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a b s t r a c t

The biomedical literature is an important source of information about the biological activity and effects of
chemicals. We present an application that extracts terms indicating biological activity of chemicals from
Medline records, associates them with chemical name and stores the terms in a repository called Chemo-
Text. We describe the construction of ChemoText and then demonstrate its utility in drug research by
employing Swanson’s ABC discovery paradigm. We reproduce Swanson’s discovery of a connection
between magnesium and migraine in a novel approach that uses only proteins as the intermediate B
terms. We validate our methods by using a cutoff date and evaluate them by calculating precision and
recall. In addition to magnesium, we have identified valproic acid and nitric oxide as chemicals which
developed links to migraine. We hypothesize, based on protein annotations, that zinc and retinoic acid
may play a role in migraine. The ChemoText repository has promise as a data source for drug discovery.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A central endeavor in drug research is determining the biologi-
cal effects and activities of a chemical. Effects are observed and
measured in a variety of venues from the test tube to the human
body, from high throughput studies to those involving a single
individual. The data from these experiments is increasingly being
deposited in publicly available repositories (e.g. PubChem [1]),
but even so, a large part of information about biological effects of
chemicals is recorded only in the biomedical literature. We have
developed a methodology to extract terms which indicate biologi-
cal effect from Medline [2] and house them in a repository where
they can be analyzed and mined. We call this repository Chemo-
Text and have described the early development of the methodol-
ogy in previous work [3].
1.1. Previous work

Mining the literature for new drug therapies is a growing field.
The earliest and best known research into using literature to find
new treatments for disease is the work of Don Swanson. A research-
er in information science, Swanson developed a methodology for
literature-based discovery (LBD) based on his observations of scien-
ll rights reserved.
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tific literature [4]. He noted that the increasing specialization of sci-
entists was paralleled by an increasing specialization in scientific
journals. He described a situation where scientific domains no long-
er interacted through the reading and publishing of their litera-
tures: researchers reading and publishing in one set of journals
were not aware of articles in other journals. The literatures become
islands and, in Swanson’s terms, non-interactive. This situation
according to Swanson creates the potential for knowledge to go
unconnected, relationships not recognized, and inferences not
made, a situation he termed undiscovered public knowledge. Swan-
son demonstrated that these connections could be established
through literature mining. Using his literature mining technique,
often termed the ABC method, Swanson made several discoveries,
among them a connection between Raynaud’s disease and fish oil
[5] and the potential of magnesium to treat migraines [6]. Swanson
emphasized that literature mining methods only assisted with
hypothesis generation or hypothesis support, and that any hypoth-
esis derived from the literature, must, like any other, be substanti-
ated by experimental science.

Swanson’s ABC methodology starts with identifying a disease or
condition of interest. As an example we will consider migraine (See
Fig. 1). The term migraine becomes the C term. In the next step the
literature is searched for terms which co-occur with migraine.
These are the intermediary B terms and include in the case of mi-
graine terms such as spreading cortical depression, vasoconstriction,
and vasodilation. The B terms can be seen as terms for physiological
conditions or states or processes which underlie the disease state.
In the next step potential treatments – the A terms – are identified
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Fig. 1. Swanson’s ABC Paradigm.
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which are associated with the B terms. Next the C–A connection is
tested and the only potential treatments retained for further exam-
ination are those which have not yet been explicitly linked to
migraine.

Many researchers have followed in Swanson’s footsteps and
constructed applications for discovery based on the ABC paradigm,
but differing in other particulars. Swanson extended his original
manual methods in collaboration with Smalheiser and created an
automated version of their work called Arrowsmith [7]. Lindsay
and Gordon broadened the corpus from titles to include abstracts
and employed lexical methods and statistical measures to evaluate
and limit the terms [8]. Weeber et al. [9] developed an application
that used lexical methods and made use of the Unified Medical
Language System (UMLS) [10], a suite of tools and knowledge
sources available from the NLM for identifying, mapping, and
understanding medical language. Srinivasan [11] also employed
the UMLS but chose MeSH [12] as her corpus and developed rank-
ing and weighting metrics to help narrow down the lengthy B term
lists. Wren et al. [13] used a network paradigm and co-occurrence
metrics, ranking on terms extracted from titles and abstracts. The
ABC paradigm was described in graph language by Narayanasamy
et al. [14] who used the concept of transitivity to describe the A–C
connection. They applied the methods to find relationships be-
tween breast cancer genes. Yetisgen-Yildiz and Pratt [15] created
an application called LitLinker based on MeSH terms and also using
the UMLS for term selection and reduction steps. Seki and Mostafa
[16] employed an inference network model and applied it to find
implicit connections between genes and diseases. Petrič et al.
emphasized rare terms in their application in order to find novel
and innovative connections [17].
Fig. 2. Swanson’s ABC using ChemoText.
1.2. Evaluation of literature-based discovery systems

Evaluating results achieved through literature-based discovery
methods is a challenge. Reproducing Swanson magnesium or fish
oil discoveries has been a validation approach taken by several
groups [8,9,18]. These discoveries are considered the gold standard
because they have been confirmed by clinical studies. Comparing
data from two time periods is also considered an important valida-
tion method [19]. Yetisgen-Yildiz and Pratt [15] and Hristovski et
al. [20] used recall and precision metrics to score overall the pre-
dictions made in the earlier time baseline period with results from
a later time period. Seki and Mostafa in [16] used an external data
source to validate their predicted connections between genes and
disease. In an experimental approach to validation, Wren et al.
[13] performed in vitro cell assays to substantiate their literature-
based claim that chlorpromazine can treat cardiac hypertrophy.
Medical experts evaluated the results in [21,22].
Because disparate methods have been used by authors to eval-
uate their LBD systems there has been to date no way to compare
the efficacy of applications. In a very recent paper (too recent to
influence the design of this study) Yetisgen-Yildiz and Pratt [23]de-
scribe promising methodologies to remedy this situation. These in-
clude principles to consider when designing LBD research such as
conducting multiple experiments and keeping the methods inde-
pendent of prior knowledge. The authors also introduce metrics
that will enable the evaluation of the ranking of the hypothesis
set, not just the precision and recall of the entire set.

In this work we briefly review the construction of the Chemo-
Text repository, and then we demonstrate its utility in drug
research by reproducing Swanson’s discovery connecting magne-
sium to the treatment of migraine. The significant component of
our implementation of the ABC method is that we have limited
the B terms to protein annotations (See Fig. 2.). We apply this lim-
itation not only to reduce the volume of data, but also because pro-
teins are the agents behind most physiological processes and are
therefore studied both by scientists investigating disease and by
scientists looking for drugs. Because these very different groups
of scientists may not be aware of each other’s work, there must
be a strong potential for finding undiscovered implicit relation-
ships between drugs (A terms) and diseases (C terms) via proteins
(B terms).

Other researchers in literature-based discovery have made use
of the vital connections between drugs, proteins, and disease. Ah-
lers et al. [22] for instance, extract text from Medline records and
process it semantically to extract very specific information about
the relationship between proteins, drugs, and disease. They use
this information to postulate the mechanism of action of antipsy-
chotic agents. The mechanism of action is carried out by the pro-
teins that are found to be intermediary terms between disease
and drug. In our work we use this relationship to hypothesize
new therapies for disease.
2. Methods

2.1. Extraction of MeSH terms

The goal in developing ChemoText was to build a repository of
chemicals associated with terms extracted from the literature that
represented the chemicals’ biological activity or effect. The strat-
egy was to extract these activity terms from Medline annotations
(See Fig. 3.). Three categories of annotations were identified that
indicated activity: MeSH drug effects annotations, MeSH disease
annotations, and the proteins listed in the RN and MeSH section
of the Medline record. MeSH or medical subject headings [12]
are annotations assigned by indexers at the National Library of
Medicine (NLM). Drug effects were extracted by finding all the drug



Fig. 3. Medline processing into data tables. The top part of the figure shows selected MeSH annotations in the Medline record for PubMed ID 16640785. The bottom of the
figure shows the database entries in ChemoText that result from the processing of this Medline record.
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effects subheadings and extracting the corresponding MeSH head-
ing. The proteins and diseases were identified by looking up the
terms in the MeSH Tree file. Tree categories C and F in this file were
used to identify diseases, and the category D12 identified proteins
(The category D12 contains amino acids and peptides in addition to
proteins; for brevity we will refer to this group as proteins).
2.2. Identification of subject chemicals

The Medline record can list more than one chemical. One or
more of them may be the subject of the research, while other
chemicals are peripheral, perhaps discussed or used in the experi-
mental procedure, but not the central object of study. In order to
reduce the volume of data we chose to extract the chemicals that
were the subjects of study and then associate the activity terms
only with those chemical(s). We developed a heuristic algorithm
that evaluates the MeSH subheadings or qualifiers occurring with
the chemical annotations and identifies the chemicals most likely
to be the subjects. The heuristic follows a rule-based stepwise pro-
cedure, a procedure developed based on the detailed analysis of
125 Medline records. In this process, the annotations from each
Medline record were examined to see if more than one chemical
was annotated and identified as a major topic. If only one chemical
was found and major, it was tagged as the subject chemical. If more
than one chemical was identified as major, then the subheadings or
qualifiers of each were examined. If the subheadings were the
same for each of the chemicals, then they were all tagged as sub-
jects. Preliminary analysis of the small test set had shown that cer-
tain subheadings were more commonly associated with subjects
than other headings (See Table 1.). Pharmacology, therapeutic use,
and administration and dosage, for instance, are subheadings com-
monly annotated to the subject chemical, while the subheadings
metabolism and biosynthesis are less common annotations for sub-
ject chemicals. We assembled a hierarchy of subheadings, starting
with those most commonly associated with subjects to those
rarely seen associated with subjects. We used this hierarchy to
compare the chemicals in the remainder of the records and tag
those most likely to be subjects. Medline records with more than
one subject are common. Forty percent have more than one subject
chemical, and the average number of subject chemicals per Med-
line record is 1.65. In the next step of the processing each of the
subject chemicals was associated with the previously extracted
activity and effects terms.
2.3. Complete repository

The 2008 Medline baseline file was downloaded from the NLM
and used as the corpus for extraction routines. The extract routines



Table 1
Hierarchy of MeSH subheadings used when establishing subject chemicals. Only
chemicals flagged as major in at least one of their subheadings are used as input to
the algorithm. If a subheading from level one is found, the associated chemical(s) are
designated subjects. Only if no chemical has a subheading from the first group does
the algorithm look at subheadings from the second group. If no chemicals have been
identified annotated with subheadings from the first two groups, then chemicals
tagged with a subheading from level 3 are tagged as subjects.

Level MeSH subheadings

1 Pharmacology or adverse effects or therapeutic use or administration and
dosage or toxicity or pharmacokinetics

2 Any subheadings except biosynthesis, metabolism, and chemistry
3 Biosynthesis or metabolism or chemistry
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were written in Perl. The data was loaded into a MySQL database
and subsequent processing was performed in SQL or Microsoft Ac-
cess. The completed data base depicted as a network is shown in
Fig. 4. The diagram shows the number of unique entities in each
category as well as the number of relationships between entities
stored in ChemoText. The baseline file contained 16,880,015 re-
cords; 6,635,344 records had identified subject chemicals and were
included in ChemoText.

There are other repositories that contain combinations of drug,
disease, and protein information. STITCH (Search Tool for Interac-
tions of Chemicals) contains small molecule chemicals and pro-
teins [24]. The curated relationships in this resource come from
both publicly available assay databases and from literature extrac-
tion. The cBioC resource relies on text mining and community
curation to establish and vet its protein–protein and protein–dis-
ease connections [25,26]. KEGG [27] and DrugBank [28] are two
other sources of drug and protein information. The focus of KEGG
is protein pathways while the focus of DrugBank is drugs and their
protein targets. Both are highly curated.

In contrast to these resources, the data in ChemoText is ex-
tracted automatically and undergoes no manual curation. While
the quality of the data in ChemoText may not rival a curated
source, its breadth of coverage is more extensive, mirroring the
broad reach of PubMed.
2.4. Literature-based discovery methods

We next explored the potential of using ChemoText for drug
discovery. Our goal was to generate a list of chemicals linked
implicitly but not explicitly to a particular disease through the lit-
erature. Such a list or hypothesis set may contain chemicals impor-
tant to drug research either as new treatments or as key chemicals
in the physiology of the disease. To generate the hypotheses, the
ABC methodology of Swanson [6] was adopted.
Fig. 4. Schematic view
The ChemoText database was queried for all articles published
before 1985 in which migraine disorders, migraine with aura, or mi-
graine without aura were included in the MeSH annotations (The
first article which first directly connected magnesium to migraines
was published in 1985. We limited ourselves to evidence before
that year for the baseline data.). These were the C terms. In the
next step each protein annotation included in any of these articles
was extracted. This was the pool of proteins associated with mi-
graine (B terms). This pool contained 131 proteins and included
names for specific proteins as well as protein families (e.g. Recep-
tors and Adrenergic).

In the next step the link between chemical and protein was
examined. All chemicals were identified which, in the baseline per-
iod before 1985, appeared as a subject chemical in an article with
the annotation of any of the migraine pool proteins. Chemical fam-
ily names such as Amines or Lactones were eliminated to reduce the
data volume. The resulting set of terms were the A terms. The
number of migraine pool proteins associated with each chemical
was counted. In the next step the link between the chemical and
disease in the baseline period was examined. All chemicals were
identified that appeared as a subject chemical in an Medline record
before 1985 with the annotation of migraine. These records repre-
sented already known connections between the chemical and dis-
ease and were eliminated. The entire ChemoText database was
examined to determine which chemicals predicted to have a link
to migraine based on the evidence of the baseline period did in-
deed have literature evidence of a connection in the test period.
The most common MeSH subheadings appearing with these chem-
icals when they were annotated with migraine were also extracted
to help elucidate what kind of link emerged.
3. Results

3.1. Hypothesis set and validation

Our experiment produced a list of 4725 chemicals potentially
connected with migraine (See Table 2 Part A.). We term this list
our hypothesis set. When the set was ranked by protein count (Prot
Ct), magnesium appeared near the top of the list at position 3. This
closely reproduces Swanson’s discovery.

Many researchers have reproduced Swanson’s magnesium–mi-
graine discovery; thus our observation is not novel, but can be
viewed as a method validation. However, the design of ChemoText
enabled us to extend this analysis in a novel direction. For each
chemical in the hypothesis set the ChemoText database was
searched for any link between the chemical and migraine after
1984. These results were summarized and combined with the re-
sults from the baseline period. Table 2 Part B contains these new
of ChemoText.



Table 2
Comparing baseline and test period results. Ranked by protein count the top 12 chemicals out of 4725 that are predicted to have a connection to migraine based on their
associations with migraine proteins before 1985. Part A contains information available in Medline during the baseline period before 1985. Part B contains data extracted from
Medline records in the test period from 1985 through 2007.

A. Baseline data: 1984 and before B. Test data: After 1984

Rank Chemical name Prot Ct First Yr Article Ct Disease qualifier Chemical qualifier

1 Sodium 104 2006 1 Blood Cerebrospinal fluid
2 Zinc 93 0 0
3 Magnesium 91 1985 39 Blood Blood
4 Copper 88 1986 1 Etiology Adverse effects
5 Corticosterone 86 0 0
6 Prednisolone 84 2007 1 Complications Therapeutic use
7 Cysteine 81 1994 3 Radionuclide imaging Analogs and derivatives
8 Edetic acid 80 1989 1 Physiopathology Administration and dosage
9 Lead 79 0 0

10 Colchicine 77 0 0
11 Cyclic GMP 76 1995 4 Physiopathology Physiology
12 Nicotine 75 1999 3 Drug therapy Adverse effects
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columns: First Year (abbreviated First Yr, the first year an article ap-
peared directly associating the chemical to migraine), Article Count
(abbreviated Article Ct, the count of articles with this direct associ-
ation) and the most common qualifiers or subheadings appearing
in the annotations of the disease and the chemical with migraine
(Disease Qualifier and Chemical Qualifier). Magnesium was first con-
nected to migraine in 1985 and has had 39 articles since connect-
ing it to migraine. Both the most common disease qualifier and the
most common chemical qualifier occurring in records in which mi-
graine and magnesium occur together were blood, indicating the
blood levels of magnesium are important in migraine.

The set was visually examined to see what general observations
could be made. The set contains many types of chemicals. Sodium,
zinc, copper, and magnesium are elements. Cysteine is an amino
acid and cyclic GMP is a nucleotide. Pharmaceuticals become more
common as one scans down the list. The disease and chemical
qualifiers indicate that the connections between the chemicals
and migraine were varied. A number of chemicals were annotated
indicating they treat migraine. Some chemicals like copper appar-
ently cause migraine, and some appear to be involved in the phys-
iological mechanisms of migraine (e.g. cyclic GMP).

The total set contained 154 chemicals which had no connection
to migraine in the baseline period but developed a connection by
2007. Among the top 12 chemicals eight (66%) have developed
links to migraine since 1984. The Article Count element was
adopted as a rough indicator of the significance of a chemical’s con-
nection to migraine. Magnesium has had 39 articles linking it to
migraine since 1985 while copper has only one since its first con-
nection in 1986. Sodium has only one article linking it directly to
migraine, but the article is recent therefore the connection is newly
established and its significance as of today is understandably low.
Table 3
Baseline and test period results for valproic acid and nitric oxide.

A. Baseline data: 1984 and before B. Test data: A

Rank Chemical name Prot Ct First Yr

103 Mannitol 44 0
104 Penicillin G 43 0
105 Valproic acid 43 1988
106 Deuterium 43 0
107 Aluminum 42 0
108 Orotic acid 42 0

. . . 0
598 Quartz 11 0
599 Nitric oxide 11 1991
600 Orciprenaline 11 0
601 Methaqualone 11 0
Based on the article count metric, two chemicals, valproic acid,
and nitric oxide, warrant further discussion (See Table 3.). Valproic
acid, found in position 105, has only 43 migraine-related proteins.
The first article discussing its therapeutic use in migraine appeared
in 1988 and by 2007, 83 articles linked valproic acid to migraine,
twice as many as magnesium. Valproic acid is an example of drug
reprofiling. It was used for many years as an anti-epileptic drug be-
fore being tried in migraine prophylaxis [29]. Valproic acid devel-
oped the strongest link to migraine based on the article count
metric yet it did not appear as high as magnesium in the hypoth-
esis set based on baseline protein count.

Nitric oxide appears relatively low in the list as well at position
599, linked to only 11 proteins in common with the pool of mi-
graine-linked proteins, but by 2007 it had 40 articles linking it to
migraine, one more than magnesium. The most common qualifiers
indicate that nitric oxide is important in the physiology of
migraine.
3.2. Evaluation

Precision and recall were calculated using the following
formulas.

Chemical Precision ¼ ðHS \ FLÞ=HS and
Chemical Recall : ðHS \ FLÞ=FL ð1Þ

HS is the number of entries in the hypothesis set and FL stands
for the number of chemicals which will develop a future link to mi-
graine. Future linked chemicals are those that existed in the base-
line period, and had no direct link to migraine during that period,
but by the end of the 1985–2007 test periods had developed a di-
fter 1984

Article Ct Disease qualifier Chemical qualifier

0
0
83 Drug therapy Therapeutic use
0
0
0
0
0
40 Physiopathology Physiology
0
0
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rect link to migraine. We chose to use the terms FL and HS instead
of adopting the True Positive (TP), True Negative (TN), etc., termi-
nology because the latter scheme implies a certainty of outcome
that our experiment could not support. The term True Positive,
for example, sounds definitive, but all the links between drugs
and a disease are not definitely established at a particular point
in time. The links evolve over time as the result of ongoing research
and publication.

The search of the entire ChemoText determined that there were
177 future linked chemicals; our routines found 154 of them. The
23 chemicals were missed because they did not have proteins
linked to them from the migraine protein pool. In other words,
the B–C connection did not pick up these chemicals. The intersec-
tion of the hypothesis set and the future linked (FL) chemicals gives
the number of future linked chemicals found by our experiments.

The results for recall and precision are as follows.
Chemical Precision = 154/4725 = 0.033 = 3.3% Chemical Recall =

154/177 = 0.870 = 87.0%.
The recall results are high. Selecting migraine drugs based on

proteins identified 87% of the future chemicals connected to mi-
graine. Our precision results, however, are weak. Only 3.3% of the
chemicals in the hypothesis set developed a connection to mi-
graine after 1984.

One likely reason for the low precision is that the 131 proteins
connected to migraine include many protein families. These anno-
tations can be very general and therefore have the likelihood of
being annotated with many chemicals. For instance, Adenosine Tri-
phosphatases and Peptide Hydrolases are two protein annotations
from the migraine protein pool. While these families certainly have
a connection to migraine, they are so broad that they will have
connections to many other diseases and chemicals. As a result they
will likely increase our hypothesis set significantly with chemicals
of little potential connection to migraine. Not all protein families
can be discounted, however. Receptors, Serotonin is also a protein
family, but it has a well-known importance to the physiology of
migraine and should not be undervalued. In future work we hope
to develop other metrics which attribute a weight to the protein
annotations that will reflect their importance to the disease being
investigated.

We hypothesized that those chemicals with a weak connection
to migraine will have fewer protein annotations from the migraine
protein pool. We investigated the use of protein count thresholds
to improve our results.
3.3. Increasing precision

We investigated the relationship between protein count and the
strength of the connection of a chemical to migraine. To reflect the
importance of the connection between a chemical and migraine we
Fig. 5. Bar chart showing perc
continued the use of the article count metric. This metric acts as a
weighted count, giving chemicals a weight equal to the number of
publications connecting them with migraine. Counting co-occur-
rences to estimate relationship strength is a common technique
in text mining (e.g. [30]). Using article count, however, does have
limitations. It is a direct measure of publication activity, and pub-
lications may not always accurately reflect significance of a chem-
ical (It is even difficult to define the significance of a chemical.).
Publication rates may increase, for instance, if a certain drug is sus-
pected of having dangerous side effects. Additionally, a chemical
which has 10 articles connecting it to migraine cannot be said to
be 10 times more important than a chemical with only one article.
Despite these limitations, we will use the article count metric as a
rough indicator for the importance of a connection between a
chemical and migraine.

For a graphic understanding of these relationships between pro-
tein count, future linked (FL) count, and article count, we created a
bar chart which grouped the hypothesis set by protein count
ranges (See Fig. 5.). For each protein count range, the following per-
centages were depicted as bars: the percentage of the hypothesis
set, percentage of future linked (FL) chemicals, and percentage of
future linked articles. The bars in the first group, 10 proteins and
under, show that over 80% of the hypothesis set chemicals have
fewer than 10 proteins linking them to migraine. This large group
has around 40% of the future linked chemicals. This group however
has only around 25% of the articles linking chemicals to migraine.
Because so many chemicals in the hypothesis set had fewer than
10 proteins, a separate bar chart (Fig. 6) was created to look at
the 0–10 range in detail. This graph shows that over 40% of the
chemicals in the hypothesis set had only one protein from the mi-
graine protein pool. This large group contained only 10% of the true
migraine chemicals and less than 5% of the migraine articles. Elimi-
nating this group of chemicals could improve precision without sig-
nificantly degrading recall. To test this idea, precision and recall
were recalculated as the chemicals with the lowest protein counts
were consecutively eliminated. The results are contained in Table 4.

This table includes a new element: Article Recall. To calculate
this we used the following formula.

Article recall ¼ ðFound FL ArticlesÞ=ðAll FL ArticlesÞ ð2Þ

We will illustrate this formula using the results from the entire
hypothesis set.

Article recall = 552/(552 + 55) = .909 = 90.9%.
The numerator in this equation is the number of articles associ-

ated with the 154 chemicals from our hypothesis set that did in-
deed develop a future link (FL) to migraine. The denominator is
the number of articles for the chemicals in our hypothesis set that
developed a future link to migraine in addition to the 55 articles
associated with the 23 chemicals that our routines did not find.
entages by protein count.



Fig. 6. Bar chart showing percentages by protein count for chemicals with 10 or fewer associated proteins.

Table 4
Precision and recall results as thresholds are applied. Hypothesis Set Count – number of chemicals in hypothesis set, Found FL Chemicals – number of future linked chemicals found
by our process, Found FL Articles – number of articles associated with the found future linked chemicals. Precision, Recall, and Article Recall are calculated from the hypothesis set
when the protein count (prot ct) threshold is applied.

Threshold applied Hypothesis Set Count Found FL Chemicals Found FL Articles Precision Recall Article recall

None 4725 154 552 0.03 0.870 0.909
Prot ct > 1 2658 138 529 0.05 0.780 0.871
Prot ct > 2 1867 131 511 0.07 0.740 0.842
Prot ct > 3 1454 123 498 0.08 0.695 0.820
Prot ct > 4 1223 114 486 0.09 0.644 0.801
Prot ct > 5 1034 105 460 0.10 0.593 0.758
Prot ct > 6 888 93 424 0.10 0.525 0.699
Prot ct > 7 801 89 412 0.11 0.503 0.679
Prot ct > 8 739 86 406 0.12 0.486 0.669
Prot ct > 9 674 86 406 0.13 0.486 0.669
Prot ct > 10 617 82 399 0.13 0.463 0.657
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Article recall overall was 90.9%. Article recall is higher than chem-
ical recall because the chemicals we did find had on average more
articles associated with them then the chemicals we did not find.

Table 4 records the change in precision and recall as protein
count thresholds were applied to the hypothesis set. The elimina-
tion of each group of chemicals caused an increase in precision and
a decrease in recall. By eliminating all chemicals with 10 or fewer
proteins, the hypothesis set contains 617 chemicals. Of these 82
chemicals or 13% are future linked. While the chemical recall
was decreased to 46.3%, the article recall decreased only to
65.7%, showing that the chemicals remaining had a more signifi-
cant connection to migraine as measured by article count. The
three chemicals which eventually developed the strongest link to
migraine (magnesium, nitric oxide, and valproic acid) are all in-
cluded in the set of 617, although nitric oxide, with only 11 chem-
icals from the protein pool, was close to the cutoff. Our results on
the whole compare favorably to other similar studies [15,20].
4. Discussion

In this proof of concept study, our strategy of using proteins as
the intermediary terms in the ABC paradigm was very effective in
finding chemicals in the literature prior to 1985 that later devel-
oped a link to migraine. The reason for this likely lies in the central
role proteins play in both disease and drug research. The study of
disease increasingly focuses on the physiology of the disease state
at the molecular level, a level in which observations of proteins and
their interactions with other molecules are central. Drug research
focuses on proteins as well, searching for drugs that will modulate
the behavior of proteins involved in the disease pathway.

Restricting the B terms to proteins has also allowed us to reduce
the size and complexity of the datasets we work with. A count of
protein annotations in our database showed that they comprise
roughly 12% of the MeSH annotations in the subset of Medline re-
cords stored in ChemoText (those with annotated chemicals). This
represents a significant reduction in data volume, and likely a
reduction in noise, while the signal in the data remains strong en-
ough for the purposes of our study.

While drawing connections based on common proteins is effec-
tive in recall, the utility of the protein count variable is not so clear.
Chemicals with the lowest protein counts can be eliminated with-
out significant deterioration in recall, and chemicals with the high-
est protein counts are more likely to be connected to migraine than
the chemicals overall. Eight out of the top 12 chemicals from the
hypothesis set developed a link to migraine, a much higher propor-
tion than the 3.3% overall. In between the high and low extremes,
however, the correlation between protein count and strength of
the connection to migraine becomes less apparent. Table 5 calcu-
lates protein and article counts based on data retrieved from the
entire ChemoText database. Part A on the left ranks the chemicals
connected to migraine by article count. Sumatriptan has over-
whelmingly the highest article count, but a protein count of only
69. The related triptan drugs which are also highly written about
have even lower protein counts. The right hand side of the table
ranks the chemicals by protein count. The article counts do not ap-
proach the 675 articles of sumatriptan; with 230 articles serotonin
comes the closest.

We have observed that protein count seems more indicative of a
connection to migraine for endogenous chemicals than for exoge-
nous ones. Endogenous molecules are those that occur naturally
in the body. Exogenous molecules are foreign to the body, and
therefore drugs belong to this category (Many drugs are forms or
derivatives of endogenous chemicals so this is not a strict defini-
tion.). We can speculate that endogenous chemicals are likely to
be involved in multiple pathways in the body and will therefore
be over time studied for their relationship to many diseases and



Table 5
View of ChemoText data through 2007. Part A is ranked by article count and Part B is ranked by protein count.

Part A. Ranked by article count (Art Ct) Part B. Ranked by protein count (Prot Ct)

Chem name Prot Ct First Yr Art Ct Chem name Prot Ct First Yr Art Ct

Sumatriptan 69 1988 675 Calcium 478 1950 11
Ergotamine 72 1962 314 Ethanol 433 1969 6
Serotonin 404 1959 230 Nitric oxide 423 1991 40
Propranolol 256 1968 165 Estradiol 416 1971 23
Methysergide 81 1963 151 Cyclic AMP 408 1976 6
Flunarizine 66 1980 136 Serotonin 404 1959 230
Rizatriptan 14 1996 126 Dexamethasone 395 1967 11
Dihydroergotamine 47 1974 112 Norepinephrine 394 1954 25
Aspirin 328 1953 104 Dopamine 394 1970 24
Caffeine 246 1950 99 Cysteine 382 1994 3
Valproic acid 230 1988 83 Adenosine triphosphate 377 1979 7
Zolmitriptan 16 1996 79 Oxygen 375 1980 6
Metoclopramide 105 1974 63 Progesterone 361 1951 33
Eletriptan 17 1998 62 Testosterone 358 1955 6
Acetaminophen 203 1972 61 Sodium 355 2006 1
Naratriptan 9 1997 61 Potassium 354 1981 3
Histamine 348 1950 54 Hydrocortisone 353 1979 10
Clonidine 211 1970 54 Nicotine 353 1999 3
Pizotyline 17 1974 51 Histamine 348 1950 54
Indomethacin 284 1964 46 Cholesterol 348 1973 13
Nitric oxide 423 1991 40 Acetylcholine 338 1959 5
Magnesium 316 1985 39 Morphine 333 1960 9
Cinnarizine 45 1977 39 Adenosine 332 1953 7
Tyramine 146 1967 37 Aspirin 328 1953 104
Nitroglycerin 150 1968 35 Epinephrine 325 1950 15
Amitriptyline 147 1965 34 Cyclosporine 324 1994 4
Metoprolol 115 1980 34 Sodium chloride 322 1951 4
Progesterone 361 1951 33 Magnesium 316 1985 39
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will accumulate protein annotations. The goal in creating a drug,
on the other hand, is to make its action as targeted as possible in
order to reduce unwanted effects. Often a drug targets a single pro-
tein like a receptor. The literature annotations will likely include
other proteins as well as the upstream, downstream, and off-target
effects are elucidated. In future work we plan to divide the chem-
icals if possible into endogenous and exogenous groups to test the
significance of the protein count variable in each group.

We have shown that applying protein count cutoffs can work
as a dial to select different levels of recall and precision. In prac-
tice the decision as to what levels of precision and recall are
acceptable depends on the purpose and resources of the research-
er. Achieving the best possible recall may be most important to
drug researchers who have other information resources on hand
to limit the hypothesis set. These researchers can limit the set
to exogenous molecules and then examine external data such as
toxicity and patent information to cull unlikely candidates. These
researchers may even augment the hypothesis set with structur-
ally similar molecules and then screen the whole set in silico or
in vitro. Relatively higher precision, on the other hand, may be
more important to other researchers who do not have screening
resources.

One of the main challenges in developing ChemoText and in
implementing Swanson’s ABC discovery paradigm lies in the desig-
nation of chemicals in MeSH. The first challenge is that the name of
a chemical may change over time. While NLM maintains helpful
records mapping names to earlier designations, we have not writ-
ten or implemented all the routines necessary to trace the history
of a chemical and relate all the names to a unique identifier. The
second hurdle is that chemicals may be categorized in several
ways. Again the NLM provides the very helpful Tree database
[31], but the complexity of chemicals makes them difficult to cat-
egorize. For instance, many endogenous molecules (including pro-
teins) are synthesized and used as drug therapies. It is not possible
from to know from the annotations whether a reference is to the
endogenous or the exogenous form of the molecule.
Our definition of a direct connection between a chemical and a
disease consists of a co-occurrence of a subject chemical and the
annotated disease. This definition is restrictive and leaves out co-
mention of a chemical with a disease in an abstract or title. It also
omits possibly informative MeSH co-occurrences. Our ChemoText
database is limited by time as well. We currently update it on a
yearly basis when the new baseline data is available from the Na-
tional Library of Medicine. The MeSH vocabulary is also updated on
a yearly basis, and therefore can lag behind the results being
reported.

We have found that the key relationships and entities impor-
tant to computational drug discovery show strong presence in
the MeSH annotations that we do include. This key information in-
cludes chemicals, diseases, and proteins. The limitations in the
scope of the data also reduce its size. The insights we have gained
from data streamlined enough to move back and forth in time to
understand the evolution of a drug or disease treatments are valu-
able enough to risk missing connections. Because our methods in-
volve inference – taking a set of data and predicting new things
based on it – we do not need the newest information to construct
a hypothesis set. We would however need the newest and most
complete information available on PubMed to validate any predic-
tions we would make based the hypothesis set.

Magnesium provides a good example of the restrictiveness of
our procedures and what they would and would not consider a
relationship. Entering the query ‘‘magnesium and migraine” in
PubMed Entrez gives 128 articles (as of 08/20/2008). In three of
the four articles before 1985 though magnesium occurs in the
Medline record, magnesium is not the main topic. The Altura
1984 [32] article does meet our criteria for magnesium to be the
subject drug, but as the article is about strokes, migraine is only
mentioned in the abstract and not annotated. The 1973 German
article linking migraine therapy to magnesium glutamate specified
glutamates as the main topic [33]; no abstract is provided so it is
difficult to assess the accuracy of that annotation. The 1985 Altura
article [34] about the calcium antagonist properties of magnesium
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is the first article we include in ChemoText with a direct link be-
tween magnesium and migraine.
4.1. Predictions

The analysis that produced Table 5 Part B was rerun to include
all chemicals, those with and those without a direct link to mi-
graine in ChemoText. When the list was sorted by protein count,
only three chemicals among the top-ranked 35 showed no link to
migraine: zinc, tetradecanoylphorbol acetate, and retinoic acid
(MeSH term Tretinoin). Tetradecanoylphorbol acetate is a plant
derivative and, because we have noted a stronger link between
protein count and endogenous molecules and tetradecanoylphor-
bol is exogenous (as well as a known carcinogen), we will not pre-
dict that it has a connection to migraine. We predict that zinc and
retinoic acid have a connection to migraine. We will briefly discuss
some of the literature evidence here.

Zinc is an important nutrient in the human diet. In the body it
plays many roles both in structure as a component of many pro-
teins, but also in cell signaling. In [35] Frederickson et al. review
the role of zinc in neurobiology. Several of the roles they outline
for zinc in the nervous system have possible links to migraine.
Zn2+, the ionic form of zinc, is a neurotransmitter and is stored in
and released from a neuron in the brain that also releases gluta-
mate, a neurotransmitter known to be involved in the physiology
of migraine. Zinc has been shown to be active with regard to at
least two key receptors in migraine physiology: the NMDA recep-
tor and GABA receptor. The level of free zinc in cells, particularly
in pathological conditions, is modulated by nitric oxide, a molecule
with direct links to the etiology of migraine.

Retinoic acid is a form of Vitamin A and an important molecule in
regulating gene transcription. In the nervous system it has been
studied extensively for its role in development of the embryo and
its link to maintaining and remodeling the nervous system is also un-
der investigation [36]. Excessive Vitamin A can cause a number of
conditions including idiopathic intracranial hypertension, a condi-
tion with symptoms very similar to migraine including severe head
pain and visual disturbances [37]. Neither Vitamin A nor retinoic
acid has a direct link to migraine in ChemoText, however isotreti-
noin, a isomer of retinoic acid, has one link [38]. In this case study
a woman with unilateral Darier’s disease was prescribed isotretinoin
to treat her skin eruptions. She also complained of migraines. During
the treatment with isotretinoin the headaches ceased, but once the
treatment concluded and she stopped taking isotretinoin, the mi-
graines returned. Retinoic acid also has a link to nitric oxide: in kerat-
inocytes retinoic acid has been shown to reduce inflammation
through inhibiting the synthesis of nitric oxide [39].
5. Conclusion

In this research we have developed a methodology for inferring
drug–disease associations based on a novel implementation of
Swanson’s ABC text mining paradigm. The novelty of our approach
is that we use only MeSH protein annotations as the intermediate B
terms. This approach gives our work the following advantages over
other implementations of Swanson’s model. First, limiting the B
terms to proteins lowers the volume and dimensionality of our
data and makes it more tractable. This allows us to combine data
from two time periods not only to validate our findings but also
to understand what kinds of connections have emerged between
the chemical and the disease. Using proteins additionally obviates
the need to have a scientist review the intermediary results and
make decisions about how to proceed, a requisite step in some
other literature-based discovery applications. In our application,
human effort is saved for evaluation of resulting hypotheses. Addi-
tionally, using proteins as the intermediary terms also has sound
biological footing: proteins are frequently the intermediary be-
tween disease and drugs. This consideration justifies their use as
functional B terms in the ABC approach. In this proof of concept
and methods development study, we have demonstrated the util-
ity of our approach by reproducing Swanson’s well-known connec-
tion between magnesium and migraine, as well as by predicting
several other known links between drugs and disease.

Our ChemoText data repository is well-suited to finding implicit
relationships. One of its strengths comes from identifying the sub-
ject chemical of a Medline record. This is a novel technique that not
only reduces the volume of data, but reduces the noise associated
with term co-occurrence.

Article count was introduced as a rough metric for the impor-
tance or significance of a connection between a chemical and a dis-
ease. Although we are hoping to use a more sophisticated measure
of significance in our future work, the article count metric has al-
lowed us to identify two chemicals with comparable significance
to magnesium:valproic acid and nitric oxide. Despite the many lit-
erature mining projects endeavoring to reproduce Swanson’s mi-
graine–magnesium connection, no one, as far as we know, has
identified the strong link between these chemicals and migraine
(Swanson himself however in [6] noted a connection between epi-
lepsy and migraine.). Valproic acid and nitric oxide should be in-
cluded with magnesium as a gold standard for future literature-
based discovery research.

Based on the importance of protein count for endogenous mol-
ecules, we have predicted that zinc and retinoic acid have a con-
nection to migraine.

Our approach to literature-based discovery has several limita-
tions. Connections between biological entities which occur in the
title, abstract, or full text of the article will not be picked up. Addi-
tionally, the identification of the subject chemical is performed by
a heuristic algorithm and therefore not always accurate. The prin-
ciple of assuming that two biological entities are related because
terms referring to them co-occur in the same Medline record has
its limitations and can produce false connections.

By its distillation of a large body of chemical and disease re-
search, ChemoText offers many rich avenues for exploration (See
Fig. 4). We hope to extend our techniques to a wider scope of
drug–disease associations. We also aim to improve on our under-
standing of the patterns residing in the data so that we can develop
procedures and metrics that will lead to higher precision and mod-
els with improved predictive abilities. In order to improve evalua-
tion, we hope in the future to adopt the guidelines described in
[23]. As the biomedical literature grows in volume and continues
to segment into specialties, the need for tools to combine litera-
tures in rational, useful ways will become increasingly critical to
scientists in drug discovery. We have shown that ChemoText rep-
resents a promising addition to the field of literature-based drug
discovery.
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