#### Statistical Properties of Text

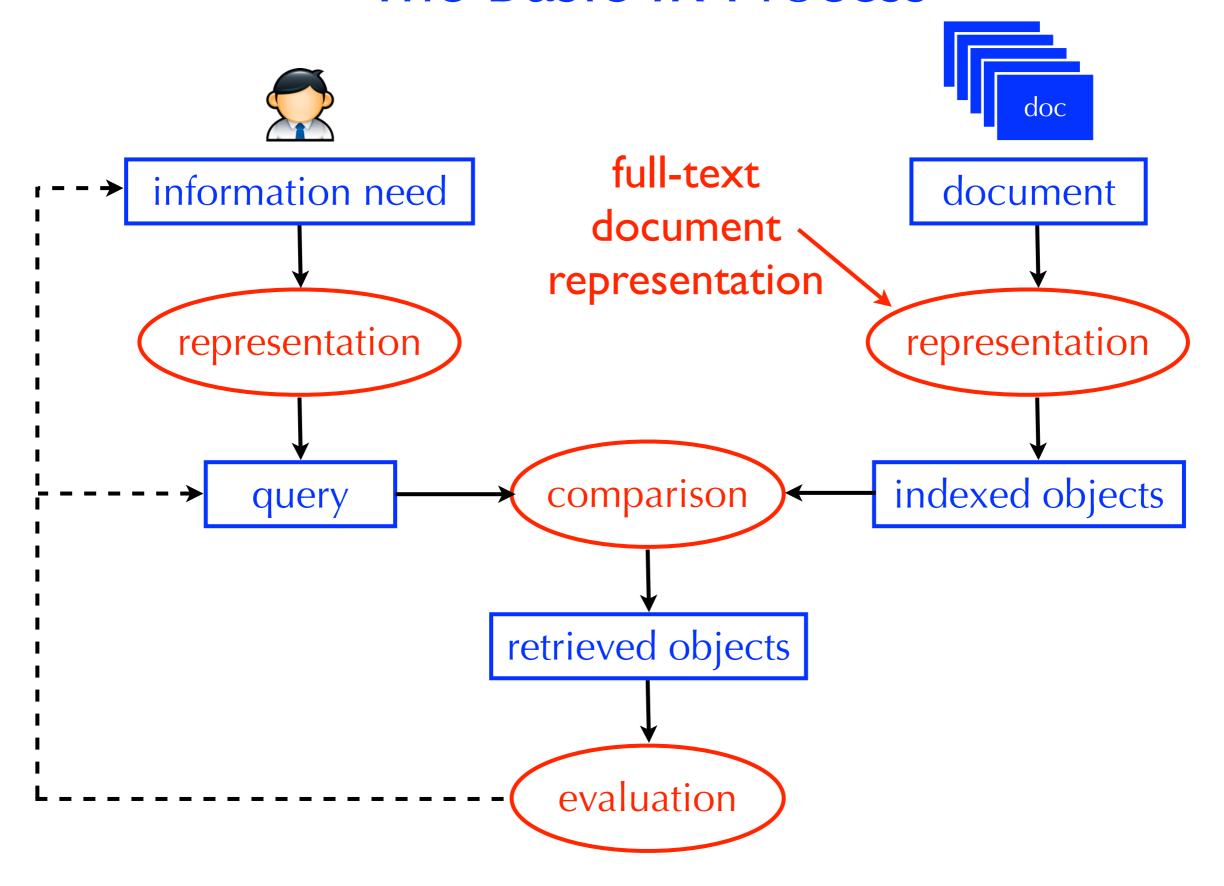
Jaime Arguello

INLS 509: Information Retrieval

jarguell@email.unc.edu

September 11, 2013

#### The Basic IR Process



#### **Text-Processing**

<b>Gerard Salton</b> (8 March 1927 in <a href="/wiki/Nuremberg") title="Nuremberg">Nuremberg</a> - 28 August 1995), also known as Gerry Salton, was a Professor of <a href="/wiki/Computer\_Science" title="Computer Science" class="mw-redirect">Computer Science</a> at <a href="/wiki/Cornell\_University" title="Cornell University">Cornell University</a>. Salton was perhaps the leading computer scientist working in the field of <a href="/wiki/Information\_retrieval" title="Information retrieval">information retrieval</a> during his time. His group at Cornell developed the <a href="/wiki/ SMART\_Information\_Retrieval\_System" title="SMART Information Retrieval System">SMART Information Retrieval System</a>, which he initiated when he was at Harvard.

- Mark-up removal
- Down-casing
- Tokenization

#### **Text-Processing**

gerard salton 8 march 1978 in nuremberg 28 august 1995 also know as gerry salton was professor of computer science at cornell university salton was perhaps the leading computer scientist working in the field of information retrieval during his time his group at cornell developed the smart information retrieval system which he initiated when he was at harvard

- Our goal is to <u>describe</u> content using content
- Are all these words equally descriptive?
- What are the most descriptive words?
- How might a computer identify these?

#### Statistical Properties of Text

- We know that language use if very varied
- There are <u>many</u> ways to convey the same information (which makes IR difficult)
- But, are there statistical properties of word usage that are predictable? Across languages? Across modalities? Across genres?

### IMDB Corpus internet movie database

- Each document corresponds to a movie, a plot description, and a list of artists and their roles
  - number of documents: 230,721
  - number of term occurrences (tokens): 36,989,629
  - number of unique terms (token-types): 424,035

http://www.imdb.com/

### IMDB Corpus

#### term-frequencies

| rank | term | frequency | rank | term      | frequency |
|------|------|-----------|------|-----------|-----------|
|      | the  | 1586358   | 11   | year      | 250151    |
| 2    | a    | 854437    | 12   | he        | 242508    |
| 3    | and  | 822091    | 13   | movie     | 241551    |
| 4    | to   | 804137    | 14   | her       | 240448    |
| 5    | of   | 657059    | 15   | artist    | 236286    |
| 6    | in   | 472059    | 16   | character | 234754    |
| 7    | is   | 395968    | 17   | cast      | 234202    |
| 8    | i    | 390282    | 18   | plot      | 234189    |
| 9    | his  | 328877    | 19   | for       | 207319    |
| 10   | with | 253153    | 20   | that      | 197723    |

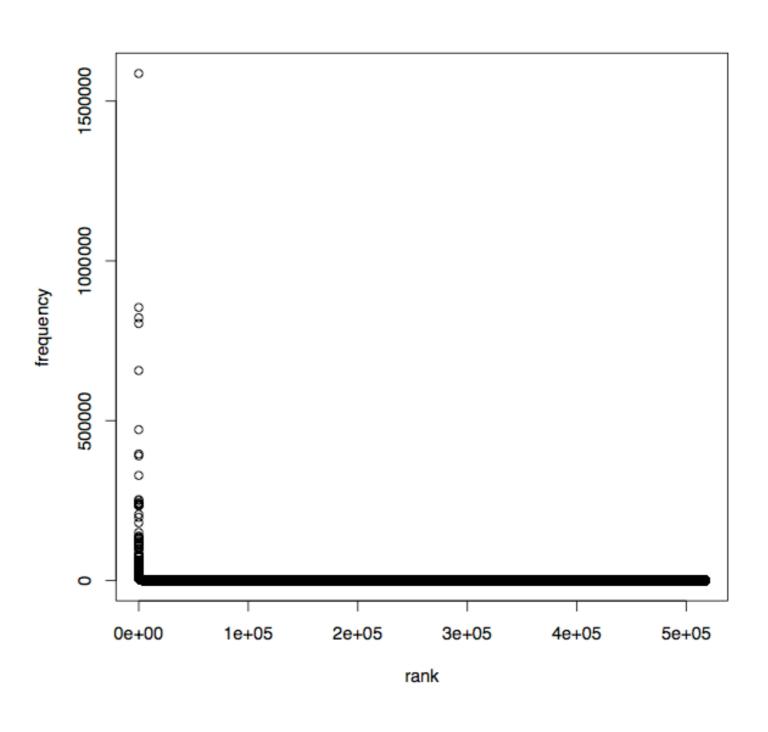
### IMDB Corpus

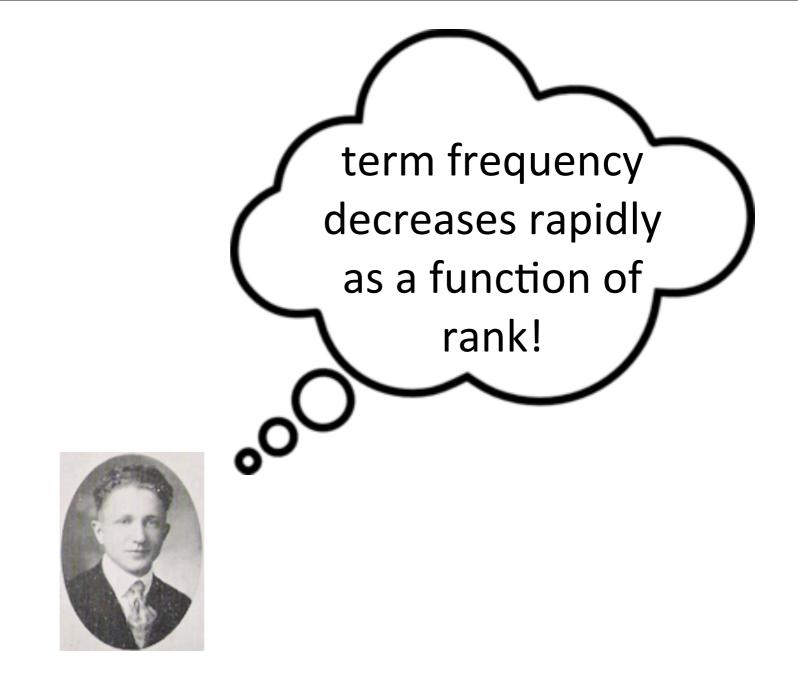
#### term-frequencies

| rank | term    | frequency | rank | term  | frequency |
|------|---------|-----------|------|-------|-----------|
| 21   | on      | 180760    | 31   | their | 116803    |
| 22   | as      | 150721    | 32   | they  | 116113    |
| 23   | by      | 138580    | 33   | has   | 113336    |
| 24   | himself | 138214    | 34   | him   | 112589    |
| 25   | but     | 134017    | 35   | when  | 106723    |
| 26   | she     | 132237    | 36   | I     | 100475    |
| 27   | who     | 132151    | 37   | are   | 99544     |
| 28   | an      | 129717    | 38   | it    | 98455     |
| 29   | from    | 122086    | 39   | man   | 87115     |
| 30   | at      | 118190    | 40   | ii    | 80583     |

### IMDB Corpus

#### term-frequencies





George Kingsley Zipf



- Term-frequency decreases <u>rapidly</u> as a function of rank
- How rapidly?
- Zipf's Law:

$$f_t = \frac{k}{r_t}$$

- **f**<sub>t</sub> = frequency (number of times term **t** occurs)
- $r_t$  = frequency-based rank of term t
- k = constant
- To gain more intuition, let's divide both sides by N, the total term-occurrences in the collection

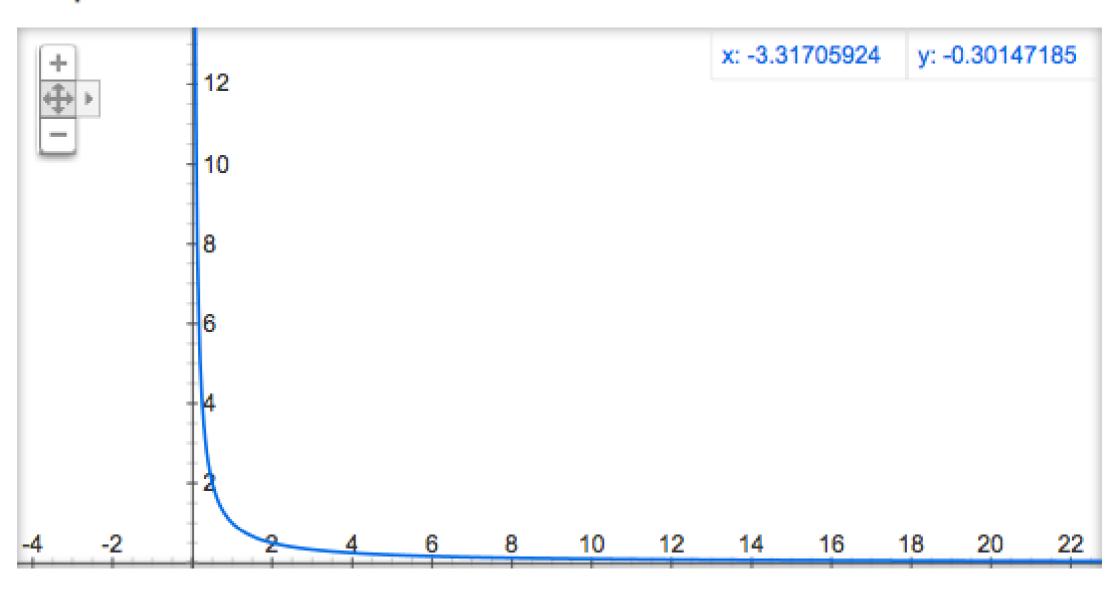
$$\frac{1}{N} \times f_t = \frac{1}{N} \times \frac{k}{r_t}$$

$$P_t = \frac{c}{r_t}$$

- P<sub>t</sub> = proportion of the collection corresponding to term t
- $\mathbf{c} = \text{constant}$
- For English c = 0.1 (more or less)
- What does this mean?

$$P_t = \frac{c}{r_t}$$

#### Graph for 1/x



$$P_t = \frac{c}{r_t} \qquad \qquad \mathbf{c} = 0.1$$

- The most frequent term accounts for 10% of the text
- The second most frequent term accounts for 5%
- The third most frequent term accounts for about 3%
- Together, the top 10 account for about 30%.
- Together, the top 20 account for about 36%
- Together, the top 50 account for about 45%
  - that's nearly half the text!
- What <u>else</u> does Zipf's law tell us?

 With some crafty manipulation, it also tells us that the faction of terms that occur n times is given by:

$$\frac{1}{n(n+1)}$$

• So, what <u>fraction</u> of the terms occur only once?

 With some crafty manipulation, it also tells us that the faction of terms that occur n times is given by:

$$\frac{1}{n(n+1)}$$

- About half the terms occur only once!
- About 75% of the terms occur 3 times or less!
- About 83% of the terms occur 5 times or less!
- About 90% of the terms occur 10 times or less!

 Note: the <u>fraction</u> of terms that occur n times or less is given by:

$$\sum_{i=1}^{n} \frac{1}{i(i+1)}$$

• That is, we have to add the fraction of terms that appear 1, 2, 3, ... up to n times

#### Verifying Zipf's Law

visualization

$$f = \frac{k}{r}$$

... still Zipf's Law 
$$\log(f) = \log(\frac{k}{r})$$

... still Zipf's Law 
$$\log(f) = \log(k) - \log(r)$$

 So, Zipf's law holds, what would we see if we plotted  $log(f) \vee s. log(r)$ ?

#### Verifying Zipf's Law

visualization

$$f = \frac{k}{r}$$

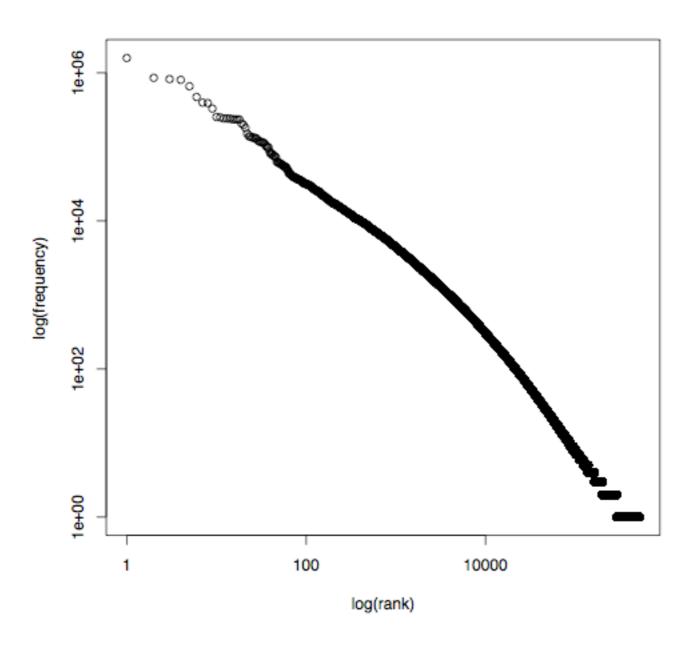
... still Zipf's Law 
$$\log(f) = \log(\frac{k}{r})$$

... still Zipf's Law 
$$\log(f) = \log(k) - \log(r)$$

 If Zipf's law holds true, we should be able to plot log(f) vs. log(r) and see a straight light with a slope of -1



## Zipf's Law IMDB Corpus



# Does Zipf's Law generalize across languages?



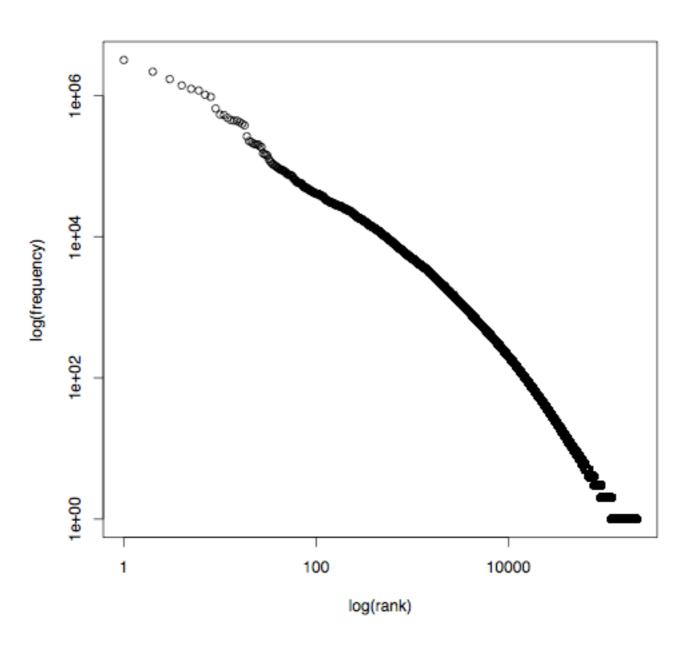
#### Zipf's Law European Parliament: English



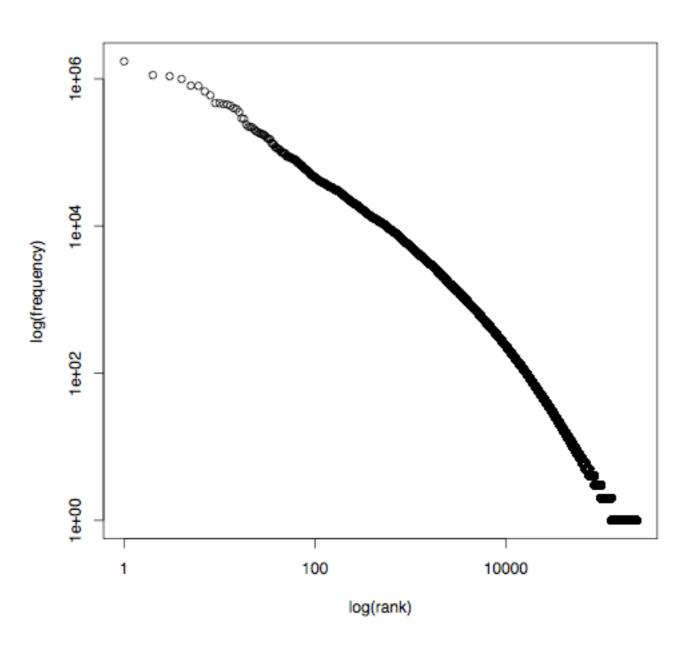
 Transcribed speech from proceedings of the European Parliament (Koehn '05)



#### Zipf's Law European Parliament: Spanish

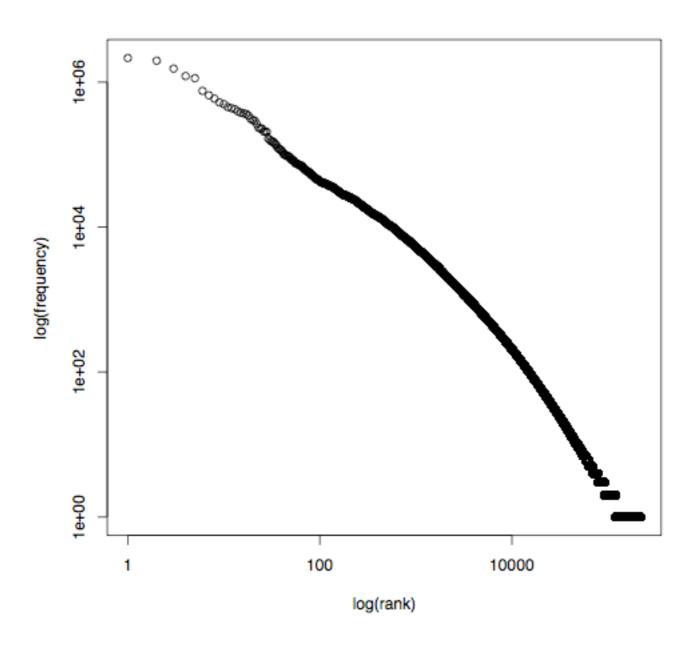


#### Zipf's Law European Parliament: Italian



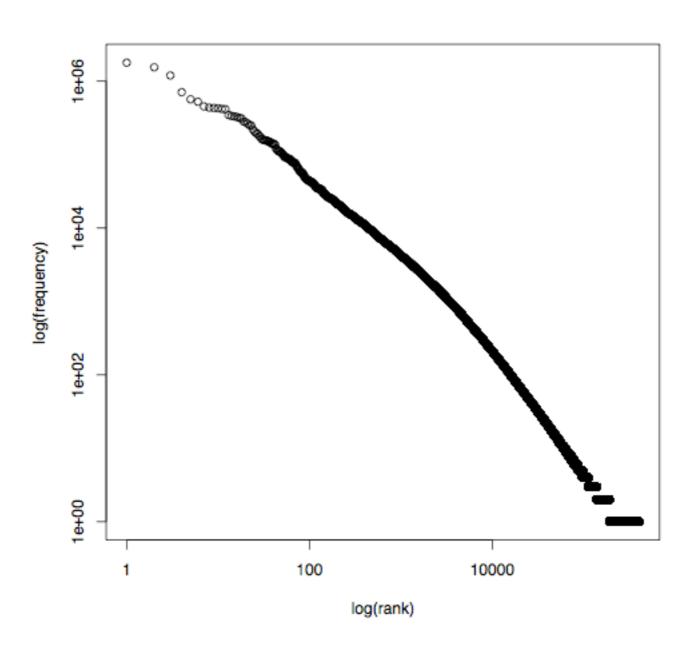


#### Zipf's Law European Parliament: Portuguese



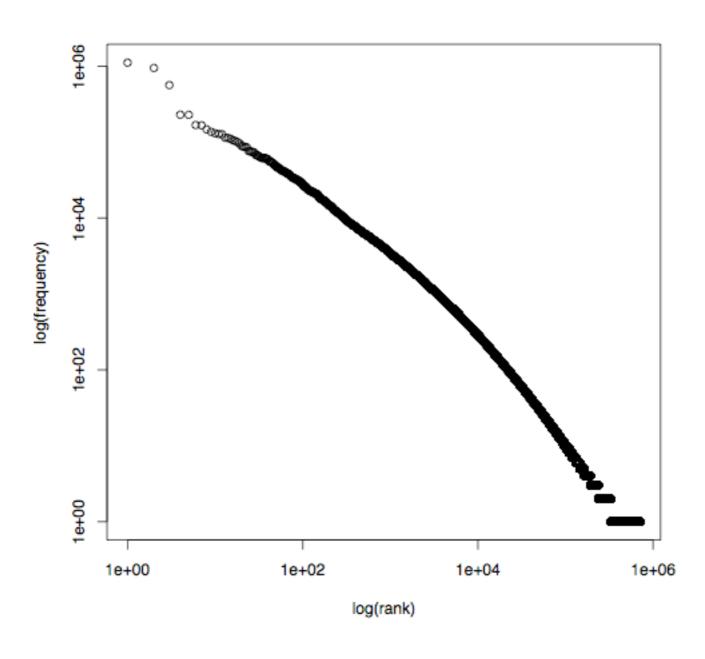


#### Zipf's Law European Parliament: German

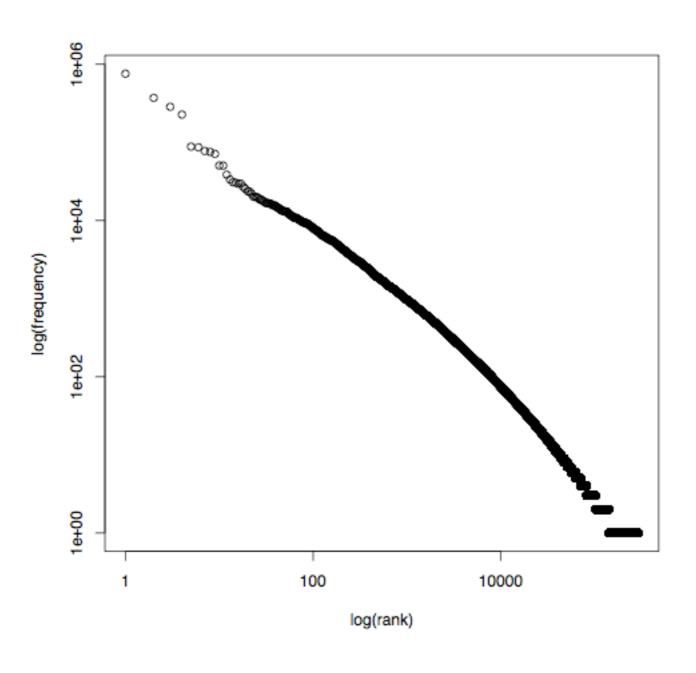




#### Zipf's Law European Parliament: Finnish



#### Zipf's Law European Parliament: Hungarian

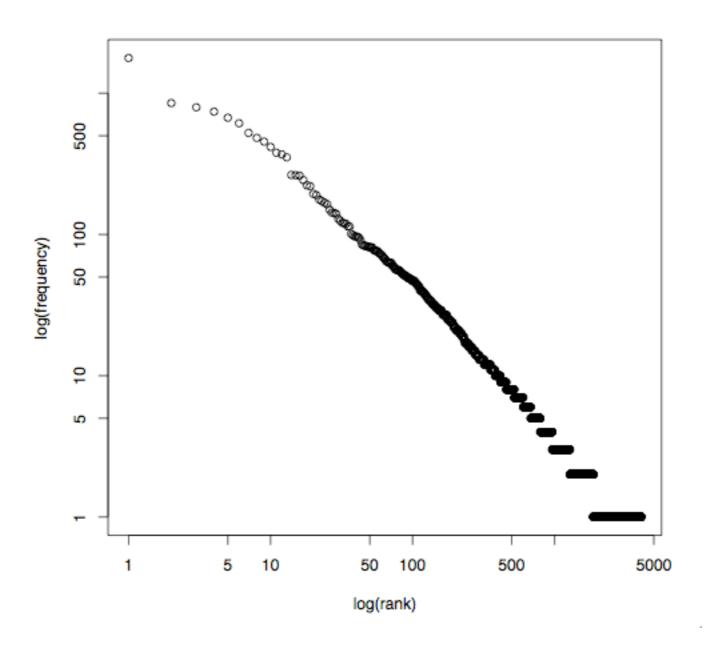


### Yes, but these texts are translations of the same content!

What about <u>different</u> texts? different topics? different genres? different sizes? different complexity?

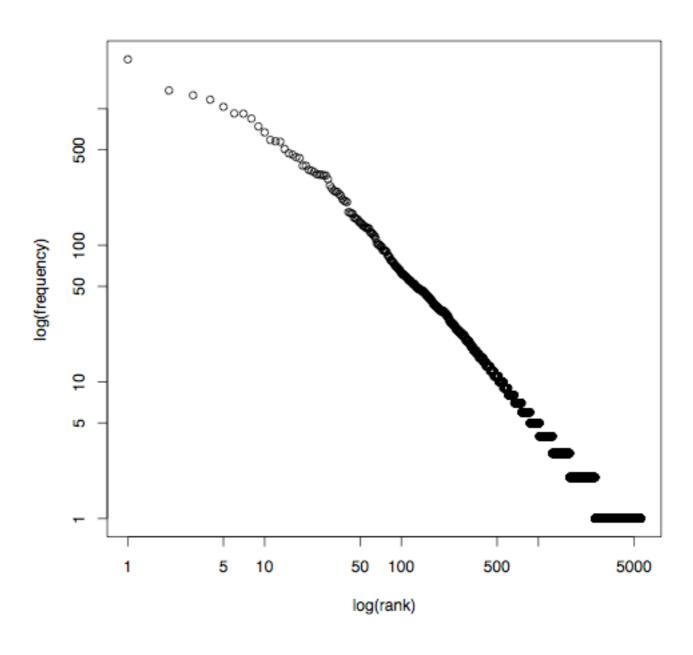


#### Zipf's Law Alice in Wonderland



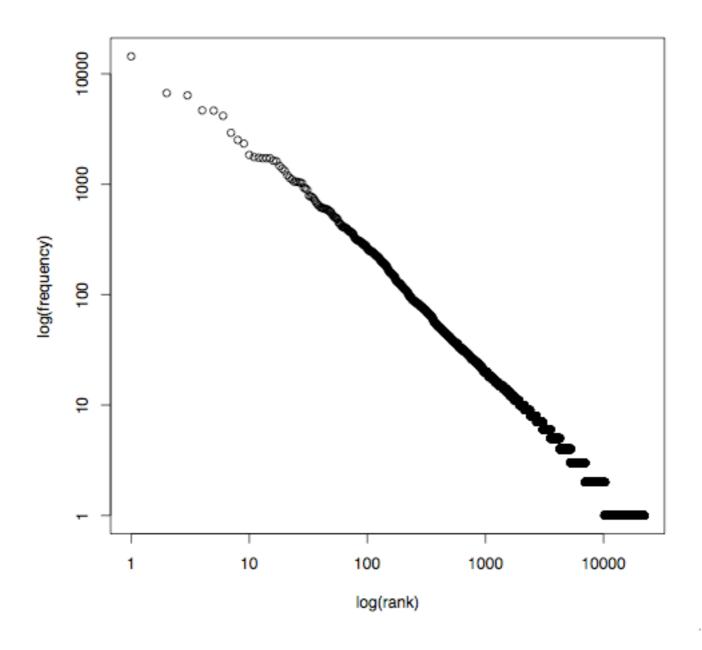


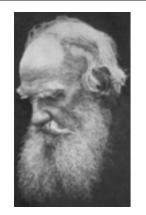
#### Zipf's Law Peter Pan



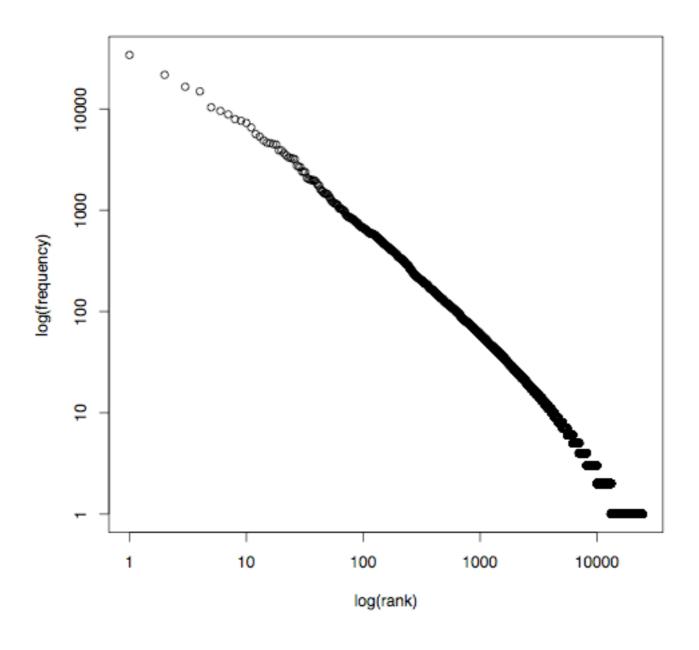


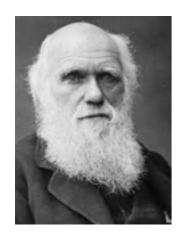
#### Zipf's Law Moby Dick



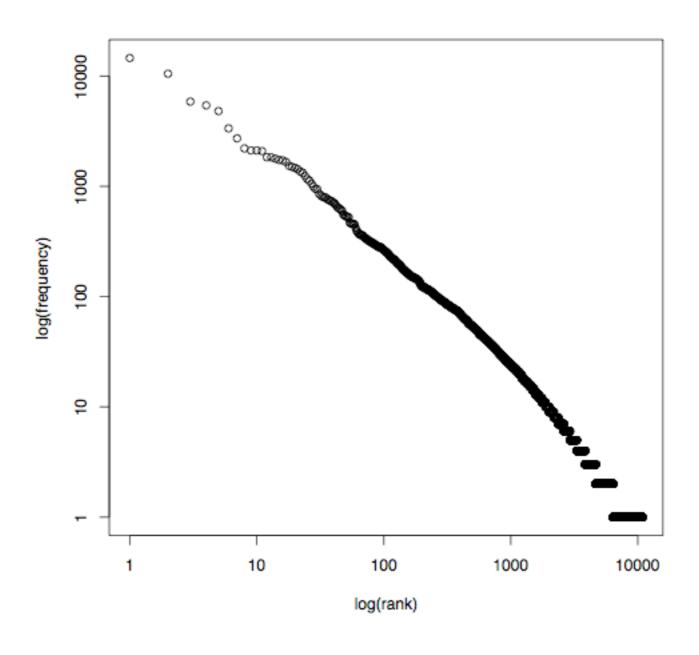


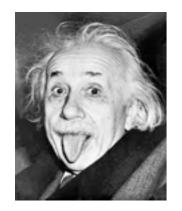
#### Zipf's Law War and Peace



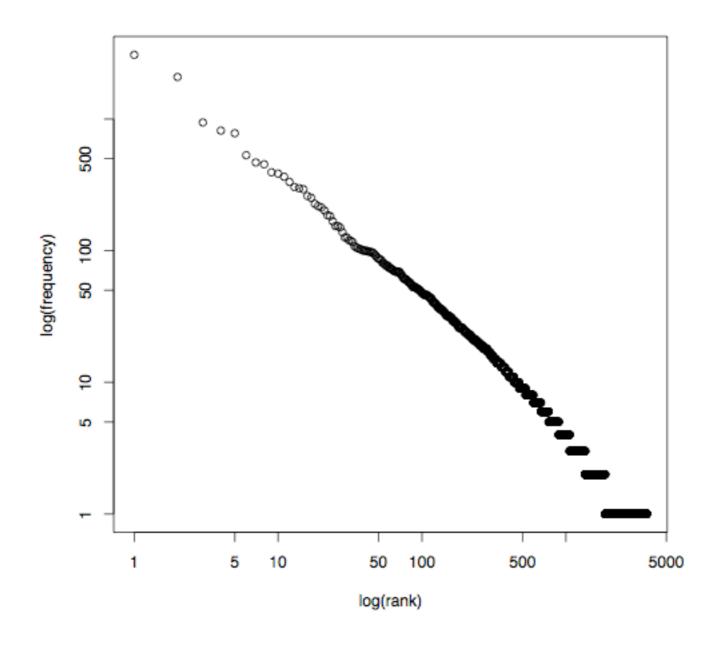


#### Zipf's Law On the Origin of Species



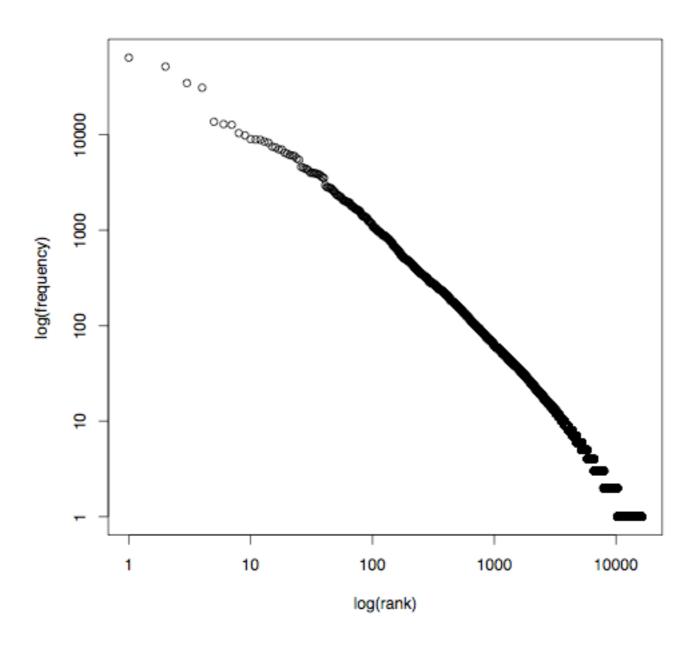


Zipf's Law Relativity: The Special and General Theory



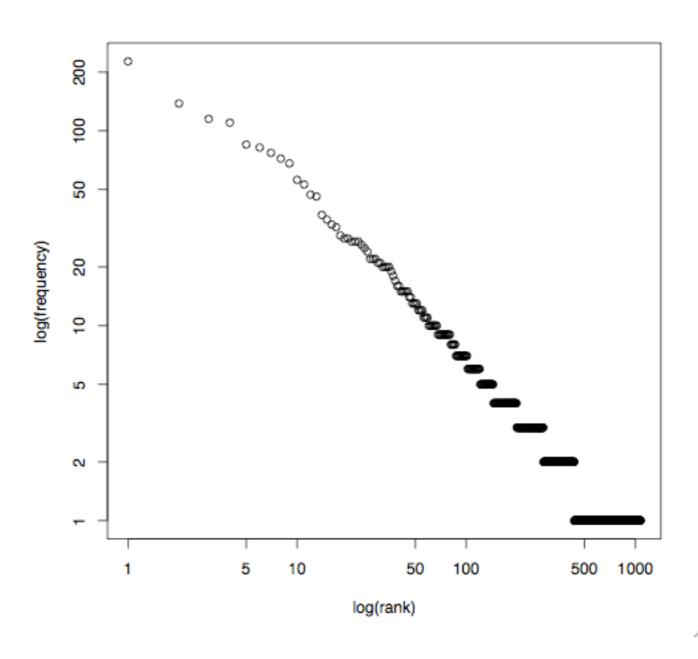


#### Zipf's Law The King James Bible





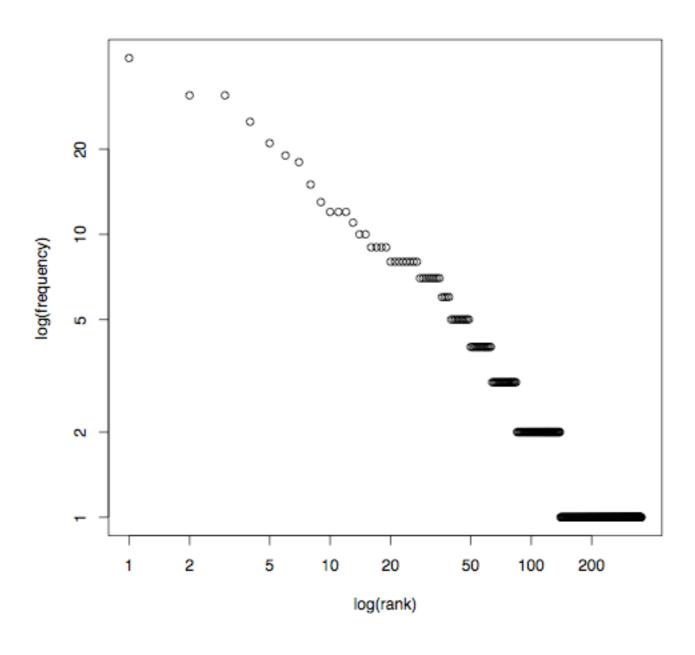
# Zipf's Law The Tale of Peter Rabbit



(text courtesy of Project Gutenberg)



#### Zipf's Law The Three Bears



(text courtesy of Project Gutenberg)

# Zipf's Law

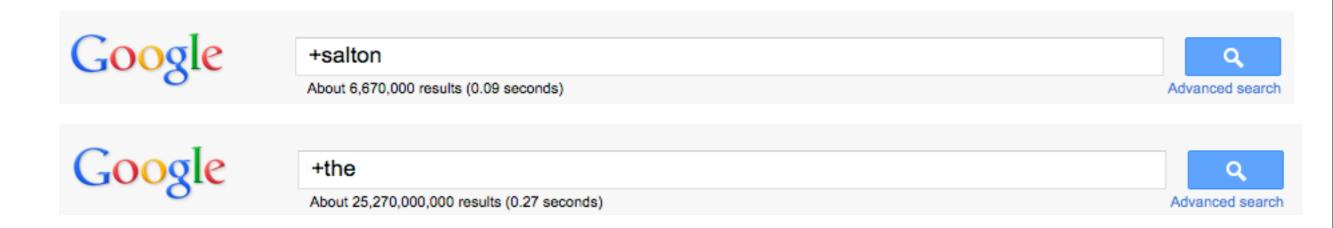
- Zipf's Law holds true for:
  - different languages
  - different sizes of text
  - different genres
  - different topics
  - different complexity of content

gerard salton 8 march 1978 in nuremberg 28 august 1995 also know as gerry salton was professor of computer science at cornell university salton was perhaps the leading computer scientist working in the field of information retrieval during his time his group at cornell developed the smart information retrieval system which he initiated when he was at harvard

- The most important words are those that are frequent in the document, but not the most frequent in the collection
- Most retrieval models (as we will see) exploit this idea
- Zipf's law allows us to <u>automatically</u> identify these nondescriptive terms and treat them differently
- Example: (gerard OR salton OR at OR cornell)

- Ignoring the most frequent terms greatly reduces the size of the index
- The top 50 accounts for about 45% of the collection
- Warning: these words <u>can</u> be important in combination with others (e.g., in proximity operators)
- Example queries: "to be or not to be", "the who", "state of the union", "it had to be you"

- Ignoring the most frequent terms can improve retrieval efficiency (response time)
- The inverted lists associated with the most frequent terms are huge relative to others
- Alternative: leave them in the index and remove them from the query, unless they occur in a proximity operator

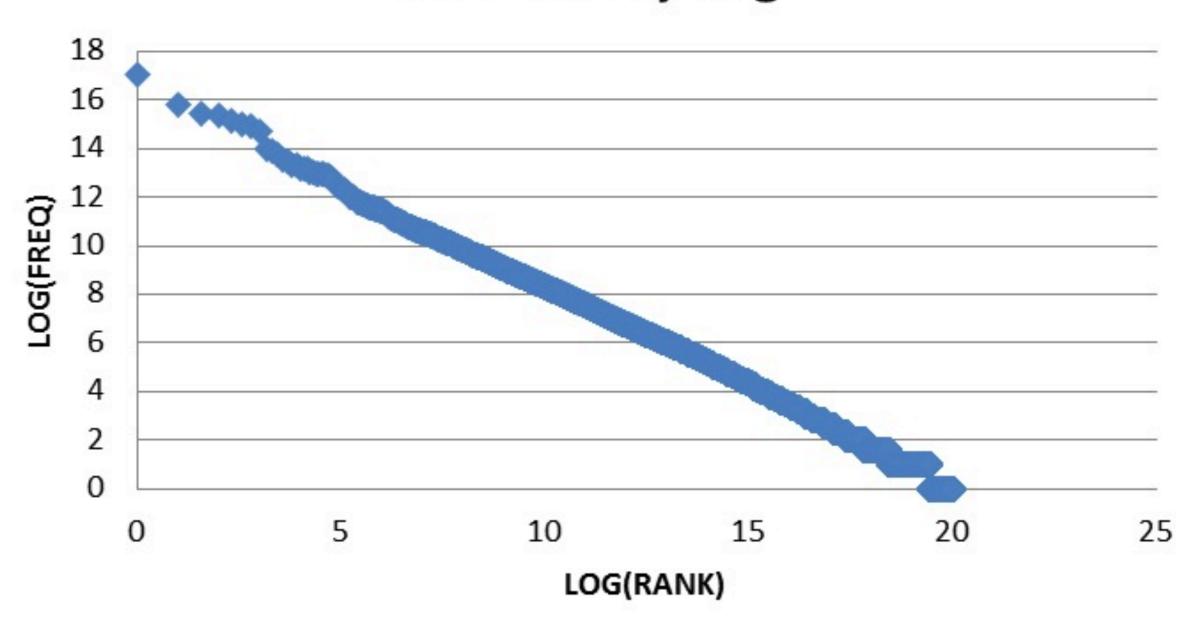


- Ignoring the most frequent terms can improve retrieval effectiveness
- Very frequent terms may not be related to the main content of the doc, but may be a "quirk" of the corpus

| <u>rank</u> | term | frequency | rank | term      | frequency |
|-------------|------|-----------|------|-----------|-----------|
|             | the  | 1586358   | - 11 | year      | 250151    |
| 2           | a    | 854437    | 12   | he        | 242508    |
| 3           | and  | 822091    | 13   | movie     | 241551    |
| 4           | to   | 804137    | 14   | her       | 240448    |
| 5           | of   | 657059    | 15   | artist    | 236286    |
| 6           | in   | 472059    | 16   | character | 234754    |
| 7           | is   | 395968    | 17   | cast      | 234202    |
| 8           | i    | 390282    | 18   | plot      | 234189    |
| 9           | his  | 328877    | 19   | for       | 207319    |
| 10          | with | 253153    | 20   | that      | 197723    |

- We've talked about Zipf's Law in the collection
- What about Zipf's Law in queries issued to the search engine?

#### **AOL Query Log**



- Same trend: a few queries occur very frequently, while most occur very infrequently
- Opportunity: the system can be tweaked to do well on those queries it is likely to "see" again and again
- Curse: this is only a <u>partial</u> solution.
- In Web search, about half the queries ever observed are unique
- How does this effect evaluation?

• Given Zipf's Law, as a collection grows, how will the size of the vocabulary grow?

## Vocabulary Growth and Heaps' Law

- The number of <u>new</u> words <u>decreases</u> as the size of the corpus <u>increases</u>
- Heaps' Law:

$$v = k \times n^{\beta}$$

- $\mathbf{v} = \text{size of the vocabulary (number of unique words)}$
- n = size of the corpus (number of word-occurrences)
- $k = constant (10 \le k \le 100)$ 
  - not the same as k in Zipf's law
- $\mathbf{B} = \text{constant} \ (\mathbf{B} \approx 0.50)$



# Heaps' Law IMDB Corpus



#### Heaps' Law

- As the corpus grows, the number of <u>new</u> terms will increase dramatically at first, but then will increase at a <u>slower rate</u>
- Nevertheless, as the corpus grows, new terms will <u>always</u> be found (even if the corpus becomes huge)
  - there is no end to vocabulary growth
  - invented words, proper nouns (people, products), misspellings, email addresses, etc.

# Implications of Heaps' Law

- Given a corpus and a <u>new</u> set of data, the number of new index terms will depend on the size of the corpus
- Given more data, new index terms will always be required
- This may also be true for controlled vocabularies (?)
  - Given a corpus and a new set of data, the requirement for new <u>concepts</u> will depend on the size of the corpus
  - Given more data, new <u>concepts</u> will always be required

#### Term Co-occurrence

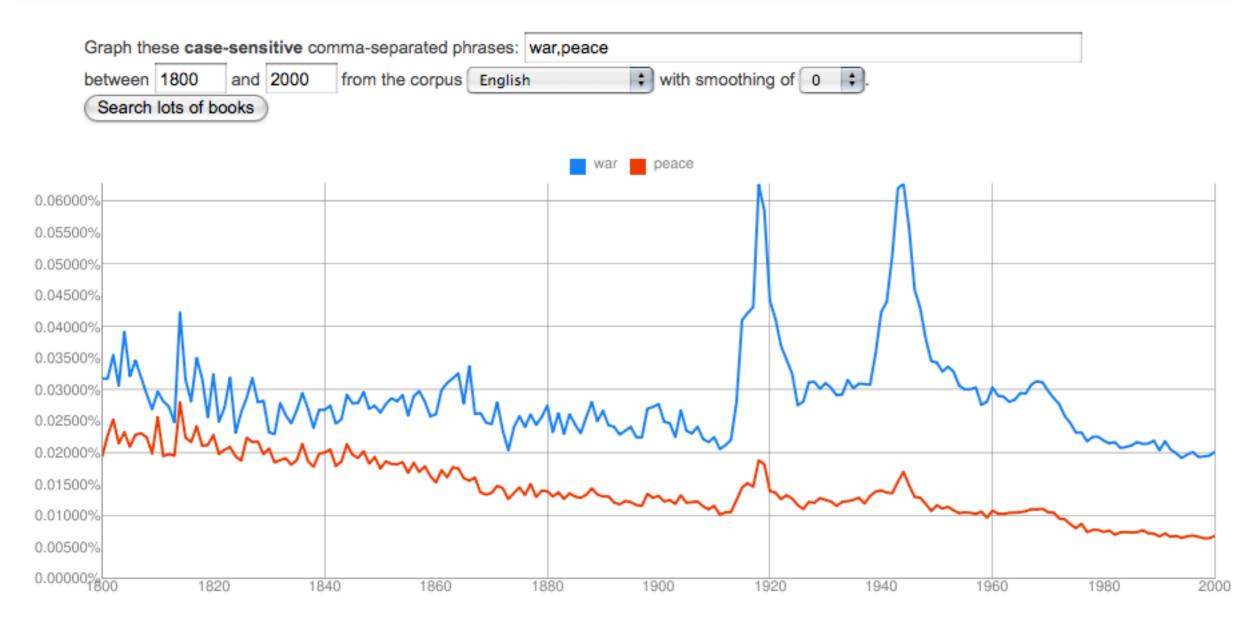
- So far, we've talked about statistics for <u>single</u> terms
- What about statistics for pairs of terms?
- Term co-occurrence considers the extent to which different terms tend to appear together in text
- Does knowledge that one term appears, tell us whether another term is likely to appear?

### Term Co-occurrence Example

war vs. peace



**Books Ngram Viewer** 



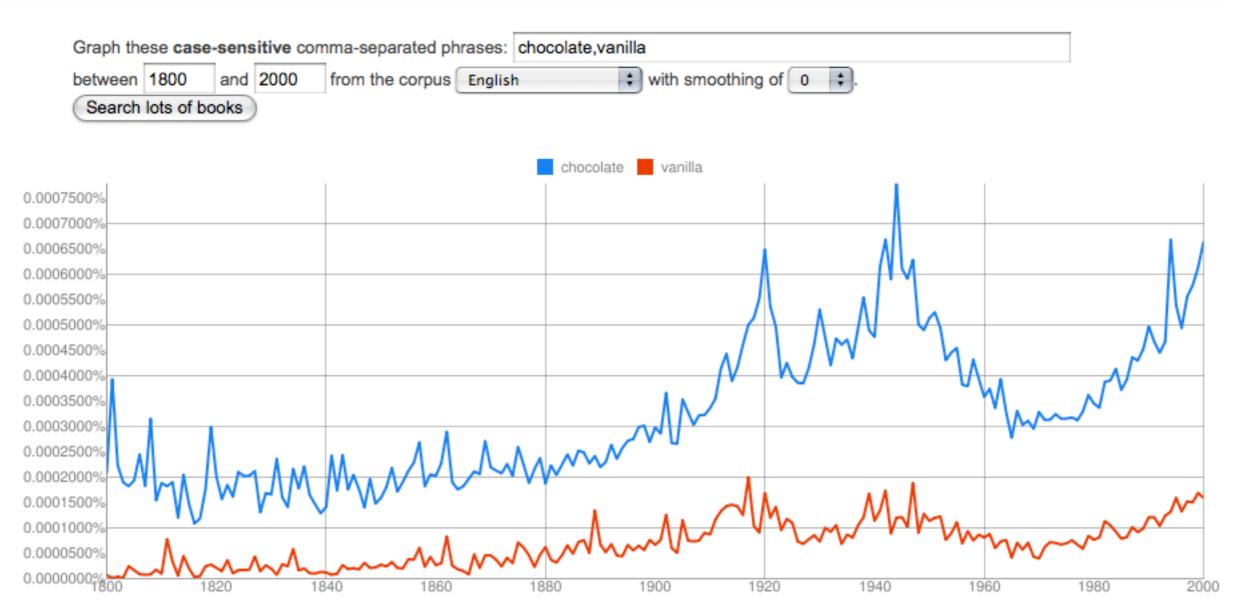
(The Google Books N-gram Corpus)

# Term Co-occurrence Example

#### chocolate vs. vanilla



**Books Ngram Viewer** 



(The Google Books N-gram Corpus)

# A Few Important Concepts in Probability Theory and Statistics

(Some material courtesy of Andrew Moore: <a href="http://www.autonlab.org/tutorials/prob.html">http://www.autonlab.org/tutorials/prob.html</a>)

#### Discrete Random Variable

- A is a discrete random variable if:
  - A describes an event with a finite number of possible outcomes (discrete vs continuous)
  - A describes and event whose outcome has some degree of uncertainty (random vs. pre-determined)
- A is a boolean-valued random variable if it describes an event with two outcomes: TRUE or FALSE
- Can you name some examples of boolean-valued random variables?

# Boolean-Valued Random Variables Examples

- A = it will rain tomorrow
- A = the outcome of a coin-flip will be heads
- A = the fire alarm will go off sometime this week
- A = The US president in 2023 will be female
- A = you have the flu
- A = the word "retrieval" will occur in a document

#### **Probabilities**

- P(A=TRUE): the probability that the outcome is TRUE
  - the probability that it will rain tomorrow
  - the probability that the coin will show "heads"
  - the probability that "retrieval" appears in the doc
- P(A=FALSE): the probability that the outcome is FALSE
  - the probability that it will NOT rain tomorrow
  - the probability that the coin will show "tails"
  - the probability that "retrieval" does NOT appear in the doc

#### **Probabilities**

$$0 \le P(A=TRUE) \le I$$

$$0 \le P(A = FALSE) \le I$$

$$P(A=TRUE) + P(A=FALSE) = I$$

# Estimating the Probability of an Outcome

- P(heads=TRUE)
- P(rain tomorrow=TRUE)
- P(alarm sound this week=TRUE)
- P(female pres. 2023=TRUE)
- P(you have the flu=TRUE)
- P("retrieval" in a document=TRUE)

#### Statistical Estimation

- Use data to <u>estimate</u> the probability of an outcome
- Data = observations of previous outcomes of the event
- What is the probability that the coin will show "heads"?
- Statistical Estimation Example:
  - To gather data, you flip the coin 100 times
  - You observe 54 "heads" and 46 "tails"
  - What would be your estimation of P(heads=TRUE)?

#### Statistical Estimation

- What is the probability that it will rain tomorrow?
- Statistical Estimation Example:
  - To gather data, you keep a log of the past 365 days
  - You observe that it rained on 93 of those days
  - What would be your estimation of P(rain=TRUE)?

#### Statistical Estimation

- What is the probability that "retrieval" occurs in a document?
- Statistical Estimation Example:
  - To gather data, you take a sample of 1000 documents
  - You observe that "retrieval" occurs in 2 of them.
  - What would be your estimation of P("retrieval" in a document=TRUE)?
- Usually, the more data, the better the estimation!

# Joint and Conditional Probability

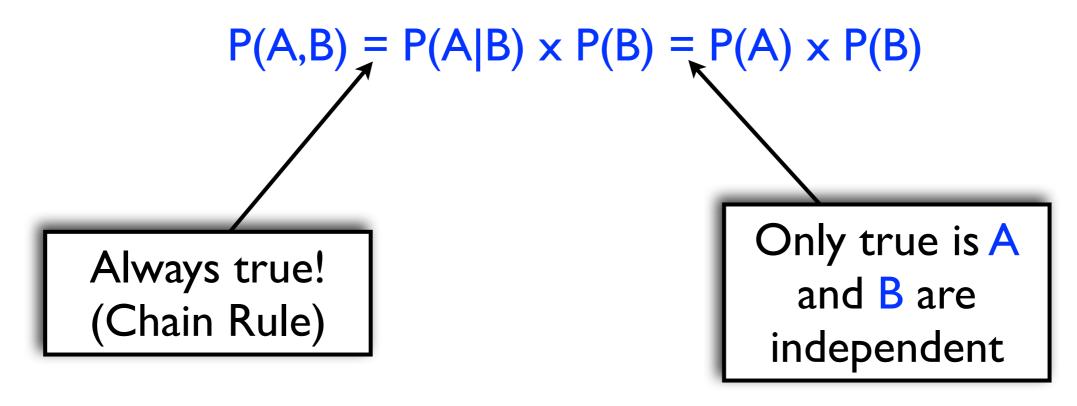
- For simplicity, P(A=TRUE) is typically written as P(A)
- P(A,B): the probability that event A <u>and</u> event B both occur together
- P(A|B): the probability of event A occurring given the prior knowledge that event B has occurred

#### Chain Rule

- $P(A, B) = P(A|B) \times P(B)$
- Example:
  - probability that it will rain today <u>and</u> tomorrow =
  - probability that it will rain today X
  - probability that it will rain tomorrow given that it rained today

#### Independence

Events A and B are independent if:



 Events A and B are independent if the outcome of A tells us nothing about the outcome of B (and vice-versa)

## Independence

- Suppose A = rain tomorrow and <math>B = rain today
  - Are these likely to be independent?
- Suppose A = rain tomorrow and <math>B = fire-alarm today
  - Are these likely to be independent?

#### Mutual Information

$$MI(w_1, w_2) = \log \left( \frac{P(w_1, w_2)}{P(w_1)P(w_2)} \right)$$

- $P(w_1, w_2)$ : probability that words  $w_1$  and  $w_2$  both appear in a text
- P(w<sub>1</sub>): probability that word w<sub>1</sub> appears in a text, with or without w<sub>2</sub>
- P(w<sub>2</sub>): probability that word w<sub>2</sub> appears in a text, with or without w<sub>1</sub>
- The definition of "a text" is up to you (e.g., a sentence, a paragraph, a document)

#### Mutual Information

$$MI(w_1, w_2) = \log \left( \frac{P(w_1, w_2)}{P(w_1)P(w_2)} \right)$$

- If  $P(w_1, w_2) = P(w_1) P(w_2)$ , it means that the words are independent: knowing that one appears conveys no information that the other one appears
- If  $P(w_1, w_2) > P(w_1) P(w_2)$ , it means that the words are <u>not</u> independent: knowing that one appears conveys <u>some</u> information that the other one appears

#### Mutual Information

estimation (using documents as units of analysis)

|                                     | word wi<br>appears | word will<br>does not<br>appear |
|-------------------------------------|--------------------|---------------------------------|
| word w <sub>2</sub> appears         | a                  | b                               |
| word w <sub>2</sub> does not appear | С                  | d                               |

every document falls under one of these quadrants

total # of documents  

$$N = a + b + c + d$$

$$P(w_1, w_2) = a / N$$
  
 $P(w_1) = (a + c) / N$   
 $P(w_2) = (a + b) / N$ 

# Mutual Information IMDB Corpus

• Word-pairs with highest mutual information (1-20)

| wl        | w2       | MI    | wl      | w2       | MI    |    |
|-----------|----------|-------|---------|----------|-------|----|
| francisco | san      | 6.619 | dollars | million  | 5.437 | _  |
| angeles   | los      | 6.282 | brooke  | rick     | 5.405 |    |
| prime     | minister | 5.976 | teach   | lesson   | 5.370 |    |
| united    | states   | 5.765 | canada  | canadian | 5.338 |    |
| 9         | 11       | 5.639 | un      | ma       | 5.334 |    |
| winning   | award    | 5.597 | nicole  | roman    | 5.255 |    |
| brooke    | taylor   | 5.518 | china   | chinese  | 5.231 |    |
| con       | un       | 5.514 | japan   | japanese | 5.204 |    |
| un        | la       | 5.512 | belle   | roman    | 5.202 |    |
| belle     | nicole   | 5.508 | border  | mexican  | 5.186 | 71 |

# Mutual Information IMDB Corpus

• Word-pairs with highest mutual information (20-40)

| wl        | w2     | MI    | wl        | w2      | MI    |    |
|-----------|--------|-------|-----------|---------|-------|----|
| belle     | lucas  | 5.138 | brooke    | eric    | 4.941 |    |
| nick      | brooke | 5.136 | serial    | killer  | 4.927 |    |
| loved     | ones   | 5.116 | christmas | eve     | 4.911 |    |
| hours     | 24     | 5.112 | italy     | italian | 4.909 |    |
| magazine  | editor | 5.103 | un        | I       | 4.904 |    |
| е         | fianc  | 5.088 | photo     | shoot   | 4.866 |    |
| newspaper | editor | 5.080 | ship      | aboard  | 4.856 |    |
| donna     | brooke | 5.064 | al        | un      | 4.800 |    |
| ed        | un     | 5.038 | plane     | flight  | 4.792 |    |
| mexican   | mexico | 5.025 | nicole    | victor  | 4.789 | 72 |

# Mutual Information IMDB Corpus

• Word-pairs with highest mutual information (1-20)

| wl        | w2       | MI                                  | wl     | w2       | MI    |    |
|-----------|----------|-------------------------------------|--------|----------|-------|----|
| francisco | Not a    | Not a perfect metric! Subject to    |        |          |       |    |
| angeles   | subtle   | subtleties in the collection (these |        |          |       |    |
| prime     | m are pa | are pairs of semantically unrelated |        |          |       |    |
| united    |          | Spanish                             | words) | n        | 5.338 |    |
| 9         | 11       | 5.639                               | un     | ma       | 5.334 |    |
| winning   | award    | 5.597                               | nicole | roman    | 5.255 |    |
| brooke    | tayler   | 5.518                               | china  | chinese  | 5.231 |    |
| con       | un       | 5.514                               | japan  | japanese | 5.204 |    |
| un        | la       | 5.512                               | belle  | roman    | 5.202 |    |
| belle     | nicole   | 5.508                               | border | mexican  | 5.186 | 7. |

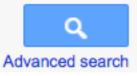
#### Implications of Term Co-occurrence

- Potential to improve search
  - word-variants co-occur: canada, canadian
  - phrases describe important concepts
  - semantically-related terms co-occur
- Multiple paths to improvement
  - document representation: conflating variants, indexing phrases, adding related terms
  - information need representation: conflating variants, proximity operators, adding related terms
  - search assistance and interactions: query suggestions

## Implications of Term Co-occurrence



PC repair



#### Computer Repair | PC Repair Directory Q

www.pcrepairdirectory.com/ - Cached

Use the PCRepairDirectory to find local **computer repair** business listings and services for **PC repair** in your area. **Laptop repair**, virus removal and other services ...

#### Computer Repair Directory Q

www.computerrepairdirectory.com/ - Cached

COMPUTER REPAIR. Need Help? Find The Best PC Repair Shops across the Country. Find a Technician near you Now! More than 2000 Computer Repair ...

#### Fix My Pc FREE – Is Your Computer Running Slow?

www.fixmypcfree.com/ - Cached

**Fix** your **computer** yourself of any problems and situations that can arise. Simple tips and information for anyone to use, retake control of your **computer**.

#### Home - Franklin P. C. Repair ® Computer Repair and Virus ... www.franklinpcrepair.com/ - Cached

Whether it's Home or Business **PC repairs**, installation of new computers, upgrades, advice or Virus Removal, we offer a quality service at competitive prices. ...

#### Mobile Computer Wizard- San Diego Computer Repair, PC Repair ... mobilecomputerwizard.com/ - Cached

Mobile Computer Wizard: Fast, Reliable Computer Tech Support for San Diego County, including downtown, Oceanside, La Jolla, El Cajon, Escondido. We fix ...

# Take-Home Message

- Language use is highly varied
- However, there are statistical properties of language that are highly consistent across domains and languages
- These statistical properties of text make search easier
- Learn them, love them, and use them to your advantage in doing automatic analysis of text