This article is published in Plant Physiology Online, Plant Physiology Preview Section, which publishes manuscripts accepted for publication after they have been edited and the authors have corrected proofs, but before the final, complete issue is published online. Early posting of articles reduces normal time to publication by several weeks.

A Sequence-Based Map of Arabidopsis Genes with Mutant Phenotypes^{1[w]}

David W. Meinke*, Laura K. Meinke², Thomas C. Showalter³, Anna M. Schissel⁴, Lukas A. Mueller, and Iris Tzafrir

Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078 (D.W.M., L.K.M., T.C.S., A.M.S., I.T.); and Department of Plant Biology, Carnegie Institution, 260 Panama Street, Stanford, California 94305 (L.A.M.)

The classical genetic map of Arabidopsis contains 462 genes with mutant phenotypes. Chromosomal locations of these genes have been determined over the past 25 years based on recombination frequencies with visible and molecular markers. The most recent update of the classical map was published in a special genome issue of *Science* that dealt with Arabidopsis (D.W. Meinke, J.M. Cherry, C. Dean, S.D. Rounsley, M. Koornneef [1998] Science 282: 662–682). We present here a comprehensive list and sequence-based map of 620 cloned genes with mutant phenotypes. This map documents for the first time the exact locations of large numbers of Arabidopsis genes that give a phenotype when disrupted by mutation. Such a community-based physical map should have broad applications in Arabidopsis research and should serve as a replacement for the classical genetic map in the future. Assembling a comprehensive list of genes with a loss-of-function phenotype will also focus attention on essential genes that are not functionally redundant and ultimately contribute to the identification of the minimal gene set required to make a flowering plant.

Before the advent of modern genomics, the existence of a gene was often first revealed when a mutant with a visible phenotype was recovered. From pea (Pisum sativum) plants with wrinkled seeds to fruitflies (Drosophila melanogaster) with altered eye pigmentation, mutants have long played a central role in genetic analysis. Recent advances in molecular biology have made it possible to identify large numbers of genes with mutant phenotypes in model organisms and to move toward a synthesis of classical genetics and structural genomics. This report provides one such synthesis for a model plant. The sequence-based map of genes with mutant phenotypes described here should provide a foundation for the long-term goal of determining which genes in Arabidopsis give a phenotype when disrupted by mutation. This information is needed to address from a genetic perspective the question of functional redundancy in Arabidopsis and to identify those genes capable of generating phenotypic diversity.

The first comprehensive map of Arabidopsis genes with mutant phenotypes was published 20 years ago

Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.014134.

(Koornneef et al., 1983). Included on that map were 76 genes with phenotypes ranging from altered trichome morphology and seed coat pigmentation to reduced surface waxes and increased hypocotyl length. Most of the genes were assigned map locations based on analysis of F₂ plants produced following self-pollination of heterozygotes. Backcrosses of heterozygotes to parental homozygotes were avoided to minimize the total number of crosses performed. Precise gene orders were often not resolved because two-point crosses were involved, which meant that genes were placed on the map by comparing recombination frequencies obtained with different pairs of linked markers.

Large numbers of mutants were added to the classical map over the next 15 years, including embryo defectives with a seed phenotype that enabled heterozygous F₂ plants to be identified without progeny testing. This feature reduced the number of plants required to obtain accurate mapping data and resulted in further map enhancements (Patton et al., 1991). The most extensive study presented recombination data for 169 embryo-defective mutants and estimated locations of 110 EMB genes (Franzmann et al., 1995). Recombination percentages were converted into centiMorgans using the Kosambi (1944) mapping function. Maps with the most consistent gene order were constructed by determining the minimal chi-square for all recombination data combined (Jensen and Jorgensen, 1975). Several computer programs were used to facilitate map construction and integration (Patton et al., 1991; Stam, 1993). Despite these important advances, inconsistencies in recombination data soon made it necessary to place new

¹ This research was supported by the National Science Foundation Developmental Mechanisms and Arabidopsis 2010 Programs.

² Present address: Macalester College, St. Paul, MN 55105.

³ Present address: Swarthmore College, Swarthmore, PA 19081.

⁴ Present address: College of Osteopathic Medicine, Kirksville, MO 63501.

^[w]The online version of this article contains Web-only data. The supplemental material is available at www.plantphysiol.org.

^{*} Corresponding author; e-mail Meinke@okstate.edu; fax 405–744–7074.

genes on the map by hand. This approach was used to construct the map of 284 loci published by Koornneef (1994).

Genetic maps of molecular markers were also being constructed during this time. The types of markers involved quickly expanded to include restriction fragment length polymorphisms (Chang et al., 1988; Nam et al., 1989; Fabri and Schaffner, 1994), randomamplified polymorphic DNAs (Reiter et al., 1992), cleaved-amplified polymorphic sequences (Konieczny and Ausubel, 1993), simple sequence length polymorphisms (Bell and Ecker, 1994), and amplified fragment-length polymorphisms (Alonso-Blanco et al., 1998). A recombinant inbred map developed by crossing Columbia and Landsberg ecotypes (Lister and Dean, 1993) soon became established as the standard for genetic placement of molecular markers. Mutant genes could be placed on this map by determining recombination percentages with linked molecular markers. This resulted in the establishment of two parallel types of genetic maps with mutant genes: the classical map and the recombinant inbred map. Integration of these maps proved difficult because chromosome lengths and recombination estimates were not identical. Because many people were interested in gene isolation through map-based cloning, genes with mutant phenotypes were often mapped only in relation to linked molecular markers. Furthermore, tagged mutants identified from T-DNA insertion lines did not require mapping to clone the disrupted gene and therefore often did not contribute to map enhancements. As a result, the number of mutant genes added to the classical map began to diminish.

The most recent update to the classical genetic map contains 462 loci distributed over five chromosomes and 469 total centiMorgans (Meinke et al., 1998). This map includes 131 genes with a seed phenotype and 110 genes initially placed on the recombinant inbred map and then transferred to the classical map after adjusting for differences in estimated chromosome lengths. Problems with this combined map soon became apparent as more genes were cloned and their relative locations on the physical map contradicted their estimated locations on the genetic map. Resolving these inconsistencies was difficult and was not given a high priority, despite the importance of genetic maps in model systems. A fresh approach was therefore needed to update and correct the classical map.

We decided to address this problem by focusing on mutants disrupted in known genes that could be assigned a physical location on the sequenced chromosomes. Our goal was to construct a sequence-based map of genes with mutant phenotypes to replace the classical genetic map and to provide a new standard for dealing with the chromosomal locations of mutant genes. We started with an initial list of 115 genes already noted as cloned on the genetic map

(Meinke et al., 1998) and supplemented this with information from The Arabidopsis Information Resource (TAIR; http://www.Arabidopsis.org), extensive literature searches of publications listed in PubMed (http://www.ncbi.nlm.nih.gov), examination of abstracts from posters at recent Arabidopsis meetings, and requests for community additions and corrections to draft spreadsheets. The initial results of this effort are described here with the first sequence-based map of 620 mutant genes of Arabidopsis. Additional details collected during construction of this map document the methods used for gene isolation, the general phenotype of mutant alleles, the predicted function of protein products, and the dramatic increase in the number of genes identified in recent years. Although the total number of genes that can mutate to give a phenotype remains to be determined, the results presented here make it possible to begin comparisons with other model systems and to assess from a genetic perspective the extent of functional redundancy in the Arabidopsis genome.

RESULTS AND DISCUSSION

Criteria for Including Genes on the Map

Three questions had to be resolved before determining which genes should be included on a sequence-based map: (a) what constitutes a mutant phenotype; (b) should the map be limited to loss-offunction mutants; and (c) what level of confidence of gene identification should be required? We decided to include any gene with a dominant or recessive mutant phenotype that could be detected through visual inspection, cellular characterization, or biochemical analysis under standard greenhouse or specialized laboratory conditions. In this way, it was possible to include a broad range of mutants and to facilitate comparisons between the classical genetic and sequence-based maps. Dominant mutants for which a loss-of-function phenotype remains to be identified will need to be removed from future lists that are limited to genes with essential functions. We did not consider a change in gene expression pattern or metabolic profile alone sufficient to constitute a phenotype because such alterations may turn out to be characteristic of most gene disruptions in Arabidopsis. Including these genes might therefore overshadow more established mutants and result in a map filled with genes with subtle loss-of-function defects. Also excluded were genes that gave a phenotype only when inactivated by antisense or gene silencing or when overexpressed through activation tagging or introduction of a cloned wild-type allele. The reason was once again to focus on loci defined by mutation and not by experimental gene manipulation in order to present an updated map that was similar in scope to the classical genetic map but consistent with the genome sequence.

Suppressor and enhancer mutations were more problematic because it was difficult to establish consistent guidelines for what to exclude. We decided not to include cases where a double knockout in redundant genes was required to give a phenotype because these alterations could not be attributed to a single locus. But genes with mutant phenotypes detected only in specific ecotypes or genotypes were included provided the genetic lines involved did not appear to have a mutation in a redundant gene. Enhancers and suppressors that gave no phenotype by themselves but modified the phenotype of a nonredundant gene knockout were therefore included. Because we did not require that gene identities be confirmed through molecular complementation or sequencing of duplicate mutant alleles, the possibility exists that some genes listed here may later need to be removed. Genetic maps have also required consolidation when two mapped loci were later found to be allelic. We discovered at least nine such cases in the course of updating the classical map (CBB3 and DWF3; DET2 and DWF6; FUS4 and FUS8; DOC1 and TIR3; PAS3 and GK; ELL and FK; AGR and EIR; RPP11 and RPP13; RPP4 and RPP5).

A Sequence-Based Map of Mutant Genes

The assembled list of 620 cloned genes with mutant phenotypes is presented in Figure 1. An expanded spreadsheet with full gene names, alias symbols, gene classes, mutant phenotypes, predicted functions, and reference labs is provided in Table S-I (supplemental data can be viewed at http://www. plantphysiol.org). Genes listed in Figure 1 are arranged by locus number, a unique identifier that corresponds to the physical location of a predicted gene along the length of the chromosome (Arabidopsis Genome Initiative, 2000). The gene order presented here is therefore consistent with the published genome sequence. Because adjacent genes are often assigned locus numbers that differ in value by 10, regardless of gene size or intergenic distances, the proximity of two genes can be estimated by comparing their locus numbers. The precise number of intervening genes and base pairs can then be obtained from current annotation (http://www.Arabidopsis. org). Locations of mutant genes are displayed on a sequence-based physical map in Figure 2. Enlarged versions that include gene symbols and locus numbers are given in Figures S-1 and S-2 (supplemental data can be viewed at http://www.plantphysiol.org).

Chromosomal Distribution of Mutant Genes

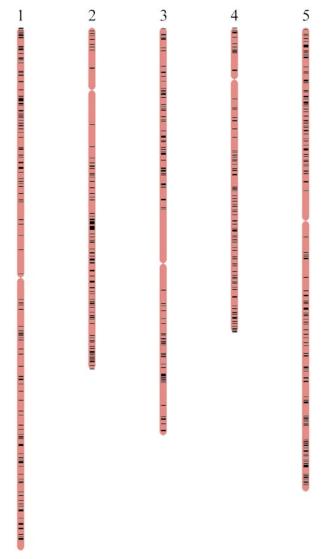
Three approaches were used to examine the chromosomal distribution of mutant genes. The first was to compare the relative numbers of genes on each chromosome. The results as shown in Table I are similar to those found with the classical genetic map and the sequenced genome as a whole. Genes with an embryo-defective (*emb*) phenotype are the most common class included on both types of maps. This is consistent with the large number of genes known to have essential functions during seed development (McElver et al., 2001).

The second approach was to look for large gaps or clusters on the sequence-based map. As shown in Figure 2, mutant genes are distributed throughout the length of each chromosome with the notable exception of centromeric regions. We considered two alterative explanations for these gaps: (a) genes with mutant phenotypes might be preferentially excluded from centromeric regions; or (b) the absence of mutant genes in these regions might simply reflect the known scarcity of functional genes around the centromere. We attempted to distinguish between these models by looking at loci predicted to fall between the mutant genes located just above and below each centromere constriction (e.g. At1g37130 and At1g43170 for chromosome 1). The genetically defined centromere is positioned within these gaps for chromosomes 1, 2, 3, and 5 and extends somewhat north of the boundary defined by At4g04890 and At4g04770 on chromosome 4 (Copenhaver et al., 1999). Of the nearly 2,700 sequenced loci assigned to these gaps in the current genome annotation (http:// www.tigr.org), approximately 50% appear to be pseudogenes, transposons, or repeat elements, 20% are annotated as encoding hypothetical proteins with no database matches, and another 20% correspond to putative proteins. Fewer than 300 loci in these combined regions appear to be promising candidates for active genes with defined functions. Based on the observed frequency of genes with mutant phenotypes elsewhere in the genome (620/29,084 = 2.1%), six of these 300 genes should have already been found to give a mutant phenotype. The failure to identify such mutants, if confirmed in future studies, could reflect an overestimation of functional genes in the centromere, inaccessibility of these regions to traditional mutagens, or increased levels of functional redundancy. For the most part, however, the distribution of genes with mutant phenotypes in Arabidopsis mirrors the distribution of functional, protein-coding genes throughout the genome.

A final approach used to look at gene distribution was to determine how often genes with mutant phenotypes were positioned next to each other on the chromosome. In 95 cases of 620 examined, two mutant genes are separated by five genes or fewer based on current annotation: 21 gene pairs are physically adjacent, 15 are separated by a single gene, 23 by two genes, 10 by either three or five genes, and 16 by four genes. We identified one adjacent pair (At4g03050 and At4g03060) that appears to represent a tandem duplication involving similar gene functions, and another cluster of three adjacent genes (At1g08540,

Ch. 1	Symbol	cM	At1g21970	LEC I	29	At1g69180	CRC	100	At2g26300	GPA 1		At2g46340	SPA 1	70
At1g01040	SUS I	0	At1g22090	EMB 2204		At1g70170	MMP		At2g26330	ER	48	At2g46370	FIN 219	
At1g01120	KCS 1	-	At1g22710	SUC 2		At1g70940	PIN 3		At2g26510	PDE 135		At2g46410	CPC	63*
At1g01510	AN	0	At1g22770	GI	33	At1g71190	TTN 4		At2g26550	HO 2		At2g46590	DAG 2	
At1g01860	PFC I		At1g22780	PFL	32	At1g71440	PFI		At2g26650	AKT 1	9	At2g46720	HIC	
At1g02090	FUS 5	5*	At1g22940	TH 1	33	At1g72970	ACE	102*	At2g26670	HY I	48	At2g46830	CCA I	
At1g02200	CER I	1	At1g23420	INO		At1g73590	PIN 1	103	At2g26830	EMB 1187		At2g47430	CKI 1	
At1g02280	PPI 1	-	At1g24490	ARTEMIS		At1g74310	HOT*		At2g26930	PDE 277		At2g47450	CAO	
At1g02340	HFR 1		At1g25220	TRP 4	35	At1g74330	SID 2		At2g26990	FUS 12	50	At2g48120	PAC	
At1g02580	MEA	6	At1g25490	RCN 1		At1g74960	FAB I		At2g27100	SE	49	Ch. 3	Symbol	cM
At1g02780	EMB 2386	-	At1g26310	CAL	46	At1g75350	EMB 2184		At2g27150	AAO 3		At3g01120	MTO I	4
At1g04110	SDD 1		At1g27450	APT 1	39	At1g75820	CLV 1	110	At2g27170	TTN 7		At3g01610	EMB 1354	-
At1g04120	MRP 5	_	At1g28300	LEC 2		At1g75950	ASK 1		At2g27250	CLV 3	47	At3g02150	PTF 1	
At1g04240	SHY 2		At1g28490	OSM 1		At1g76060	EMB 1793		At2g28000	SLP		At3g02180	SPIL	
At1g04250	AXR 3	11	At1g30950	UFO	46	At1g77120	ADH 1	114	At2g28290	SYD	52	At3g02260	TIR 3	4
At1g04400	FHA	12	At1g31480	SGR 2		At1g77760	NIA 1	116	At2g28610	PRS		At3g02580	DWF 7	
At1g04550	BDL	12	At1g32900	PRPL 11		At1g77860	KOM		At2g28800	ALB 3		At3g02850	SKO	\vdash
At1g04640	EMB 1687	_	At1g34790	TT 1	55	At1g78000	SEL 1	108*	At2g28880	EMB 1997		At3g02875	ILR I	2*
At1g05180	AXR I	12	At1g37130	NIA 2	56	At1g78580	TPS*		At2g29980	FAD 3	58	At3g03050	KJK	
At1g05750	PDE 247	12		CEN		At1g78630	EMB 1473		At2g30410	KIS		At3g04400	EMB 2171	\vdash
At1g05760	RTM 1		At1g43170	EMB 2207		At1g79460	GA 2	119	At2g30510	RPT 2	46*	At3g04400 At3g04870	PDE 181	\vdash
At1g05760 At1g05850	ELP		At1g43710	EMB 1075		At1g79560	EMB 1047		At2g30950	VAR 2	75	At3g07040	RPM 1	8*
At1g05150	EMB 1444	-	At1g43850	SEU		At1g79810	TED 3		At2g31260	APG 9*		At3g07060	EMB 1974	0
At1g06130	PDS 1	26	At1g44446	CH I	58	At1g79840	GL 2	118	At2g31340	EMB 1381		At3g08040	FRD 3	\vdash
At1g08060	MOM	20	At1g48380	RHL I		At1g79850	ORE 4	117*	At2g31530	EMB 2289		At3g08550	KOB 1	\vdash
At1g08090	NRT 2		At1g48410	AGO 1		At1g80070	SUS 2	116	At2g31870	TEJ		At3g09090	DEX 1	\vdash
At1g08260	EMB 2284	-	At1g49040	SCD 1		At1g80080	TMM		At2g31970	RAD 50*		At3g09150	HY 2	12
At1g08200	PDE 166	-	At1g49400	EMB 1129		At1g80260	EMB 1427		At2g32950	COP 1	60	At3g10050	OMR 1	17
At1g08540	ABC I	-	At1g49510	EMB 1273		At1g80350	FRA 2		At2g33150	PED 1		At3g11170	FAD 7	8
At1g08540	NPQ 1		At1g49720	ABF 1		Ch. 2	Symbol	cM	At2g33860	ETT		At3g11540	SPY	12
At1g08550	KN		At1g50030	TOR*		Cin.2	NOR	CIVI	At2g34650	PID	62	At3g11670	DGD 1	14*
At1g08720	EDR 1	-	At1g50430	DWF 5	66	A+2~01.420	PIN 4	-	At2g34690	ACD 11		At3g11940	AML I	1.4
At1g09530	POC 1	_	At1g51760	IAR 3	68*	At2g01420			At2g34780	EMB 1611	-	At3g11980	MS 2	27
At1g09530	MYB 61	-	At1g52340	ABA 2	70	At2g01830	CRE 1		At2g35630	MOR 1	\$ 3	At3g12120	FAD 2	20
At1g09570	FHY 2	16	At1g54040	TASTY		At2g01980	SOS 1	8	At2g35670	FIS 2		At3g12680	HUA 1	17*
At1g09700	HYL 1	10	At1g55540	EMB 1011		At2g02480		0	At2g36270	ABI 5	63	At3g13550	COP 10	15*
At1g10760	SEX 1	13	At1g55610	BRL 1		At2g03150	EMB 1579	9*	At2g36530	LOS 2		At3g13870	RHD 3	13
At1g10760 At1g11680	EMB 1738	15	At1g55900	EMB 1860		At2g03220	MUR 2	8*	At2g37260	TTG 2		At3g14110	FLU	\vdash
At1g11080	LRX 1	-	At1g56075	LOS 1		At2g03680	SPR 1* EMB 1956	8.	At2g37630	AS 1	64	At3g14225	EMB 1474	\vdash
At1g12110	CHL 1	14	At1g56580	ASB 3		At2g04030 At2g05990	MOD 1*		At2g37680	PAT 3	7	At3g15170	CUC 1	\vdash
At1g12220	RPS 5	10*	At1g58250	SAB	88*				At2g37860	SOZ 2	0 0	At3g15620	UVR 3	\vdash
At1g12360	KEU	17	At1g60170	EMB 1220	70.00	At2g06050	OPR 3		At2g37920	EMB 1513		At3g15850	FAD 5	16
At1g12370	UVR 2	17	At1g61720	BAN		142 12540	CEN		At2g38020	VCL 1		At3g17390	MTO 3	10
At1g12770	EMB 1586		At1g62340	ALE 1		At2g13540	ABH I		At2g38050	DET 2	64	At3g18110	EMB 1270	\vdash
At1g12840	DET 3	12	At1g62360	STM*	75	At2g15790	SQN		At2g38120	AUX I	66	At3g18290	EMB 2454	\vdash
At1g12040	EMB 1745	1.4	At1g63700	YDA	82*	At2g17310	SON 1	\vdash	At2g38440	ASB 1		At3g18390	EMB 1865	\vdash
At1g13120	DRL 1	15*	At1g64280	NIM I	89*	At2g17950	WUS EMP 2206		At2g39290	PGP	* f	At3g18730	TSK	\vdash
At1g13980	EMB 30	21	At1g64970	TMT 1	-	At2g18020	EMB 2296		At2g39770	CYT 1	65	At3g18990	VRN 1	17*
At1g13360 At1g14350	FLP	21	At1g65380	CLV 2	89	At2g18390	TTN 5	\vdash	At2g39810	HOS 1		At3g19820	DWF 1	26
At1g14530	TWN 2	19*	At1g65470	FAS 1	88	At2g18510	EMB 2444 PHYB	35	At2g39940	COI 1	66	At3g20070	TTN 9	20
At1g14010	SDS		At1g65480	FT	88	At2g18790		28	At2g40080	ELF 4		At3g20440	EMB 2729	\vdash
At1g14920	GAI	22	At1g65620	AS 2	85	At2g19450	TAG 1		At2g40220	ABI 4	66	At3g20600	NDR 1	\vdash
At1g14920 At1g15550	GA 4	22	At1g66340	ETR 1	93	At2g19520	FVE	32	At2g40890	REF 8		At3g20630	TTN 6	\vdash
At1g15350 At1g15950	IRX 4	22	At1g66350	RGL 1		At2g19760	PRF I	\vdash	At2g42620	ORE 9	57*	At3g20030	FIE	\vdash
At1g15930 At1g16410	SPS		At1g66520	PDE 194		At2g20000	HBT	35	At2g43010	SRL 2		At3g20770	EIN 3	\vdash
At1g16540	ABA 3	10	At1g67370	ASY 1		At2g20610	SUR I	33	At2g43360	BIO 2	67	At3g20780	BIN 3	\vdash
At1g16970	KU 70	10	At1g67440	EMB 1688		At2g21710	EMB 2219		At2g43410	FPA	67	At3g21640	UCU 2	\vdash
At1g17560	HLL		At1g67490	KNF		At2g22540 At2g22990	SVP		At2g43710	SSI 2		At3g22780	TSO 1	\vdash
At1g17300 At1g18370	HIK		At1g68050	FKF 1			SNG 1	20*	At2g44490	PEN 2		At3g22880	DMC I	\vdash
At1g19850	MP	22	At1g68100	IAR 1	101*	At2g23380	CLF	30*	At2g44810	DAD 1	60*	At3g22880 At3g23050	AXR 2	33
At1g19850 At1g20050	HYD 1	22	At1g68370	ARG 1	97	At2g25170	PKL		At2g45190	FIL FMP 1067	55*	At3g23030	SUP	35
At1g20030	EMB 2719		At1g68530	CER 6	96	At2g25600	SPIK	47	At2g45330	EMB 1067	0 0	At3g23150 At3g23150	ETR 2	33
At1g20200 At1g20960	EMB 2719	-	At1g68560	XYL 1		At2g25920	ELF 3	47	At2g45440	DHDPS 2		At3g23430	PHO 1	27
At1g20960 At1g21310	RSH	7	At1=60120	PAN	00	At2g26060	EMB 1345		At2g45690	SSE		At3g23430 At3g23560	ALF 5	36
A11521310	IGH		At1g69120	AP I	99	At2g26250	FDH		At2g45970	LCR		ADg23300	ALF 3	50

Figure 1. (Figure continues on facing page.)


At1g08550, and At1g08560) with different functions and mutant phenotypes. One interesting gene (*SIN1/SUS1/CAF/DCL1*; At1g01040) with an essential role in growth and development (Golden et al., 2002) was found at the extreme north end of chromosome 1. The presence of adjacent pairs of mutant genes is particularly intriguing in light of the frequent occur-

rence of tandem gene duplications and associated redundancy in Arabidopsis. Whether these clusters define small regions of the genome with unusual structural features or limited functional redundancy remains to be determined. We have nevertheless demonstrated that genes with mutant phenotypes in Arabidopsis are not always surrounded by dispens-

Aug_20000 Aug_2000	At3g24560	RSY 3	-	At4g03280	PGR 1		At4g31780	MGD 1		At5g15840	СО	13	At5g49820	EMB 1879	
Abg25140 PRF 1 S8			38						528			1.5			
August A									32	-			_		
Augustion Augu			30	A14g04890					\vdash	-					71*
August A			41	1.1.00150		1.0			\vdash	_					715
Aug_2000 Gell 46 Aug_2000 Firs 10 Aug_2000 Firs 20 Aug_4000 Aug_40			_			15			\vdash			1.54			
August A									\vdash			15*			_
August A			40	-			-		\vdash	-					6.5
Aughetition Martin Marti	At3g28030		9												_
Adaptivation						20						23			
Angleston			57						64			\square			
Adig Adig										_					77
Adjection Adje				At4g12420					-			-			
Adapto A	At3g44880		68	At4g14110	COP 9	29						-			
Angleson	At3g45780		61	At4g14210	PDE 226				68	At5g20730		28*	At5g57050		
Addg	At3g46530	RPP 13	64	At4g14550	SLR	30	At4g37200		\Box	At5g20930	TSL	20	At5g57090	AGR 1	80
Adg	At3g46560	EMB 2474		At4g14750	FRC 3		At4g37580	HLS I		At5g20990	CHL 6	22	At5g57180	CIA 2	
Adag	At3g47950	AHA 4		At4g15090	FAR I		At4g37650	SHR	68	At5g22260	MS 1	23	At5g57360	ZTL	
Adag	At3g48090	EDS 1		At4g15210	RAM I		At4g37750	ANT		At5g22370	EMB 1705		At5g57590	BIO 1	74
Addition	At3g48110	EDD		At4g15560	CLA		At4g38160	PDE 191		At5g22640	EMB 1211		At5g57930	EMB 1629	
Add	At3g48500	PDE 312		At4g15570	MAA 3		At4g38600	KAK		At5g230xx	MAM 1*		At5g58270	STARIK	
Add	At3g48560	CSR 1	70		ARA I	37	At4g38620	MYB 4			HCF 136		At5g60690	REV	87*
Add	At3g48930	EMB 1080			FCA	32	At4g39030	EDS 5		At5g23150	HUA 2			ATR	
Add			1					BRI 1	69*					AGL 8	
Adag															81
Addg0500 DWF 4 Addg1680 RPP 4 38 Addg0500 POR Adg16800 RPP 4 Adg16800 RV 1 A						36*			\Box				_		
Arigo Arig							_		Н				_		79*
Adsgrid Adsg						30		A 5000	oM.			28			1.7
Adg			67*	_			_		CIVI			20			
Aliga Alig						-4.4			\vdash	_		11*			82
Adg			90			44			$\overline{}$			-			02
Adg Boo Br Adg Boo			77									33			
Adg S4170 FIP 37*						- 10			82	At5g26742		-			02
Algebraic Alge			12*			42	-				1000000	204			82
Alige Alig												39*			
Alge54350 EMB 1967 Al4g20900 MS 5 Al5g03840 FFC Al5g35500 ESP 1 Al5g63860 UR 8 82 Al3g54670 AMP 1							At5g03730		0						_
Aligo Alig		E2010/05/2017	81				At5g03800	EMB 1899				44			-
At At At At At At At At	_						At5g03840		2*			$\overline{}$			
AdgS4720 AMP AdgS1670 FRY 2 AdSg04560 DME AdSg37850 SOS 4 AdSg64300 NPH 3 88° AdgS5120 TT 5 81 Ad4g21790 TOM 1 Ad5g04890 RTM 2 Ad5g04890 RTM 2 Ad5g04890 RTM 2 Ad5g4990 TT 7 Ad3g59503 TT 12 Ad4g23100 RML 1 44° Ad5g04890 SYN 1 Ad5g40800 ERA 1 Ad5g64600 FAS 2 S6 Ad3g61110 ARS 27 Ad4g23400 TRH 1 Ad5g05700 RFS 5 Ad5g04890 RTM 2 Ad5g04890 CLCA Ad5g64800 DPE 1 Ad3g61780 EMB 1703 Ad4g2420 FFP 1 Ad5g05700 TT 7 Ad5g04890			87*				At5g03940	FFC							82
Adg55120 TT 5							At5g04140	GLS 1							
At At At At At At At At				-			At5g04560	DME							_
At At At At At At At At			81	At4g21790	TOM I		At5g04890	RTM 2		At5g39510					
At At At At At At At At	At3g55270			At4g22260	IM	48	At5g05170	CEV 1		At5g40160	EMB 506				86
Atlage A	At3g59030	TT 12		At4g23100	RML 1	44*	At5g05490	SYN 1		At5g40280	ERA 1		At5g64860	DPE 1	
At3g61110 ARS 27 At4g23640 TRH 1 At5g05730 TRP 5 11* At5g41150 UVH 1 At5g65930 ZWI At5g65930 ZWI At5g13160 EMB 1703 At4g24510 CER 2 52 At5g0780 TT 7 At5g0780 EMB 1873 At5g41315 GL 3 53 At5g65930 CHY 1 At5g65940 CHY 1 At5g65930 TR 1 T7* At4g24510 CER 2 52 At5g0780 TT 7 At5g0780 AT5g41810 BEL 1 50 At5g66535 SHI At5g66530 SHI At5g66530 SHI At5g0780 TT 7 At5g0780 AT5g4280 AD5 L1 At5g66570 PSBO At5g66570 PSBO At5g66750 DDM 1 97 At5g1280 EMB 1873 At5g1380 FV 12 At5g46800 BOU At5g46800 BOU At5g46800 BOU At5g48300 ADG 1 At5g48300 ADG 1 At5g48300 ADG 1 At5g48300 ADG 1 At5g64830 ADG 1 At5g66930 AUT 1 At5g66935 AUT 1 At5g66935 SHI At5g69940 CHY 1 At5g66935 SHI At5g69940 CHY 1 At5g69940 CHY 1 At5g69940 AUT 1 At5g66930 AUT 1 At5g66935 SHI At5g69940 AUT 1 At5g69940 AUT 1 At5g66930 AUT 1 At5g69840 AUT 1 At5g66930 AUT 1 At5g69840 AUT 1 At5g66930 AUT 1 At5g66930 AUT 1 At5g69940 AUT 1 At5g69840 AUT 1 At5g69840 AUT 1 At5g66930 AUT 1 At5g66930 AUT 1 At5g69840 AUT 1 At5g	At3g60740	TTN 1	85	At4g23250	EMB 1290		At5g05690	CBB 3	15*	At5g40890	CLCA		At5g64930	CPR 5	86*
At3g61140 FUS 6 87 At3g61180 EMB 1703 At3g62180 EMB 1703 At3g62190 APG 3* At3g62910 APG 3* At4g24540 AGL 24 At3g62980 TIR 1 77* Ch. 4 Symbol CM NOR NOR At4g25420 GA 5 53 At4g2540 GA 5 53 At4g2550 LAF 1 At4g26090 RPS 2 55 At4g00450 CFP At4g00370 ANL 2 At4g00370 ANL 2 At4g01370 MPK 4 At4g02510 PPL 2 At4g02500 PRL At4g02500 PRL At4g02500 LD At4g27760 FEY At4g02500 LD At4g27760 FEY At4g02500 LD At4g28750 PSLE 1 At4g02600 ARB 1 At4g2980 MB 1 At4g2880 MB 1 At4g2980 MB 2 1 At5g1360 KYP At5g1380 KYP At5g1390 KYP At5g1450 FEX 1 At5g13900 KYP At5g1430 MDC 1 At5g66550 EMB 2036 At5g66530 SHI At5g66570 PSBO At5g66570 PSBO At5g66570 PSBO At5g6703 ABA 1 98 At5g6730 ABA 1 98 At5g1390 FY 12 At5g13160 PBS 1 At5g43810 ZLL 57 At5g44907 CAD 1 57 At5g4490 RPS 58 At5g4390 BOU At5g46800 BOU At5g48300 MB 1276 At5g4330 FLS 2 At5g1430 FLS 2 At5g1430 FLS 1 At5g14300 FLS 1 At5g14300 FLS 1 At5g4330 FLS 2 At5g1430 FLS 1 At5g4330 FLS 2 At5g4380 FLS 2 A	At3g61110	ARS 27		At4g23640	TRH 1				11*	At5g41150	UVH 1		At5g65930	ZWI	
At3g61780	At3g61140	FUS 6	87	At4g24190	SHD					At5g41315	GL 3	53	At5g65940	CHY 1	
At3g62910	At3g61780	EMB 1703		At4g24220	VEP I				6	At5g41370	XPB 1		At5g66055	EMB 2036	
Atagonsolute	At3g61850	DAG 1	1	At4g24510	CER 2	52				At5g41410	BEL 1	50	At5g66130	RAD 17*	
Atsgeen Atsg	At3g62910	APG 3*			AGL 24				\vdash	At5g42080	ADL IA		At5g66350	SHI	
Ch. 4 Symbol CM	At3g62980	TIR 1	77*						\vdash	At5g42270	VAR 1	65	At5g66570	PSBO	
Atdg00100 PFL 2 Atdg00450 CRP Atdg00450 FRI O Atdg00450 FRI O Atdg00450 FRI O Atdg00450 PRL At	Ch. 4		cМ			53			\vdash	At5g42650	AOS		At5g66750	DDM I	97
At4g00100			22						8	At5g42800	TT 3	57	At5g67030	ABA I	98
Atlg00100	A+4-00100		(0	-	15 15 15 15 15 15 15 15 15 15 15 15 15 1				-						
At4g0050					PER ADMINISTRATION OF THE PERSON OF THE PERS	55			-						
At4g00305			-						12"						
Atlg0130			0						\vdash						
At4g01370 MPK 4 At4g27330 SPL At5g13480 FY 12 At5g45250 RPS 4 At5g									$\vdash\vdash$						
At4g02060 PRL At4g27760 FEY At5g13480 FY 12 At5g45710 RHA 1 At4g0250 LD At4g28750 PSAE 1 At5g13710 SMT 1 At5g46330 FLS 2 At4g02570 AXR 6 7* At4g29010 AIM At5g13710 SMT 1 At5g46800 BOU At4g20780 GA 1 5 At4g29840 MTO 2 At5g13960 KYP At5g48150 PAT 1 At4g03080 ABP 1 At4g30090 EMB 1353 At5g14750 WER 1 22* At5g48300 ADG 1 At4g30950 FAD 6 54 At5g14750 WER 1 20* At5g48300 ADG 1			2 2						<u> </u>			-			
Atág02510 PPI 2 Atág28750 PSAE I Atág28750 PSAE I Atág28750 AXR 6 7* Atág29010 AIM Atág13730 AXR 6 7* Atág2980 ABP I Atág29840 MTO 2 Atág13930 AXR 6 Atág13930 AXR					COLUMN TO SERVICE STATE OF THE				_						
At4g02560 LD At4g029010 AlM At5g13710 SMT I At5g46800 BOU At4g02570 AXR 6 7* At4g02906 EMB 2726 At5g13930 TT 4 13 At5g46800 BOU At4g02980 ABP I At4g29840 MTO 2 At5g13960 KYP At5g1450 FUS I1 22* At4g303050 AOP 3 At4g30990 EMB 1353 At5g14750 WER I 20* At5g48300 ADG I									13			_			
At4g02570 AXR 6 7* At4g02780 GA I 5 At4g02980 ABP I At4g03050 AOP 3 At4g03050 AOP 3 At4g03050 AVR 3 At4g03050 AOP 3 At4g03050 AVR 3 At4g03050 AVR 3 At4g03050 AVR 3 At4g03050 AVR 3 At4g03050 AVR 3 At4g03050 AVR 3 At5g14750 WER 1 At5g48800 SGR 3 At5g4820 PMT 1 At5g48300 ADG 1									\square			\vdash			
At4g02780 GA I 5 At4g02980 ABP I At4g03050 AOP 3 At4g03050 FAD 6 At4g03050 FAD 6 At5g14250 FUS II At5g14250 FUS II At5g14250 FUS II At5g14250 FUS II At5g48230 EMB 1276 At5g48300 ADG I	At4g02570			_					13			\vdash			
At4g02980 ABP I At4g30090 EMB 1353 At5g14250 FUS II 22* At5g48230 EMB 1276 At4g30050 AOP 3 At4g30950 FAD 6 54 At5g14750 WER I 20* At5g48300 ADG I	At4g02780	GA I	5												
At4g03050 AOP 3 At4g30950 FAD 6 54 At5g14750 WER 1 20* At5g48300 ADG 1	At4g02980	ABP 1					At5g14250	FUS 11	22*						
743 4440 PMP 4 200 743 940 300 745 940 745 940						54	At5g14750	WER 1	20*						
The state of the s									22*						

Figure 1. An ordered list of 620 Arabidopsis genes with mutant phenotypes. Genes are arranged by locus number, starting with the top of chromosome 1. Sequences are available at TIGR (http://www.tigr.org) and TAIR (http://www.Arabidopsis.org). Gene symbols with an asterisk conflict with other registered symbols that correspond to different genes (see Table S-I). Numbers in the centiMorgan column represent estimated locations on the genetic map. Numbers with an asterisk designate genes placed on the recombinant inbred map and later transferred to the classical map. Sequence gaps are noted for the centromere (CEN) and nucleolar organizer (NOR) regions.

Plant Physiol. Vol. 131, 2003

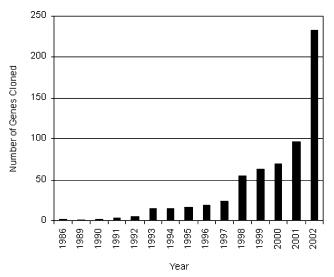
Figure 2. A sequence-based map of genes with mutant phenotypes. Gene locations are marked with horizontal lines. A single line at this scale may represent two or more neighboring genes. The length of each chromosome is proportional to its sequence. Centromeric gaps are marked by short constrictions.

able genes with little relevance to growth and development.

Time and Method of Gene Isolation

There has been a dramatic rise in recent years in the number of mutant genes cloned and characterized at a molecular level. This trend, documented in Figure 3, reflects improvements in methods for map-based cloning, widespread availability of transposon and T-DNA insertion lines, and longstanding efforts of the Arabidopsis community to characterize mutants obtained through forward genetics. At least 45 of the 76 loci (59%) found on the original classical map (Koornneef et al., 1983) and 237 of the 462 loci (51%) on the updated map (Meinke et al., 1998) have now

been cloned. One-half of the 235 mapped genes that remain to be identified are embryo defectives, many of which were given a low priority for gene isolation because they were not tagged (Franzmann et al., 1995). A current version of the classical map with cloned genes highlighted is presented in Figure S-3. Methods used to identify these genes are summarized in Figure 4A. Within the next several years, the number of genes identified through reverse genetics is likely to increase sharply as more emphasis is placed on screening insertion lines for knockouts in specific genes of interest. The rate-limiting step for characterizing genes with mutant phenotypes will then shift from trying to isolate the disrupted gene to searching for a subtle or conditional phenotype.


Phenotypes of Disrupted Genes

Mutant phenotypes should be associated with individual alleles rather than a single gene because weak and strong alleles may produce different types of abnormalities. We nevertheless decided to place the 620 mutant genes described here into broad phenotypic classes based on known gene disruptions in order to assess the diversity of genes and mutants included. The results of this subjective but informative effort are shown in Figure 4B. The relative frequency of each phenotype class reflects not only the number of genes available to be disrupted but also the amount of attention devoted to that class of mutants by members of the community. Dominant mutants have been placed in a separate category to highlight their inclusion and to acknowledge the absence of a knockout phenotype.

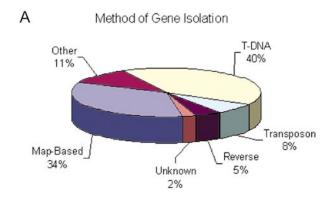
Comparison of Genetic and Sequence-Based Maps

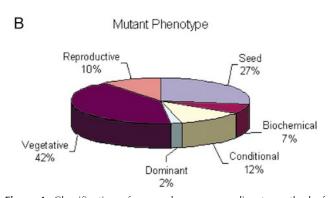
Information presented in Figure 1 makes it possible for the first time to assess the physical accuracy of the classical genetic map on a global scale. Although gene positions based on recombination percentages are for the most part consistent with physical locations confirmed through genome sequencing, precise locations and orders of closely linked genes are sometimes incorrect. Many of these inaccuracies can be attributed to the subjective process of transferring genes from the recombinant inbred map to the classical genetic map. Similar problems were encountered in the past when genetic maps constructed under different conditions were combined (Stam, 1993). The level of inaccuracy within each type of map is nevertheless about the same. In approximately 75% of the cases where a gene from either the classical genetic or recombinant inbred map has been cloned and sequenced, the adjacent cloned gene from the same map was placed in the correct position. In other words, the centiMorgan values increase or stay the same going down the chromosome in 75% of the cases examined when genes from the two maps are

Plant Physiol. Vol. 131, 2003

Figure 3. Date of initial publication or public release of gene identities associated with a mutant phenotype.

considered as separate groups. Some inconsistencies in gene placement are not surprising given the methods used to construct genetic maps. Other irregularities, such as the placement of CER3 at the top of chromosome 5 (GenBank accession no. 1669654) despite extensive genetic evidence documenting its location at the bottom of chromosome 5 (Koornneef, 1994), are more problematic and remain to be resolved. We chose not to perform a genome-wide comparison of genetic and physical map distances because many of the genetic locations were estimated based on recombination percentages with different sets of distant markers and were therefore not an accurate reflection of genetic distance. Crosses between mutants listed here could be performed in the future to compare recombination percentages and physical distances on a global scale.


Diversity of Genes Identified


Mutant genes identified to date encode proteins with a wide range of biological functions. Characterizing the full spectrum of cellular processes involved will require a higher degree of saturation and functional characterization of the entire proteome using a standardized gene ontology (GO) system adopted for model eukaryotes (Gene Ontology Consortium, 2001). At the present time, 35% of the 620 genes listed here have no GO assignment, 17% have a single functional assignment, and the remaining 48% have multiple GO assignments. Additional information on predicted protein functions can be found in Table S-1 and at TAIR.

Mutant genes also differ in predicted length from start to stop codons. We reasoned that existing mutant collections might be biased toward large genes because they represent bigger targets for random mutagenesis. This model is supported by the results presented in Table II. Small genes (<1 kb in length) are underrepresented in our collection (4% versus 25% of total) whereas large genes (>3 kb in length) are more common (42% versus 16%). These differences are also reflected in the average gene size: 3.2 kb for mutant genes and 1.9 kb for the entire genome. Large genes have already been shown to be preferred targets for T-DNA insertions that result in a seed phenotype (McElver et al., 2001). Results presented here document a similar trend for the entire collection of mutant genes identified through forward genetic screens. A significant challenge for the future is therefore to isolate and characterize large numbers of mutants disrupted in small genes with important biological functions.

Estimating the Total Number of Mutant Genes

Despite the limitations of defining what constitutes a mutant phenotype, the question of how many Arabidopsis genes will be found to exhibit a phenotype when disrupted by mutation needs to be addressed to place the current study in perspective and to com-

Figure 4. Classification of mapped genes according to method of identification and phenotype of mutant alleles. A, Method used to determine the identity of each mutant gene included on the sequence-based map. "Other" includes cases where promising candidate genes with consistent functions and map locations were analyzed directly for altered nucleotide sequence or protein function. B, Phenotype class of a representative mutant allele for each gene identified. Refer to "Materials and Methods" for definitions.

Plant Physiol. Vol. 131, 2003 415

Table 1. Distribution of genes on the classical genetic and sequence-based maps of Arabidopsis

O O	0	, ,	
Map Feature	Classical Genetic	Sequence-Based	Total Genome ^a
Total loci	462 (100.0%)	620 (100.0%)	29,084 (100.0%)
Chromosome 1	122 (26.4%)	156 (25.2%)	7,378 (25.4%)
Chromosome 2	70 (15.2%)	106 (17.1%)	4,814 (16.6%)
Chromosome 3	80 (17.3%)	102 (16.4%)	5,987 (20.6%)
Chromosome 4	77 (16.7%)	103 (16.6%)	4,319 (14.8%)
Chromosome 5	113 (24.4%)	153 (24.7%)	6,586 (22.6%)
Total <i>EMB</i>	131 (28.4%)	140 (22.6%)	Est. 500 to 750 ^b

^aBased on current annotation of the Arabidopsis genome (TIGR Release 3.0; http://www.tigr.org). embryo-defective mutants and duplicate alleles (Franzmann et al., 1995; McElver et al., 2001).

^bBased on relative frequency of

pare Arabidopsis with other model systems. The most definitive approach would be to perform a comprehensive phenotypic screen of a complete collection of individual knockout lines. This level of saturation has been reported for the yeast *Saccharomyces cerevisiae* (Giaever et al., 2002) but at present remains impractical for Arabidopsis, where efficient methods of gene replacement are not available and emphasis has been placed instead on screening for knockouts in existing collections of insertion lines, which are random, redundant, and incomplete.

An alternative approach would be to take several small regions of the genome, produce knockouts for each predicted gene, perform a comprehensive screen for phenotypes on each knockout, and extrapolate the percentage of genes found to have mutant phenotypes to the genome as a whole. Such an effort is certainly feasible, and if representative regions of the genome were chosen, could provide a direct estimate of the anticipated number of target genes. A related approach would be to take results from other model systems, compensate for differences in functional redundancy, and come up with an adjusted estimate for Arabidopsis. Recent studies have revealed that approximately 14% of the 2,400 genes on chromosome 1 of C. elegans disrupted with RNAi exhibit a phenotype (Fraser et al., 2000) and that 19% of the 5,900 knockouts of yeast analyzed in a genomewide survey exhibit a growth defect (Giaever et al., 2002). Approximately 35% of all predicted genes in Arabidopsis appear to be unique based on sequence comparisons in which similarity is defined by BLASTP value ($e < 10^{-20}$) and alignment (>80% of the protein). The proportion increases to 55% for *C. elegans* and 71% for yeast (Arabidopsis Genome Initiative, 2000). Although disrupting a duplicated gene can still result in a phenotype, increased functional redundancy should reduce the likelihood of a phenotype overall. Given this level of redundancy and phenotype detection in different model systems, we estimate that 10% of Arabidopsis genes (about 3,000 total) should give a loss-of-function phenotype that can be identified using current screening methods. This estimate may increase considerably in the future as visual and biochemical analyses of knockout mutants become more robust.

Information collected from large-scale screens of existing T-DNA collections should also provide insights into the level of saturation achieved. This requires estimating the average number of inserts per line, the percentage of inserts that fall within a single gene, the frequency of mutant phenotypes observed in the entire collection, and the percentage of mutant phenotypes associated with T-DNA insertion. Much of this information has already been obtained, particularly in relation to embryo defectives. There are about 1.5 inserts per line on average (Feldmann, 1991; Krysan et al., 1999; McElver et al., 2001), 30% of the phenotypes observed result from stable T-DNA integration (Castle et al., 1993; McElver et al., 2001), and 35% of T-DNA insertions appear to fall within an open reading frame (Krysan et al., 2002). The percentage of T-DNA insertions that disrupt the function of a typical Arabidopsis gene, however, remains to be

Table II. Predicted sizes of cloned mutant genes identified through forward genetic screens^a

Gene Class Analyzed	Number		Percentage of Genes Identified in Different Size Classes ^b								
Gene Class Analyzed	Number	<1 kb	1+ kb	2+ kb	3+ kb	4+ kb	5+ kb	6+ kb	>7 kb		
Total genome	27,288	25.3	37.9	20.9	8.1	3.9	1.9	0.9	1.1		
Total forward genetics	590	4.1	24.7	28.8	17.8	12.4	4.9	3.2	4.1		
Map-based cloning	208	3.4	23.6	34.1	18.3	8.6	6.2	2.4	3.4		
T-DNA tagged	254	4.7	24.0	23.7	17.3	14.6	5.5	5.5	4.7		
Other forward ^c	128	3.9	28.1	30.5	18.0	14.1	1.5	0.0	3.9		

^aBased on recent annotation from TIGR (http://www.tigr.org). Gene boundaries correspond to start and stop codons. Gene classes are defined by method of gene isolation. ^bGenes are placed in size groups: 1+ kb includes all predicted genes between 1.00 and 1.99 kb in length; 2⁺ kb includes those between 2.00 and 2.99 kb; etc. ^cIncludes mutant genes identified by transposon tagging and other combinations of methods.

resolved. There are an estimated 500 to 750 EMB genes based on the frequency of duplicate mutant alleles identified to date (Franzmann et al., 1995; McElver et al., 2001). If we estimate that embryo defectives represent about 20% of all mutant phenotypes in T-DNA populations, then the total number of genes that can give a mutant phenotype is 2,500 to 3,750. The current estimated level of saturation for mapped genes with mutant phenotypes is therefore 15% to 25%. Although these numbers may need to be adjusted dramatically as additional details emerge from forward and reverse genetic screens, we believe that they represent a reasonable starting point for future experiments and an important first step in the analysis of Arabidopsis genes with mutant phenotypes.

MATERIALS AND METHODS

Establishing a List of Genes with Mutant Phenotypes

Gene identities associated with mutant phenotypes were identified in part by searching PubMed (http://www.ncbi.nlm.nih.gov) for relevant publications using different combinations of keywords (Arabidopsis, gene, mutant, mutation, and protein). Abstracts of papers describing the initial cloning of a mutant gene were saved for future reference. Publications were examined for details on gene symbols, mutant phenotypes, predicted functions, and methods of gene isolation. Reference laboratories responsible for identifying the disrupted gene were noted. Chromosome locus numbers maintained at The Institute for Genomic Research (TIGR; http://www. tigr.org) were identified using BLASTP (Altschul et al., 1997) accessed through TAIR (Huala et al., 2001) to compare published sequence information with the entire Arabidopsis proteome. Additional genes were found by scanning abstracts of recent Arabidopsis meetings in Madison, Wisconsin (June, 2001) and Seville, Spain (June, 2002). Direct requests for information were made to the Arabidopsis community through TAIR and the electronic Arabidopsis newsgroup (arab-gen@net.bio.net). Symbols of mapped and well-characterized mutants not included on initial lists of cloned genes were also used to search PubMed and GenBank. Information presented here was obtained through August 15, 2002.

Classification of Mutant Phenotypes

Six phenotype classes were used to document the diversity of genes identified: seed (embryo- or endosperm-defective or seed pigment mutant), vegetative (altered germination, seedling, root, rosette, or transition to flowering), reproductive (abnormal flower, silique, seed coat, or gamete), biochemical (altered enzyme activity, product accumulation, or cellular function without other striking defects), conditional (phenotype only in certain genetic backgrounds or in response to pathogen or unusual treatment), and dominant (phenotype observed only with dominant allele). Genes with variable mutant phenotypes were assigned to the first relevant class in the order listed above. Assignments were designed to be informative and representative but could not always be definitive given the complexity of some mutant phenotypes.

Drawing the Sequence-Based Maps

Maps were drawn with the "Chromosome Map Tool" available at TAIR, which queries a database with the supplied locus numbers to obtain assignment information. The locus name and coordinate information are then sent to an applet, which draws all five chromosomes on the browser screen. The user can choose a zoom level to scale the picture. Figure 2 was drawn at the 100% zoom level, where one pixel on the screen equals 50 kb. Figures S-1 and S-2 were drawn at the 600% zoom level, where one pixel equals approximately 8 kb.

ACKNOWLEDGMENTS

We thank Tanya Berardini at TAIR for providing a draft list of putative mutants associated with gene identifiers, Brian Haas at TIGR for information on gene size distributions genome wide, members of the Meinke laboratory for helpful comments on the manuscript, and the entire Arabidopsis community for providing information on gene identities.

Received September 6, 2002; returned for revision October 9, 2002; accepted November 18, 2002.

LITERATURE CITED

- Alonso-Blanco C, Peeters AJ, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper MT (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14: 259–271
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402
- **Arabidopsis Genome Initiative** (2000) Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. Nature **408**: 796–815
- Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19: 137–144
- Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon ES, Meinke DW (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241: 504–514
- Chang C, Bowman JL, DeJohn AW, Lander ES, Meyerowitz EM (1988) Restriction fragment length polymorphism linkage map for *Arabidopsis thaliana*. Proc Natl Acad Sci USA **85**: 6856–6860
- Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD et al. (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286: 2468–2474
- Fabri CO, Schaffner AR (1994) An Arabidopsis thaliana RFLP mapping set to localize mutations to chromosomal regions. Plant J 5: 149–156
- Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1: 71–82
- Franzmann LH, Yoon ES, Meinke DW (1995) Saturating the genetic map of *Arabidopsis thaliana* with embryonic mutations. Plant J 7: 291–300
- Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of *C. elegans* chromosome 1 by systematic RNA interference. Nature **408**: 325–330
- Gene Ontology Consortium (2001) Creating the gene ontology resource: design and implementation. Genome Res 11: 1425–1433
- Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391
- Golden TA, Schauer SE, Lang JD, Pien S, Mushegian AR, Grossniklaus U, Meinke DW, Ray A (2002) SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol 130: 808–822
- Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, LaFond F, Hanley D, Kiphart D, Zhuang M, Huang W et al. (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29: 102–105
- Jensen J, Jorgensen JH (1975) The barley chromosome 5 linkage map: I. Literature survey and map estimation procedure. Hereditas 80: 5–16
- Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4: 403–410
- **Koornneef M** (1994) Arabidopsis genetics. *In* E Meyerowitz, C Somerville, eds, Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 89–120
- Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983) Linkage map of *Arabidopsis thaliana*. J Hered **74**: 265–272
- **Kosambi DD** (1944) The estimation of map distances from recombination values. Ann Eugen 12: 172–175
- Krysan PJ, Young JC, Jester PJ, Monson S, Copenhaver G, Preuss D, Sussman MR (2002) Characterization of T-DNA insertion sites in Arabi-

- dopsis thaliana and the implications for saturation mutagenesis. OMICS 6: 163-174
- Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283–2290
- Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in *Arabidopsis thaliana*. Plant J 4: 745–750
- McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman MA et al. (2001) Insertional mutagenesis of genes required for seed development in *Arabidopsis thaliana*. Genetics 159: 1751–1763
- Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998)

 Arabidopsis thaliana: a model plant for genome analysis. Science 282: 662–682
- Nam HG, Giraudat J, den Boer B, Moonan F, Loos WDB, Hauge BM, Goodman HM (1989) Restriction fragment length polymorphism linkage map of Arabidopsis thaliana. Plant Cell 1: 699–705
- Patton DA, Franzmann LH, Meinke DW (1991) Mapping genes essential for embryo development in Arabidopsis thaliana. Mol Gen Genet 227: 337–347
- Reiter RS, Williams JGK, Feldmann KA, Rafalski JA, Tingey SV, Scolnik PA (1992) Global and local genome mapping in *Arabidopsis thaliana* by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci USA 89: 1477–1481
- Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3: 739–744