Survey of Bioinformatics Programs in the United States ## Bradley M. Hemminger, Trish Losi, and Anne Bauers School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3360. E-mail: bmh@ils.unc.edu Bioinformatics is a rapidly growing field, and educational programs for bioinformatics are increasing at a similar pace to answer the demand for qualified professionals. Here we survey currently available bioinformatics programs. We have compiled summaries of these programs, including university, state, degree type, department, entrance requirements, degree requirements, links to course Web pages, research interests, and funding. Complete details are presented in the Web version, and an abbreviated listing of the primary attributes of all programs is included in this article. ## **Background** Bioinformatics is a quickly expanding discipline. One area of growth is in educational programs associated with bioinformatics (Zauhar, 2001). A survey of programs in bioinformatics serves two purposes: it provides a resource for prospective students or faculty, and records the magnitude (number of programs) and growth (increase in the last 3 years) of bioinformatics programs. We electronically published an initial survey (Hemminger, 2002a) in Fall 2002 in association with a presentation (Hemminger, 2002b) at the ASIS&T 2002 conference. Several other Web resources have provided similar information, including the International Society of Computational Biology (ISCB; 2003), 123 Genomics (2003), the National Library of Medicine (2001), Petersen's Guide (2003), the University of Texas (1998), BioQUEST (2003), and the Bio-IT World magazine (Schachter, 2002). We updated our survey in February 2004 and present the results in this article. #### **Methods** In the emerging field of bioinformatics there is a debate concerning whether bioinformatics should be a separate discipline, or a subpart of other existing fields (Russell, 2003; Stein, 2003). Bioinformatics programs commonly grow out of different departments or schools within universities, much as Accepted April 22, 2004 © 2005 Wiley Periodicals, Inc. • Published online 19 January 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/asi.20141 other new technology disciplines such as computer science have in the past. Most commonly, these new programs are initially housed in biology, genetics, statistics, biomedical engineering, or computer science departments, although we are beginning to observe more stand-alone bioinformatics programs. Because bioinformatics programs are mostly offered as subprograms or specializations of existing programs, it can be challenging to discover them. Programs are identified by several terms (including bioinformatics, medical informatics, informatics, health informatics, computational biology) making it difficult to identify them with simple Web searches. Furthermore, most programs have started in just the last 3 years and have not been entered into a program directory. To identify programs, we incorporated multiple methods using different sources: Web pages at universities, existing summaries, and e-mail queries of people working in bioinformatics-related areas. We formed an initial list of potential programs by searching Web pages and reviewing existing summaries. We then investigated these programs in detail, and removed programs from our list that did not meet our selection criteria. After a preliminary list was prepared, we published it on the Web, and solicited feedback from people with a direct knowledge of the programs via postings on newsgroups and listservs related to bioinformatics. #### Searching Web Pages We used Google (2003) to search Web pages for bioinformatics programs. Because bioinformatics programs are sometimes listed under other "informatics" disciplines such as medical informatics, we included "informatics" in our search strings as well. We combined "bioinformatics" with "program" for our initial search, which resulted in 311,000 hits. We tried adding four secondary terms ("university," "degree," "health," and "medical") in addition to each of the two base terms ("bioinformatics program" and "informatics program") to narrow the search scope to increase relevancy. Lastly, we searched with "bioinformatics degree" (leaving out program) to procure listings that did not use the term "program." Because the number of hits returned by these Google searches was so large for most of our selections, we TABLE 1. Primary search selections, number of hits (links) returned, and number of hits manually reviewed when searching for bioinformatics programs using Google. The number of hits means the first N hits were reviewed since these were the highest ranked responses. The last two lines summarize four different conditions, i.e., the same base term, combined with each of the four different secondary terms. In each of those cases only the top 100 links were examined. | Search selection | Number of hits | Number of hits reviewed | |--|---------------------|-------------------------| | Bioinformatics program | 311,000 | 375 | | Bioinformatics program university | 180,000 | 325 | | Bioinformatics program degree | 57,000 | 325 | | Bioinformatics degree | 149,000 | 300 | | Informatics program university | 315,000 | 150 | | Informatics program degree | 137,000 | 125 | | Informatics program health | 273,000 | 100 | | Informatics program medical | 247,000 | 100 | | Informatics program (combinations of 4 terms) | Multiple conditions | 100 each | | Bioinformatics program (combinations of 4 terms) | Multiple conditions | 100 each | only reviewed the most relevant returns (assuming that the higher the Google ranking the more relevant). We initially invested the most effort on the results of the basic term searches, and then searched the basic terms in combinations with the other four terms to look for new programs not captured in the initial searches. The searches and approximate numbers of how many hits (initial Web pages) were reviewed for each search are shown in Table 1. These searches were performed during June and July 2003, and followed up in February 2004. ## Existing Reviews Utilized Other lists of programs we reviewed and incorporated sites from included the International Society of Computational Biology (ISCB; 2003), 123 Genomics (2003), the National Library of Medicine (2001), Petersen's Guide (2003), the University of Texas (1998), BioQUEST (2003), and the *Bio-IT World* magazine (Schachter, 2002; Toner, 2003) and our 2002 listing (Hemminger, 2002b). #### Program Information Recorded Each university or college's program Web site was then searched to find what degrees were offered by the institution, location (state) of institution, what department or school the program is under, entrance requirements, degree type(s) and requirements, links to the Web page listing of courses in the program, a sampling of the faculty's research interests, financial aid that is available, and any other pertinent information found. ## Program Inclusion Criteria Once the program's Web site had been located using the methods noted above, certain criteria were applied to determine whether the program would be included in our list. Most important was the presence of a degree or certificate granted at the conclusion of the program that specifically mentioned "informatics" in some variation. This meant some longstanding programs, as well as large-scale or interdisciplinary pro- grams, may not have been included. Also as a result, medical, chemical, and biological informatics were all included while many computational biology programs were excluded unless they specifically mentioned an option or a track in bioinformatics. We made every effort to discover all schools and degrees that fit these requirements. Some Web pages corresponded to defunct programs, programs in preparation, or programs not granting formal degrees for certificates. These programs were not included unless commencement of the program was scheduled for a stated date. Once these selection criteria had been applied, we then compiled the results, formatted them into an Excel document, and created an abbreviated version in HTML and Word document formats for Web posting. We also have begun compiling an associated list of the computational biology or biophysical mathematics programs that we chose not to include (Hemminger, 2004a). ## Feedback From Colleagues Once the initial survey results were compiled, we placed them online, and solicited feedback from people in the field via newsgroups (bionet.biology.computational, bionet. software, bionet.software.www, bionet.info-theory) and e-mail listservs (asis-1@asis.org, bioinfo@listserv.unc.edu, bioinformatics@labs.oreilly.com, bioinfo-sils@listserv.unc.edu, sigbioinform-1@asis.org, sigmed-1@asis.org, sigsti-1@asis.org). We reviewed all feedback, and updated the program listing to its final form as summarized here. ### Results The complete listing of all our results can be found on the Web as an Excel spreadsheet (Hemminger, 2004b). A more concise version matching the Table 2 is maintained on the Web as well (Hemminger, 2004c). The bioinformatics degree-granting program summary information is updated formally once a year, with occasional updates occurring during the year. The Web addresses in the print version of this article are not included because of space considerations, and because of the frequent changes to Web pages and addresses. Thus, the online version should be consulted TABLE 2. Degree-granting programs in Bioinformatics in the United States as of February 2004. The columns give the university name (and link in online version), the hosting Department or School Unit, the degree granted, the requirements for completing the degree, and the primary research interests of faculty associated with the program, respectively. | Institution | Host department | Degrees granted | Degree requirements | Research interests | |-------------------------------------|---|---|---|---| | Arizona State University | The Sloan Foundation of
Computational Biosciences
in the Department of Life
Sciences | Professional MS | 30 credit hours of courses,
6 credits of internship,
and 6 credit hours of
professional development,
42 credit hours total | Mathematical biology, cell
biotechnology, protein
structure, and enzyme
kinetics | | Baylor University | Department of Computer
Science, Department of
Biology | BS of Informatics w/Bioinformatics major | 124 credit hours required | Natural language
processing, parallel
computation | | Boston University | Department of
Bioinformatics | MS, PhD | MS: 32 credits required and internship; PhD: 64 credits required and exam | System biology, microarray analysis, genomics | | Brandeis University | Office of Continuing
Studies | MS Software Engineering/
Bioinformatics Dual
Degree; Graduate
Certificate in
Bioinformatics | MS: 3 core courses, with 7 electives chosen from a list. 45 credits total. Certificate: 1 core course (Statistics), and 4 electives chosen from a list | Computational biology,
protein folding, protein
mass spectrometry | | Canisius College | Department of Computer Science | BS | 37 courses (128 credits) required. Full undergraduate curriculum | No information available on specific research interests | | Cedar Crest College | Department of Biological
Sciences | BS Minor | Biology, Genetics,
Evolution, Biostatistics, 2
courses in Bioinformatics | Rare plants, invertebrate
neurophysiology, viral
genetics | | Columbia University | Department of Biomedical
Informatics | BA, MA (applied), MA (research), PhD | MS (applied): 30 credits
required, MS (research):
Previous PhD and 30
credits, PhD: 60 credits
required | Standards for encoding and
sharing clinical guidelines,
diabetes informatics,
clinical data mining | | Drexel University | Drexel Biomed Integrated
Bioinformatics Program | All degrees with
Concentrations in
Bioinformatics, BS, MS,
PhD | BS: 2 core classes and
senior thesis, MS: 4
required classes, electives,
and optional thesis, PhD: 4
required courses, electives,
and thesis | Cell adhesion and signaling, molecular profiling | | Duke University | Center for Bioinformatics and Computational Biology | PhD; Certificate for PhDs in other departments at Duke | PhD: Core classes,
electives, graduate
seminars, rotations, and
dissertation; Certificate: 4
courses in bioinformatics
and seminars | No information available on specific research interests | | Florida International
University | Department of Computer
Sciences | MS in Computer Science w/Specialization | 15 credits of required CS classes, 9 electives, and option of thesis | Bioinformatics and pattern discovery, primer design, protein motif mining | | Foothill College | Divisions of Biological and
Health Science with the
Computer Technology and
Information System | Associate Degree; Career
Certification | 53 credits for Associate
Degree, 49 for Certificate | No information available on specific research interests | | Georgetown University | School of Medicine,
Department of
Biochemistry and
Molecular Biology | MS in Biochemistry with emphasis in Bioinformatics | 9 courses specific to the
bioinformatics track;
internships are also possible | Developmental genetics,
DNA replication in <i>E. coli</i> ,
DNA damage, second
messengers | | George Mason University | School of Computational
Sciences | MS, PhD | MS: 31 credit hours with
master's thesis; PhD: 72
credits total, 48 course
credits, and 24 credits of
thesis research | Computational
neuroscience, biomedical
genomics, data mining,
human genetic variation | TABLE 2. (continued) | Institution | Host department | Degrees granted | Degree requirements | Research interests | |--|---|--|---|---| | George Washington
University | Multiple participating departments | BS in Computer Science or
Biology w/concentration in
Bioinformatics or Dual BA
in CS and Biology, MS
in Genomics and
Bioinformatics with tracks
in Biology or CS | BS: 130 credit hours
required along prescribed
curriculum, Dual BA:
132 credit hours required
Biology MS: non-thesis
option, 35 credits required
with a final project. Thesis
option: 32 credits plus
thesis. CS MS: 38 credits
required | Phylogenetics, information
systems, genomics, and
proteomics of HIV and
cardiovascular disease | | Georgia Institute of
Technology | School of Biology | MS, PhD in Biology
w/Specialization and PhD
in Bioinformatics | 37 credits, three semesters
of specific courses in
biology, mathematics,
computer programming,
and chemistry | Protein structure analysis,
molecular genetic
databases, X-ray
crystallography | | Harvard and MIT | Harvard-MIT Division of
Health Sciences and
Technology | MS Medical Informatics | Core courses and thesis requirement | Information processing in medicine | | Harvard and MIT | Harvard-MIT Division of
Health Sciences and
Technology's Program of
Medical Engineering and
Medical Physics | PhD | Core courses and
thesis requirement,
interdisciplinary courses
between both schools | No information available on specific research interests | | Indiana University at
Bloomington | School of Informatics
with Depts. of Biology,
Computer Science, and
Chemistry | MS, PhD minor | MS: 36 credits, 6 core credits, with thesis; PhD minor: 12 credits | FlyBase/Drosophila
research | | Indiana University/Purdue
University—Indianapolis | Department of Informatics | MS | 9 core credit hours and then
21 credit hours of electives,
with 6 credit hours of work
on thesis | Intelligent systems, neural
networks, bioinformatics,
gene regulation | | Iowa State University | Program in Bioinformatics
and Computational Biology
with multiple participating
departments | MS, PhD | MS: 30 credits required with core and advanced requirements; PhD: 72 credits are required | Intelligent searching, data
warehouses, analytical
tools, high performance
computing in genomics | | Keck Graduate Institute of
Applied Life Sciences | N/A | Professional Masters of
Bioscience | Two academic years of work, with internship over the summer and master's paper | Recombinant protein expression, biomaterials, molecular computation | | Marquette University/
Medical College of
Wisconsin | Mult. Depts.: Mathematics,
Statistics and Biology et al.
(MU), Bioinformatic and
Biomedical Research
(UWM) | MS | Thesis: 24 credit hours required plus thesis; non-thesis: 36 credit hours. Core courses required for both options | Development of systems
to aid in the genomics,
proteomic research | | Medical University of
South Carolina | Department of Biometry and Epidemiology | PhD track | 7 core courses with
electives beyond that Lab
rotations strongly
encouraged | Computational science
systems for analysis of
biological data, protein
interactions | | Michigan Technical
University | Department of Biological
Sciences | BS | 74 credits of bioinformatics work required. | Immunology, microbial toxicology, comparative genomics | | Missouri Southern State
University | Department of Computer Science | BS Concentration | 81 required credits in CS and biology | N/A | | New Jersey Institute of
Technology | Department of Continuing
Professional Education | Certificate | 4 courses—3 core,
1 elective | N/A | TABLE 2. (continued) | Institution | Host department | Degrees granted | Degree requirements | Research interests | |--|--|---|--|---| | North Carolina State
University | Program in Genomic
Science | MS (non-thesis), PhD | MS: 33 credit hours, core courses with oral exam, non-thesis degree; PhD: 72 credit hours and thesis | Statistical genetics,
molecular sequence
analysis, genetic mapping | | Northeastern University | Mult. Depts: Department
of Biology's Program in
Bioinformatics et al. | MS | 32 credits required. Core courses with electives, internship required | No information available on specific research interests | | Northern Illinois University | Department of Biological
Sciences | MS Specialization,
Certification | 30 credits required for MS with specialization, 16–17 required for certificate | Arabidopsis BLAST
searches, enzyme rate
studies, similarity matrices | | Northwestern University | Multiple participating departments | MS | 3 core courses, seminar
sequence, 5 electives,
3 units of independent
research with one quarter
spent in an industrial
setting, thesis required | No information available on specific research interests | | Ohio State University | Biophysics Program's
Division of Computational
Biology and Molecular
Biophysics | PhD | Programs are highly individual and are worked out with your advisor. Thesis defense is required for completion of degree | Assembly and function of protein complexes, neural networks, function of solute transporters | | Oregon Health & Sciences
University | Department of Medical
Informatics and Clinical
Epidemiology | All degrees in Medical
Informatics: MS (research)
and MS (professional)
currently available, PhD
program beginning Fall
2004; Graduate Certificate | MS research: 60 credit
hours required. MS
professional: 52 credit
hours; 6 credit on-campus
requirement. Certificate:
8 courses required | Mapping human genes, impact of computers on health informatics | | Ramapo College | School of Theoretical and
Applied Science | BS | 128 credits, 65 core credits with option for internship | Client-server applications,
peptide synthesis
methodology | | Rensselaer Polytechnic
Institute | School of Science's
Department of Applied
Science and Biology | BS, MS in Applied Science
w/Concentration in
Bioinformatics, PhD in
Biology w/Concentration in
Bioinformatics | Additional credits for concentration in degrees | Regulation of gene
expression, protein folding
and structure, data mining,
molecular simulations | | Rice University | Department of Computer
Science | MS in Computer Science w/Concentration | 14 courses required | No information available on specific research interests | | Rochester Institute of Technology | Department of Biological Sciences | BS and MS (professional) | No specific information available | No specific research mentioned | | Rockefeller University/
NYU Courant Institute | No information | PhD, or MD/PhD | No specific information available | No information available on specific research interests | | Rutgers University/
UMDNJ | Department of Molecular
Computational Biology | PhD track | No set number of credits
beyond core courses;
individual curriculums are
determined upon admission | Protein expression and
structural genes, DNA
topology, evolutionary trees | | St. Edward's University | School of Natural Sciences | BS | 52 credits of core courses,
with 13 elective credits
required in bioinformatics | N/A | | Stanford University | Department of Biomedical Informatics | MS (academic), MS (online
professional), MS
(coterminal), PhD;
Certification | Projects required for MS,
thesis for PhD, 2 years of
residence and completion
of appropriate courses | Biomedical Informatics | TABLE 2. (continued) | | Host department | Degrees granted | Degree requirements | Research interests | |--|--|--|---|---| | Stevens Institute of
Technology | Department of Chemistry | MS Chemical Biology w/concentration; Certificate | MS: 30 credits required;
Certificate: 12 credits | N/A | | University of Alabama
at Birmingham | Department of Computer & Information Sciences | Specializations for MS,
PhD | MS: 6 core credits,
9 elective; PhD:
individualized training to
be worked out with your
advisor. | Medical informatics | | University of Buffalo | College of Arts and
Sciences | BS | N/A | No information available on specific research interests | | University of California—
Berkeley | UC Berkeley Extension—
Continuing Education | Professional Sequence w/Certificate | 4 courses in two possible sequences | Genetic engineering, Perl,
Data Mining | | University of California—
Davis | Department of Biomedical
Engineering | MS and PhD in Biomedical
Engineering with Track in
Bioinformatics | MS: 32 credits, w/3 core
courses, and thesis; PhD:
48 credits, w/4 core
courses, and dissertation | DNA mechanics,
mathematical modeling
of pathways | | University of California—
Irvine | School of Information and
Computer Science | MS, PhD, both have
research areas in
Informatics in Biology
or Medicine | Three core courses, plus at least 6 additional courses, and courses to satisfy a breadth requirement—other core courses required for ICS school | Data mining, prediction or
protein sequences, gene
expression data analysis | | University of California—
Los Angeles | Mult. Depts:
Biomathematics, Chemistry
and Biochemistry,
Statistics, Computer
Science et al. | BS in Cybernetics
w/Concentration in
Bioinformatics, MS, PhD | Statistics, Genomics,
Computational Biology,
Research | Predicting membrane
protein structure, analyses
of genome evolution,
microarrays | | University of California—
Riverside | Graduate Program in
Genetics | PhD in Genetics with
track in Genomics/
Bioinformatics | N/A | Plant gene expression,
environmental stress
tolerance, population
genetics | | University of California—
San Diego | Mult. Depts: Departments
of Biology, Biomedical
Sciences, Computer
Science & Engineering,
Mathematics et al. | BS, PhD, also PhD in
Neuroinformatics | Biological Data and
Analysis Tools, Sequence
Analysis, Genomic
Analysis, Statistics areas,
three quarters of work
required | Structure and evolution of proteins, enzymes, genomics | | University of California—
San Francisco | Graduate Program in
Biological and Medical
Informatics | MS—only for those getting
a second health-related
masters (or MS with PhD),
and PhD | 36 credits required for MS, projects required for both MS and PhD | Protein structures, computer imaging | | University of California—
Santa Cruz | Currently under Department of Computer Engineering—moving to Department of Biomolecular Engineering | BS, MS, and PhD | Six core courses with
three electives, optional
internship, 52 credits
for MS, 56 for PhD,
thesis required for both
MS and PhD | Gene finding, RNA detection techniques, proteomics | | University of Cincinnati | Department of Biomedical
Engineering | MS and PhD in Biomedical
Engineering with Track in
Bioinformatics | 148 credits required over
3 years of work, with thesis | Computational
neuroscience, clinical
applications of
bioinformatics | | University of Colorado
Health Sciences Center | Department of Preventive
Medicine and Biometrics,
Section of Bioinformatics | Analytical Health
Sciences/Bioinformatics
PhD track | 90 credits total: 45 credit
hours of course work and
45 credits of thesis work | Structure of proteins,
computational biology,
molecular neurobiology | | University of Delaware | N/A | BS minor | 15 credits and thesis required | N/A | TABLE 2. (continued) | Institution | Host department | Degrees granted | Degree requirements | Research interests | |--|--|--|--|---| | University of Idaho | Initiative for
Bioinformatics and
Evolutionary Studies | MS, PhD | Core courses, depth
courses, lab rotation,
seminars, teaching
experience, and thesis
required. MS: 32 credits,
PhD: 78 credits | No information available on specific research interests | | University of Illinois at
Chicago | Department of
Bioengineering | MS, PhD | MS: 36 credits minimum in
biochemistry, mathematics,
bioengineering, etc.,
96 credits for PhD | Structural bioinformatics, computational biology, neural engineering | | University of Maryland | Graduate School | MS Biotechnology
Studies w/Track | 36 credits, 24 of core courses | No information available on specific research interests | | University of
Massachusetts—Lowell | Department of Computer
Science collaborating
with Depts. of Biology,
Chemistry, Mathematics
and the Medical School | Degrees in specified
areas available with
Bio/Cheminformatics
Option: BS, MS, PhD | BS: 120–124 credits
depending on major, MS,
PhD: 9 core credit hours,
12 credits of course pairs,
9 elective credits | Data mining, visualization
of data, viral-host
interactions, protein
composition | | University of Memphis | Department of
Mathematical Science's
Computer Science Division | MS Computer Science or
Mathematical Sciences
w/Concentration | With PhD: 30 credits, without: 33 credits required, thesis required for both | Computational biology and algorithms | | University of Michigan | 2 tracks: Program in
Biomedical Sciences in the
Medical School, or directly
to the Bioinformatics
Program | MS, PhD | MS: 31 credits with internship required, non-thesis; PhD: 68 credits required with thesis and exam | Tools for facilitating gene
mapping, nanomolecular
modeling, transcription
mechanism study, etc. | | University of Minnesota | Department of Computer
Science and Engineering | MS minor, PhD minor | Minor requires core
courses, 9 credits for
master's, 15 credits for
doctoral minor | DNA repair mechanisms, quantitative genetics, biopolymers, etc. | | University of Nebraska | Univ. NE Medical Center
Department of Pathology
and Microbiology w/
Department of Information
Systems and Quantitative
Analysis | MS in Pathology and
Microbiology with Special
Track in Bioinformatics,
PhD in Pathology and
Microbiology with Special
Track in Bioinformatics | MS: Eleven foundation
biology, computational
sciences courses, core
biological sciences,
computational sciences,
electives and independent
study; PhD: Similar
requirements | Cost benefit analysis for systems, computer literacy | | University of North
Carolina at Chapel Hill | School of Information and
Library Science (MS),
School of Pharmacy's
Carolina Center for
Genome Sciences (PhD) | MS Certificate of
Specialization, PhD
Certificate of Specialization | MS: 38 credits of required classes with research rotation; PhD: Two research rotations, one semester of teaching, core classes | Structure and function
relationships of proteins,
computational protein
design, statistical genetics | | University of Pennsylvania | Department of
Computational Biology | BS Biology, CS, or
Mathematics
w/Concentration, MS in
Biotech w/Concentration,
PhD in Genomics and
Comp Biology | MS: 12 courses required;
no information on PhD | Evolutionary population
genetics, mathematical
tools to map disease genes,
multiple sequence
alignments | | University of Pittsburgh | Center for Biomedical
Informatics | MS in Biomedical
Informatics
w/Concentration, PhD in
Biomedical Informatics
w/Concentration;
Biomedical Informatics
Certificate Program | MS: 44 credit hours,
required core courses,
electives, and thesis; PhD:
71 credit hours, core
courses, electives, thesis,
and significant research.
Certificate: 15 credit hours | Biomolecular sequence-
structure-function research,
oncology informatics,
medical simulations | TABLE 2. (continued) | Institution | Host department | Degrees granted | Degree requirements | Research interests | |--|--|--|--|--| | University of Southern
California | Department of Biological
Sciences | PhD | 60 credits and thesis | Algorithm development, association mapping with SNPs, cancer genomics | | University of South Florida | Health Sciences Center with other participating departments | MS | 41 credits, with 9 core classes and a thesis | No specific research mentioned | | University of Tennessee at
Knoxville | Genomic Science and
Technology Graduate
School at UT-K w/Oak
Ridge National
Laboratories | MS, PhD | MS: Similar requirements with thesis at end; PhD: 26 credits minimum, with thesis | Microbial pathogenesis,
mouse genomics, statistical
methods of gene annotation | | University of Texas—
Austin | Graduate Program in Cell and Molecular Biology | PhD track | Two semester core course required along with electives, and thesis | Bioorganic chemistry,
mouse genetics, apoptosis,
cellular biosynthesis | | University of Texas—El
Paso | Department of Biological
Sciences | Professional MS | 2 year, non-thesis program; core courses required | Genome sequencing,
bioluminescence,
intelligent systems | | University of the Sciences at Philadelphia | Program in Bioinformatics | BS, MS | 22 credits core courses, electives beyond that | No information available on specific research interests | | University of Washington | Department of Medical
Education and Biomedical
Informatics | All degrees in Biomedical
and Health Informatics, MS
(research and applied), PhD
awaiting approval;
Certification only available
for current students | MS Research: 60 credits
minimum with thesis; MS
Applied: 60 credits
minimum with applied
project | Clinical informatics,
genetic data integration,
public health informatics,
structural informatics | | University of Wisconsin | MS in Computer Science with Bioinformatics Track | Department of Computer Science | N/A | No specific research mentioned | | University of Wisconsin | Computation and
Informatics in Biology
and Medicine | Pre- and post-doctoral candidates | 9 credits minimum | Interdisciplinary research interests | | Vanderbilt University | Vanderbilt University
Medical Center's Program
in Biomedical Informatics | MS in Biomedical
Informatics and PhD
Concentration | MS: 27–40 credits required with thesis. PhD: 33–46 credits with teaching experience, and thesis | Clinical terminology
systems, medical
informatics, machine
learning | | Virginia Polytechnic
Institute | Program in Genetics,
Bioinformatics, and
Computational Biology | PhD in Genetics,
Bioinformatics and
Computational Biology | No specific information available | Computational control,
statistic analysis of micro-
arrays, functional genomics | | Wright State University | Department of Computer Science | BS in Computer Science or
Biology w/Bioinformatics
option | CS: 195 credit hours
required; Biology: 200
credit hours required | Protein binding interactions, data mining, molecular visualization | | Yale University | Department of Molecular
Biology and Biochemistry | PhD | Achieve competency in bioinformatics, biological sciences, and informatics | Comparative genomics, data mining, macromolecules | for the most current and complete information (Hemminger, 2004d). ## **Acknowledgments** We thank Bernadette Toner who made us aware of the BioInform survey, and the many people who took the time to e-mail me additional information or corrections about their bioinformatics programs. # References 123 Genomics. (2003). Bioinformatics and genomics courses. Retrieved September 17, 2003, from http://www.123genomics.com/files/courses.html BioQUEST. (2003). Bioinformatics degree programs. Retrieved September 17, 2003, from http://www.bioquest.org:16080/bedrock/degree_programs.php Google. (2003). Search engine. Retrieved September 17, 2003, from http://www.google.com Hemminger, B.M. (2002a). Survey of bioinformatics programs. Retrieved September 17, 2003, from http://www.ils.unc.edu/bmh/bioinfo/ASIST02_bioinformatics_programsv3.doc - Hemminger, B.M. (2002b). Presentation of bioinformatics program survey. Retrieved September 17, 2003, from http://www.ils.unc.edu/bmh/bioinfo/ASIST02_bioinformatics_finalversion.ppt - Hemminger, B.M. (2004a). Excluded bioinformatics programs. Retrieved February 12, 2004, from http://www.ils.unc.edu/bmh/bioinfo/excluded_bioinfo_programs.xls - Hemminger, B.M. (2004b). Full listing of bioinformatics programs' information. Retrieved February 12, 2004, from http://www.ils.unc.edu/bmh/bioinfo/Bioinformatics_Programs_Complete_7-13-03.xls - Hemminger, B.M. (2004c). Short list of bioinformatics programs' information. Retrieved February 12, 2004, from http://www.ils.unc.edu/bmh/bioinfo/Bioinformatics_Programs_Brief_7-13-03.htm - Hemminger, B.M. (2004d). Bioinformatics programs summary. Retrieved February 12, 2004, from http://www.ils.unc.edu/bmh/bioinfo/bioinformatics_programs_summary.html - International Society for Computational Biology. (2003). Degree programs in bioinformatics and computational biology. Retrieved September 17, 2003, from http://www.iscb.org/univ.shtml - National Library of Medicine. (2001). University medical bioinformatics research training programs. Retrieved September 17, 2003, from http://www.nlm.nih.gov/ep/T15Traiing.html - Peterson's Graduate School Guide. (2003). Bioinformatics degree-granting programs. Retrieved September 17, 2003, from http://www.petersons.com - Russell, J. (2003, March 3). Bioinformatics moves from starring role to supporting cast. Bio-IT World. Retrieved September 17, 2003, from http://www.bio-itworld.com/news/031003_report2164.html - Schachter, B. (2002, June 12). Informatics moves to the head of the class. Bio-IT World. Retrieved September 17, 2003, from http://www.bio-itworld.com/archive/061202/class.html - Stein, L. (2003, February). Bioinformatics: Gone in 2012. Paper presented at the O'Reilly Bioinformatics Technology Conference, San Diego CA. Retrieved September 17, 2003, from http://www.oreillynet.com/pub/a/ network/biocon2003/ stein.html - Toner, B. (2003, Aug. 11). Number of bioinformatics grads grows, but rise in degree programs slows in 2003. BioInform Newsletter, p. 7. - University of Texas. (1998). University bioinformatics programs. Retrieved September 17, 2003, from http://biotech.icmb.utexas.edu/pages/bioinform/ biprograms_us.html - Zauhar, R.J. (2001). University bioinformatics programs on the rise. Nature Biotechnology, 19, 285–286.