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Abstract: We have devised a mammogram modeling system which greatly simplifies 
the development of, and can improve the accuracy and consistency of, computer-aided 
display and analysis algorithms for digital mammography. Our system segments the five 
major components of a mammogram: background, uncompressed-fat, fat, dense, and 
muscle. Differences in the amount and distribution of these components account for 
much of the variation between mammograms. Via segmentation, the corresponding 
variations are isolated; automated algorithms can consider the components 
independently or adapt their parameters based on component-specific statistics. 
 In this paper, we present our system and demonstrate its versatility. Our system is 
able to segment a wide variety of digital mammograms because of its combined use of 
geometric (i.e., gradient magnitude ridge traversal) and statistical (i.e., Gaussian mixture 
modeling) techniques. Using images from Fischer, General Electric, and Trex digital 
mammography units, we define and evaluate automated, component-based algorithms 
for (1) "general" intensity windowing, i.e., displaying a digital mammogram such that it 
resembles a screen-film mammogram for breast cancer screening; (2) component-
specific intensity windowing for breast lesion characterization; and (3) breast density 
estimation for breast cancer risk assessment. 

 
 

1. Introduction 
 

Digital mammography has the potential to outperform screen-film mammography for the 
detection and characterization of breast lesions. Digital mammography: 

• records a broad, finely-sampled range of x-ray energies. It captures the subtle 
density differences associated with lesions embedded in dense breast tissue. 

• decouples the record and display processes. These processes can be optimized 
independently. Multiple visualizations can be generated from a single acquisition. 

• integrates computers into the record-display sequence. This facilitates the use of 
computer-aided display and analysis algorithms. 

 Until these potentials are sufficiently exploited, however, they can interfere with 
mammographic interpretations. Most notably, automated intensity windowing (IW) 
becomes not only feasible but actually critical. The human visual system cannot 
simultaneously appreciate the 216 energy levels recorded by some digital mammography 
units. Displaying an unwindowed digital mammogram produces an image with poor 
apparent contrast (Figures 1 and 2). IW maps a recorded range to an appropriate display 
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range (~ 210 levels of gray). IW parameters can be chosen so as to make a displayed 
digital mammogram resemble a screen-film mammogram, called "general" IW. 
Component-specific IW can be used to accentuate lesions which may otherwise be 
obscured. The development and performance of automated methods such as IW are, 
however, confounded by the highly varied appearance of mammograms. 
 Our mammogram modeling system greatly simplifies the development of, and can 
improve the accuracy and consistency of, computer-assisted display and analysis 
algorithms for digital mammography. The premise of our system is that much of the 
variation between mammograms is due to differences in the amount and distribution of 
five components2: background, uncompressed-fat, fat, dense, and muscle. By delineating 
and labeling ("segmenting") those components in each mammogram being processed 
(Figures 1 and 2), that portion of mammogram variability is eliminated; automated 
algorithms can consider the components independently, the statistical characteristics of 
those components can be normalized across mammograms, and thereby more accurate 
and consistent information can be provided to radiologists. 
 Our system is able to consistently segment digital mammograms because of its 
combined use of geometric and statistical analysis techniques. Our system is insensitive 
to patient anatomy, image noise, select image preprocessing algorithms (e.g., edge 
enhancement), and even acquisition parameters such as resolution and digital detector 
response function. We use a gradient magnitude ridge traversal algorithm to define the 
breast's edge and extract the pectoral-muscle component. Erosion and dilation of the 
breast’s edge are used in defining the background and uncompressed-fat components. 
Mixture modeling is used to statistically differentiate fat from dense component pixels. 
 In this paper we describe our mammogram modeling system; define methods which 
use our system for general IW, component-specific IW, and breast density estimation; 
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Figure 1. A digital, medial-lateral oblique mammogram Figure 2. A digital, cranial-caudal mammogram 
without IW; low apparent contrast; components labeled.  of the same breast as in Figure 1. 
 



 

and discuss the application of those methods to images from Fischer, GE, and Trex 
digital mammography units. 
 
2. M ethods 

 
This section provides an overview of our breast and pectoral-muscle edge identification 
algorithms. It then provides details concerning the role of those edges and Gaussian 
mixture modeling in mammogram component segmentation. 

 
2.1. BREAST EDGE IDENTIFICATION 

 
Our system uses the breast edge in defining the background and uncompressed-fat 
components. In general, methods based on absolute intensity (e.g., thresholding) cannot 
be used to distinguish breast from background. The selection of an appropriate threshold 
is made difficult, and often impossible, by highly variable uncompressed-fat intensities 
and background noise. In some digital mammograms, the background noise is 
structured, abuts the uncompressed fat, and appears brighter than the uncompressed fat. 
 Our method avoids intensity related difficulties since it is based on large-scale 
gradient-magnitude ridge traversal (i.e., image geometry). It is not affected by absolute 
intensity values, small-scale image noise, or image data which is not local to the breast's 
edge. Additionally, it provides a sub-voxel estimate of the edge's location. Our method 
consists of two steps: (a) finding an initial point on the breast's edge and (b) traversing 
the gradient magnitude ridge that defines the breast's edge. 
 (a) An initial breast edge point is defined by the point of maximum gradient 
magnitude along a line passing horizontally through the center of a breast. Given a 
mammographic image I, its gradient magnitude image I |∇| at scale σ = 60 mm is defined 
by convolving it with Gaussian derivative kernels Gσdx and Gσdy. 

 

 I |∇| = [ ( I ⊗ Gσdx )2 + ( I ⊗ Gσdy )2 ]1/2
 (1) 

 

We define the center of a breast as the center-of-mass (xCOM, yCOM) of the pixels in the 
image. An initial breast edge point (x0, y0) is therefore defined by 

 

 x0 = argmaxx [ I |∇| ( x, yCOM ) ] and y0 = yCOM (2) 
 

 (b) To extract the extent of the breast’s edge, a ridge traversal algorithm is applied to 
the gradient magnitude image starting at the initial breast edge point. The minimum 
eigen-valued eigen-vector of the Hessian at a point on a ridge approximates the ridge's 
tangent direction. The maximum eigen-valued eigen-vector approximates the ridge's 
normal direction. At a ridge point, by stepping 0.1 pixel units in the tangent direction 
and then finding the local maximum normal to that point, a subsequent ridge point is 
found. This process is repeated until a point near the image boundary is reached, the 
tangent direction changes rapidly, or the spatial location of the next ridge point is far 
from the previous ridge point. [1] 

 
2.2. PECTORAL MUSCLE EDGE IDENTIFICATION 

 
Pectoral muscle appears within most medial lateral oblique images and can interfere 
with many automated analysis algorithms. For example, since the pectoral-muscle 
component appears at approximately the same intensity as the dense component, 
intensity-based methods cannot be used to differentiate it from the dense component, 
and therefore the pectoral-muscle component can bias breast density estimates. 



 

 To consistently and accurately extract the pectoral muscle, we find the prominent 
line within the upper portion of a breast. We assume that the pectoral edge is well 
approximated by a straight line and that it intercepts the top of the image before crossing 
the breast's edge. We apply our gradient magnitude ridge traversal algorithm (a) at a 
small scale and (b) at multiple initial points and then resolve the resulting multiple edge 
definitions via (c) a voting scheme. This method parallels that of Karssemeijer [4]. 
 (a) Because of the sharpness of the pectoral edge, we extract the gradient magnitude 
ridges at a scale of 1.5 mm. Using a small scale increases the effect of image noise on 
the traversal algorithm and further necessitates the use of multiple initial points and a 
voting scheme to determine the prominent edge. 
 (b) Because of the striations inherent in the mammographic appearance of muscle, 
the determination of an appropriate initial point can be difficult. We therefore consider 
potential edges at regular horizontal intervals at the top of the image. Within the breast, 
at each horizontal interval, we extract the edge nearest the breast’s edge and the edge at 
the largest gradient magnitude. As a result, multiple edges are extracted and the same 
edge may be extracted multiple times. 
 (c) To determine the prominent edge, we determine the most common tangent 
direction and top-of-image intercept among all of the edge points extracted. That slope / 
intercept pair defines the line of the pectoral muscle's edge. 

 
2.3. COMPONENT MODELING 

 
Building from the extracted breast and pectoral muscle edges, our system forms 
geometric and statistical representations of the mammographic components. Geometric 
models are used to represent the non-breast (i.e., the background and muscle) 
components. Statistical models are used to define the breast (i.e., the uncompressed-fat, 
fat, and dense) components. 

 
2.3.1. Geometric Models: Representing Background and Muscle Components 
Geometric models are formed by dilating the extracted breast and pectoral-muscle 
edges. We acknowledge that our system’s edge identification, erosion, and dilation 
processes do not exactly define the spatial bounds of the components. We have, 
however, found these large-scale constructs to be sufficient for the tasks in this paper. If 
a small-scale representation is desired (e.g., in order to localize the breast’s nipple), a 
coarse-to-fine snake algorithm can be employed to refine the representations. 
 Background: The background component is defined as the portion of the image 
outside of a dilation of the extracted breast edge. Dilation is necessary since the breast 
edge is defined at a large scale and therefore is partially contained within the breast. We 
perform dilation using a circular operator with a radius equal to the scale at which the 
edge was identified, i.e., 60 mm. 
 Muscle: The representation of the pectoral-muscle component is formed by dilating 
the pectoral-muscle line using a radius of 1.5 mm, the scale used in defining that line. 

 
2.3.2. Statistical Models: Representing Uncompressed-Fat, Fat, and Dense Components 
Our system forms statistical models of the breast components using (a) pixel intensities, 
(b) the concept of distribution sampling, and (c) Gaussian mixture models. 
 (a) The implementation presented in this paper considers intensity and not local 
texture when determining a pixel’s mammographic component. Future implementations 
will consider both so as to better distinguish the fat and dense components. 



 

 (b) We rely on distribution sampling to overcome the ambiguity of mammographic 
components. Since breast components are formed via projection, their exact delineation 
cannot be achieved. However, by identifying a large number of pixels from the breast 
components (i.e., by sufficiently sampling their pixel intensity distribution) a statistical 
model can be formed. 
 (c) Statistical models are formed via Gaussian mixture modeling. In Gaussian 
mixture modeling, multiple Gaussians are weighted and linearly combined to represent a 
non-Gaussian distribution. The parameters of the mixture are iteratively determined via 
expectation-maximization which maximizes the log-likelihood of the data representing 
the distribution. [3] 
 Uncompressed-fat: A statistical model of the uncompressed-fat component is formed 
by modeling the pixel intensities in the area about the breast edge. Such a region is 
defined by an erosion and a dilation of the breast’s edge. The distribution of intensities 
in that region is, however, highly skewed because in that region breast thickness is a 
function of distance from the edge. Such a skewed distribution can be well represented 
by multiple Gaussians in a mixture model. For the tasks in this paper, we have found it 
sufficient to approximate the distribution with a single Gaussian. 
 Fat and Dense: The fat and dense component models are formed simultaneously. 
Eroding the breast edge and dilating the pectoral-muscle line produces a section of 
image containing only fat and dense component pixels. We apply Gaussian mixture 
modeling using two Gaussians to represent the intensities in that image section. The 
correct labels (fat/dense) for the Gaussians can, however, be ambiguous. We found that 
if a dense component is less than ~1/10th the size of the fat component, the Gaussian 
mixture model often uses both Gaussians to represent just the fat component. To 
automatically identify such “ fatty”  breasts, we use a breast’s medial-lateral oblique 
image. If the mean pectoral-muscle intensity is more than two standard deviations above 
both Gaussians in the fat/dense mixture, we conclude that the fat/dense mixture models 
for all images of that breast actually only represent the fat component. 
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2.3.3. Viewing Segmentations 
To visualize the segmentations, every pixel in an image can be gray-level coded to 
reflect the component to which it has been assigned. For example, Figure 3 is the 
segmentation of Figure 1. The image has been automatically cropped based on the 
extent of the breast’s edge. White represents the pectoral-muscle component, shades of 
light gray indicate dense component pixels, shades of medium-gray indicate fat, 
uncompressed fat is colored dark gray, and the background is black. The subtle shadings 
of the breast components reflect each pixel’s estimated probability of belonging to its 
assigned component; lighter shades indicate higher membership probabilities. 
 Alternatively, the histogram from each component can be generated and the 
probability density functions (PDFs) of the Gaussians in a mixture model can be 
overlaid. Figure 4 contains the histograms from the uncompressed-fat, combined 
fat/dense, and pectoral-muscle components of Figure 1. The probability density 
functions for the uncompressed-fat, fat, dense, and muscle Gaussians are overlaid. 

 
 

3. Display and Analysis of M ammograms via Components 
 

We have devised a number of display and analysis algorithms based on our 
mammogram segmentation system. In this paper we present three: (1) general IW for 
breast cancer screening, (2) component-specific IW for breast lesion characterization, 
and (3) breast density estimation for breast cancer risk assessment. 

 
3.1. INTENSITY WINDOWING: LESION DETECTION AND DIAGNOSIS 

 
IW parameters are easily defined using mammogram component information. Our 
algorithm utilizes a sigmoidal mapping function. A sigmoidal function has a central 
linear section and curves at its extremes. Our sigmoidal function is parameterized by six 
variables; for each of the low and high curves there are intercepts (iL and iH), curve 
starting points (aL and aH), and rates of curvature (bL and bH). Figure 5 illustrates the 
change in the shape of the sigmoid for different aL and bL values. For automated IW, we 
define intercept parameters in terms of the means (e.g., µD) and standard deviations (e.g., 
σD) of the mammographic components’  intensities. Appropriate values for the curve 
parameters (i.e., a• and b•) were chosen via a small preference study; those values are 
fixed based on the mammography unit’s manufacturer. 
 We realize that IW is not a complete solution to improving breast cancer detection or 
characterization. For example, edge enhancement is useful in emphasizing spiculated 
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masses and architectural distortions. IW, however, is a necessary part of the solution. 
 General intensity windowing: The goal of general IW for breast cancer screening is 
the emphasis of detail within the dense and fat components. By default, we define iL = µF 
and iH = µD + 4σD. For fatty breasts (Section 2.3.2: fat and dense), we define iL = µF - 2σF 
and iH = µF + 4σF. Figure 7 is a general IW of Figure 1. Figure 6 contains the 
corresponding sigmoidal function. 
 Component-specific intensity windowing: Suspecting a lesion, the radiologist using a 
softcopy display can call upon alternative visualizations of a digital mammogram for 
lesion characterization. Component-specific IW utilizes all of the display contrast to 
emphasize the information in a single component. Via preference studies, we have 
defined intercept functions i• for each component. Figure 8 is a dense-component-
specific IW of Figure 2. 

 
3.2 BREAST DENSITY ESTIMATION: BREAST CANCER RISK ASSESSMENT 

 
Breast density has been associated with breast cancer risk. Much research has focused 
on the development of semi-automated and fully automated methods for quantifying 
breast density using mammographic images. [2] 
 Given a segmented mammogram, breast density estimation reduces to pixel 
counting. A breast’s density is the ratio of the number of dense-component pixels to the 
number of uncompressed-fat, fat, and dense-component pixels. 
  

   
 Figure 7. General IW of Figure 1 Figure 8. Dense-component-specific IW of Figure 2 



 

4. Results 
 

We have evaluated our segmentation, IW, and density estimation algorithms using 
images from three digital mammography unit manufacturers: Fischer, GE, and Trex. We 
have evaluated approximately 30 images from our Fischer unit and 10 two-view, single 
breast, image pairs from each of the other manufacturers (70 images total). The images 
were judged by expert mammographers to be “clinically interesting.”  Most contained 
subtle masses, calcifications, and/or architectural distortions. 

• For every image, the geometry models were generated successfully. The breast 
edge and pectoral-muscle line were consistently well approximated. 

• For most (~95%) of the images, the statistical models were generated successfully. 
The separation of fat and dense-component pixels was not achieved in some cases 
(most were from a single manufacturer). Those cases will probably be handled by 
using additional Gaussians in the mixture and considering image texture. 

• For every image with a successful statistical model, 
- the heuristic for identifying “ fatty”  breasts was accurate. Fatty breasts 

comprised approximately 20% of the test cases. 
- appropriate general IWs were automatically specified. In a preliminary analysis 

they were judged to be nearly as good as hand IWs. We are in the process of 
conducting a preference study involving eight radiologists. 

- appropriate dense-component-specific IWs were specified. We are conducting 
observer studies to quantify how they influence the conspicuity of lesions. 

- breast density estimates are quite good. To quantify their accuracy, we are 
comparing those estimates with semi-automated estimates generated by experts. 

 
 

5. Conclusion 
 

Our mammogram modeling system is able to segment a wide variety of mammograms.   
Using those segmentations, it is simple to define mammogram display and analysis 
algorithms. Preliminary results, using 70 images from digital mammography units from 
different manufacturers, indicate that those algorithms perform well. Quantitative 
evaluations using a large number of images are underway. Future research is focusing on 
the application of our system to the development of an algorithm for distinguishing 
benign from malignant pathologies. 
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