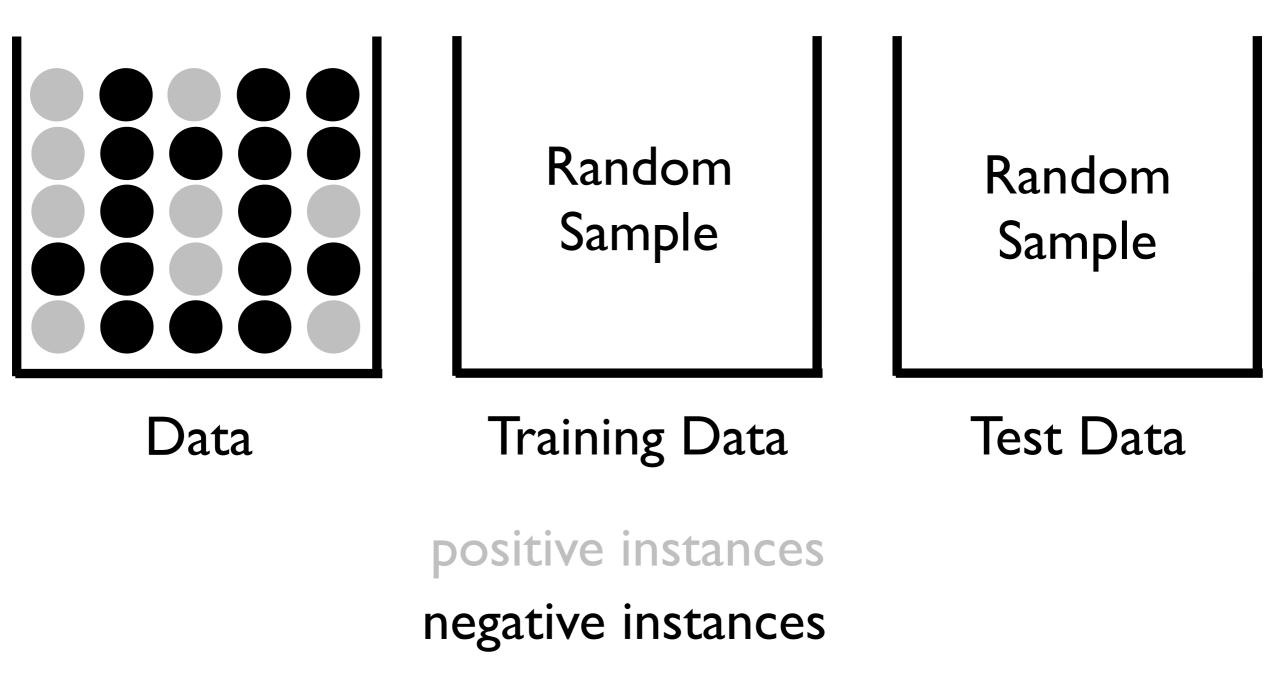
- While we don't want to test on training data, models usually perform the best when the training and test set are derived from the same "probability distribution".
- What does that mean?



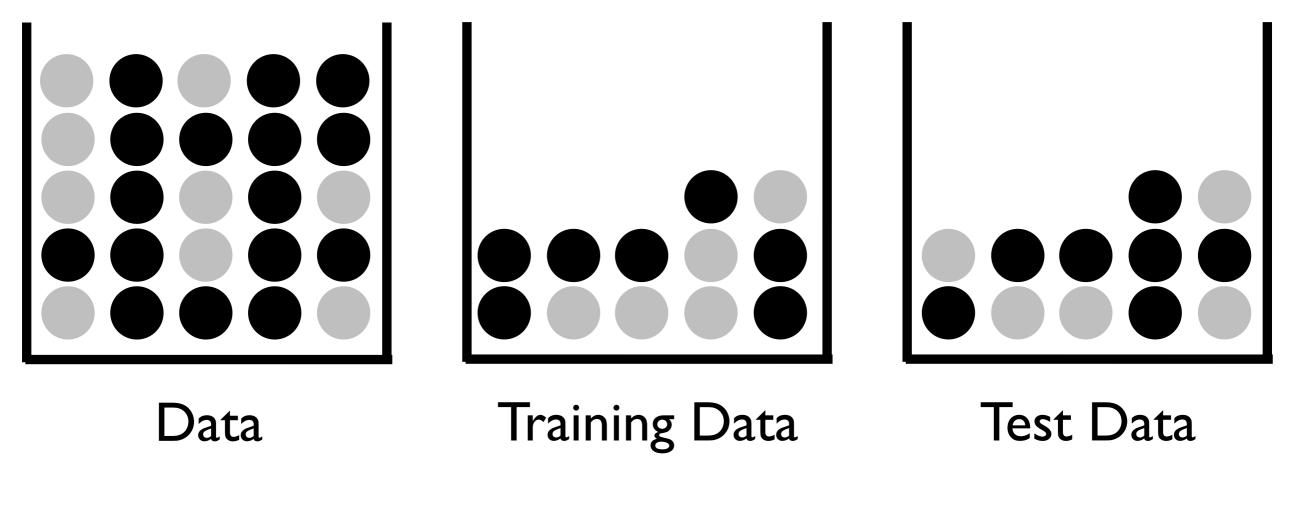
• Is this a good partitioning? Why or why not?



positive instances negative instances



• On average, random sampling should produce comparable data for training and testing



positive instances negative instances

- Models usually perform the best when the training and test set have:
 - a similar proportion of positive and negative examples
 - a similar co-occurrence of feature-values and each target class value

- Caution: in some situations, partitioning the data randomly might inflate performance in an unrealistic way!
- How the data is split into training and test sets determines what we can claim about generalization performance
- The appropriate split between training and test sets is usually determined on a case-by-case basis

Predictive Analysis discussion

- Spam detection: should the training and test sets contain email messages from the <u>same sender</u>, <u>same recipient</u>, and/or <u>same timeframe</u>?
- Topic segmentation: should the training and test sets contain potential boundaries from the <u>same discourse</u>?
- Opinion mining for movie reviews: should the training and test sets contain reviews for the <u>same movie</u>?
- Sentiment analysis: should the training and test sets contain blog posts from the <u>same discussion thread</u>?

Predictive Analysis questions

- Is a particular concept appropriate for predictive analysis?
- What should the unit of analysis be?
- How should I divide the data into training and test sets?
- What is a good feature representation for this task?
- What type of learning algorithm should I use?
- How should I evaluate my model's performance?

Predictive Analysis three types of classifiers

- Linear classifiers
- Decision tree classifiers
- Instance-based classifiers

Predictive Analysis three types of classifiers

- All types of classifiers learn to make predictions based on the input feature values
- However, different types of classifiers combine the input feature values in different ways
- Chapter 3 in the book refers to a trained model as knowledge representation

$$y = \begin{cases} 1 & \text{if } w_0 + \sum_{j=1}^n w_j x_j > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$y = \begin{cases} 1 & \text{if } w_0 + \sum_{j=1}^n w_j x_j > 0 \\ 0 & \text{otherwise} \end{cases}$$

parameters learned by the model predicted value (e.g., I = positive, 0 = negative)

test instance

model weights

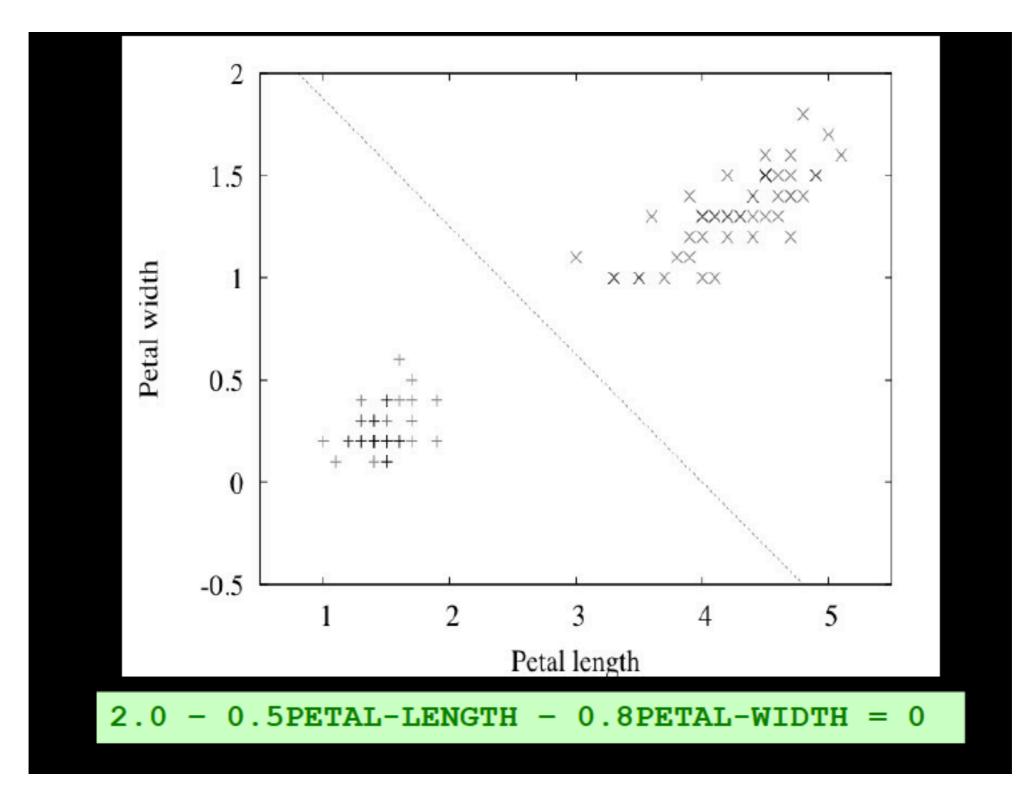
w_0	w_1	w_2	w_3
2.0	-5.0	2.0	1.0

f_1	f_2	f_3
0.5	1.0	0.2

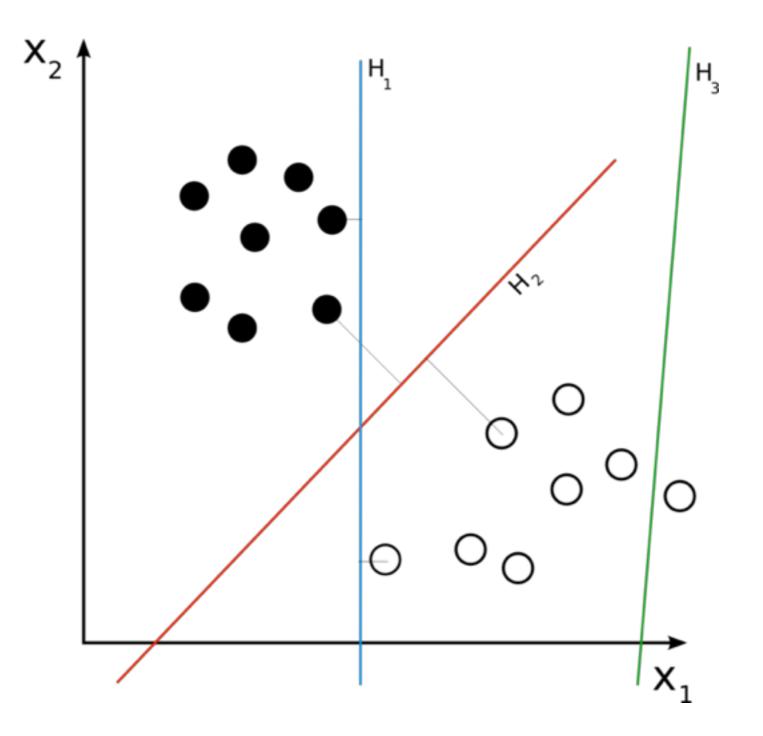
output = $2.0 + (0.50 \times -5.0) + (1.0 \times 2.0) + (0.2 \times 1.0)$

output = 1.7

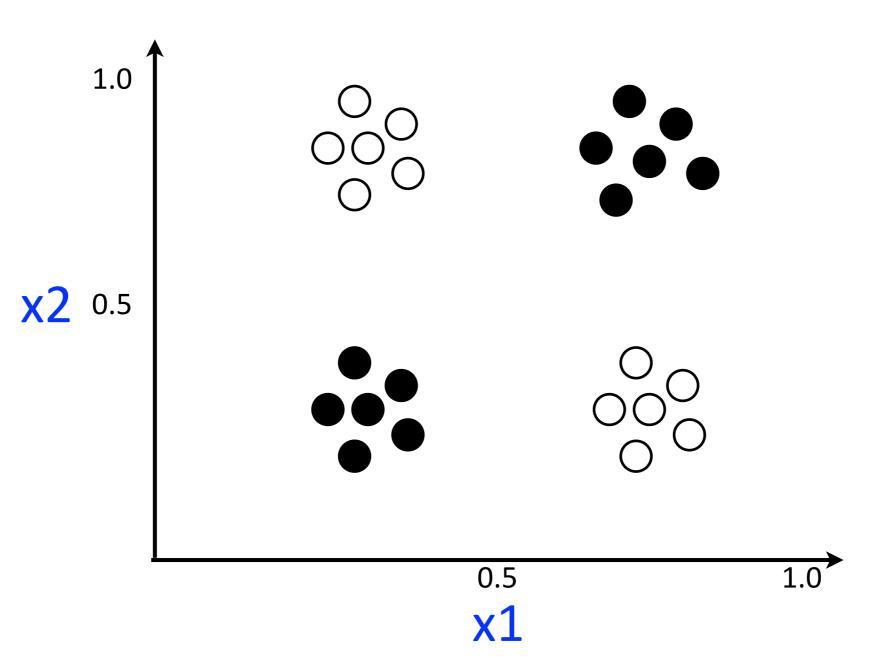
output prediction = positive



(two-feature example borrowed from Witten *et al.* textbook)



(source: http://en.wikipedia.org/wiki/File:Svm_separating_hyperplanes.png)

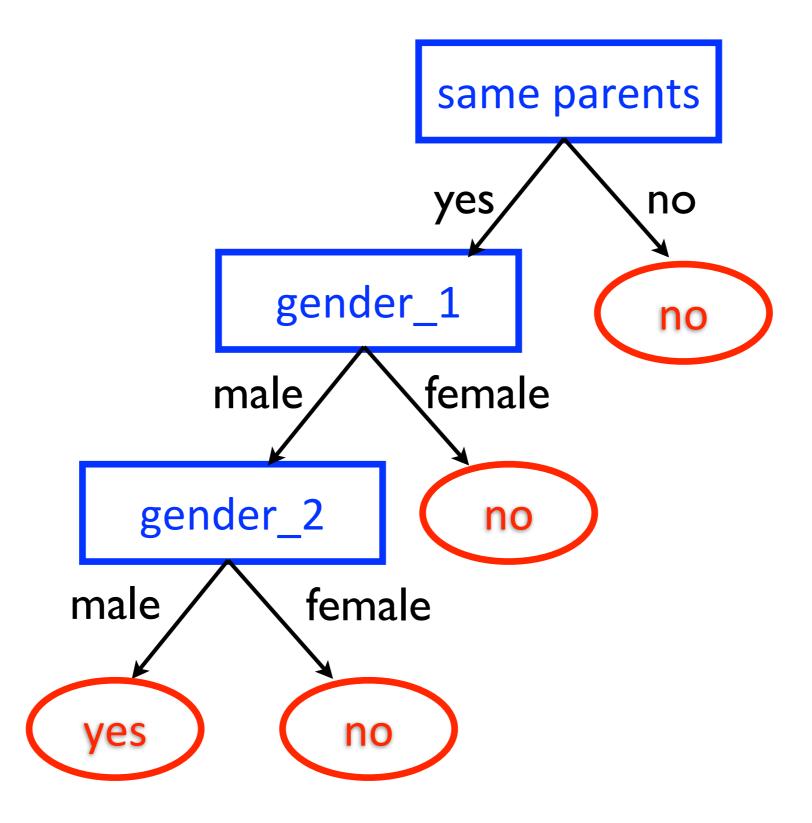


• Would a linear classifier do well on positive (black) and negative (white) data that looks like this?

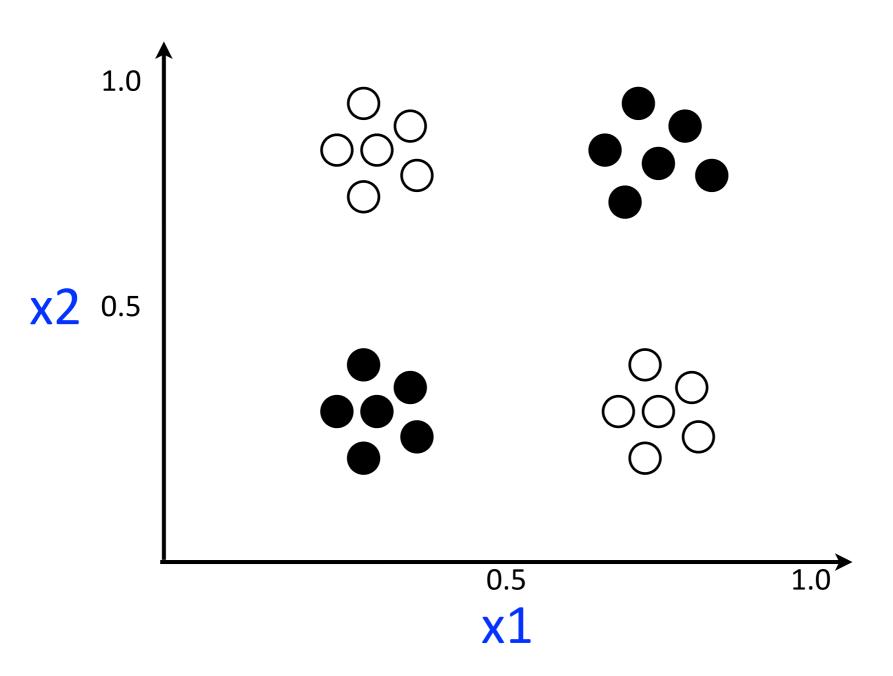
Predictive Analysis three types of classifiers

- Linear classifiers
- Decision tree classifiers
- Instance-based classifiers

Predictive Analysis example of decision tree classifier: Brother(X,Y)



Predictive Analysis decision tree classifiers

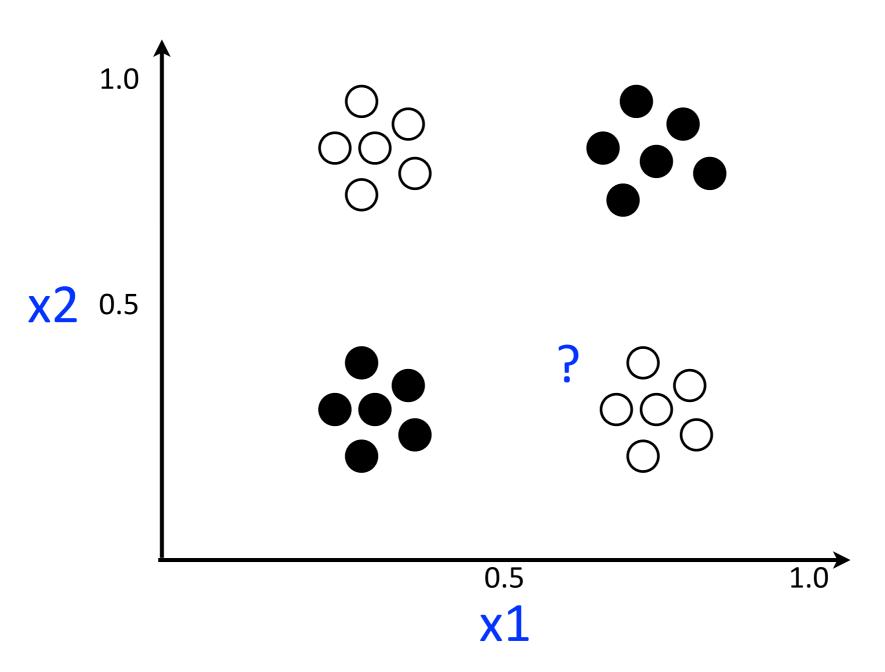


• Draw a decision tree that would perform perfectly on this training data!

Predictive Analysis three types of classifiers

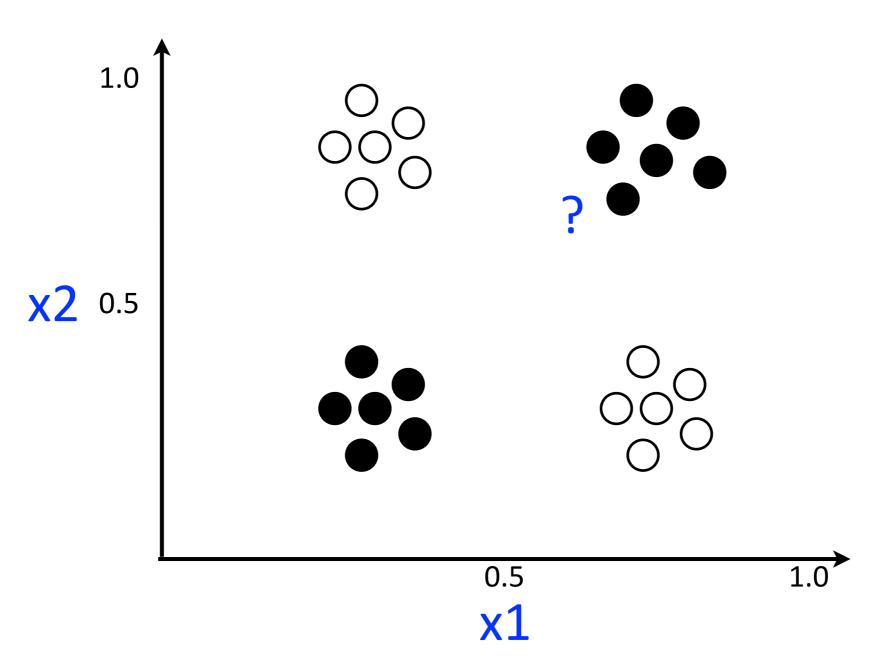
- Linear classifiers
- Decision tree classifiers
- Instance-based classifiers

Predictive Analysis instance-based classifiers



predict the class associated with the most similar training examples

Predictive Analysis instance-based classifiers



predict the class associated with the most similar training examples

Predictive Analysis instance-based classifiers

- Assumption: instances with similar feature values should have a similar label
- Given a test instance, predict the label associated with its nearest neighbors
- There are many different similarity metrics for computing distance between training/test instances
- There are many ways of combining labels from multiple training instances

Predictive Analysis questions

- Is a particular concept appropriate for predictive analysis?
- What should the unit of analysis be?
- How should I divide the data into training and test sets?
- What is a good feature representation for this task?
- What type of learning algorithm should I use?
- How should I evaluate my model's performance?